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Two PartsTwo Parts

This talk consists of 2 parts: background andThis talk consists of 2 parts: background and
new results.new results.

The background material is known.The background material is known.
But since itBut since it’’s not all that well-known, Is not all that well-known, I

thought it would be best to mention it.thought it would be best to mention it.
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Genesis: Nov 2006, Genesis: Nov 2006, GrenobleGrenoble
At that time and place, there was the Ph.D.At that time and place, there was the Ph.D.

defense of Eric Duchene.defense of Eric Duchene.
One of EricOne of Eric’’s games was a variation ofs games was a variation of

WythoffWythoff’’ss game, and 4 of us, who worked game, and 4 of us, who worked
together on some related problems for atogether on some related problems for a
few days after the defense, could get nofew days after the defense, could get no
handle on the problem..handle on the problem..

I thought of solving the problemI thought of solving the problem
approximately. I had similar thoughtsapproximately. I had similar thoughts
before.before.

Details follow below.Details follow below.
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The Idea of this TalkThe Idea of this Talk

Provide a probabilistic strategy for impartial
combinatorial games whose exact
strategy is known, but it’s too hard to
compute.

To the best of my knowledge, this is the first
result in this direction.

There is still a gap in the result, and I’ll point
it out later.
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A Warm-Up

THEOREM. α, β pos irrational, α-1+β-1=1. Then
A:=∪n=1

∞ bnαc and B:=∪n=1
∞ bnβc split Z ¸1.

Proof from the book. ζ={α,β,2α,2β,3α,3β…}.
Suffices to show that precisely one term of ζ is
in [h,h+1) for every h∈Z ¸1.

     |-x----|----x-|--x---|---x--|---x--|…
  1       2      3       4       5       6

Suffices to show that if B∈Z ¸2, ∃ N=B-1 terms of ζ
less than B.
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Show: ∃ N=B-1 Terms of ζ Less Than B.

nα<B for n=1,…,bB/αc, nβ<B for n=1,…,bB/βc .
Hence N=bB/αc+bB/βc . Now,
(B/α)-1<bB/αc<B/α,  (B/β)-1<bB/βc<B/β .
Adding:    B-2<N<B.
The 3 sides are integers and the inequalities
are strict.
Hence N=B-1 as required.
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Our GamesOur Games are 2-Player Perfect Info; are 2-Player Perfect Info;
Last Player WinsLast Player Wins

Generalized Generalized WythoffWythoff’’ss game played on 2 piles game played on 2 piles
of tokens. Moves: either take any pos numberof tokens. Moves: either take any pos number
from from singlesingle pile or m>0 from one, n>0 from pile or m>0 from one, n>0 from
the other, provided |the other, provided |m-nm-n|<a, where a|<a, where a∈∈ZZ >0>0 is a is a
fixed integer parameter.fixed integer parameter.

N-position: a position such that the N-position: a position such that the NextNext (first) (first)
player can win.player can win.

P-position: a position such that the P-position: a position such that the PreviousPrevious
(second) player can win.(second) player can win.

P-positions for a=2:P-positions for a=2:
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P-Positions for a=2

311
000
BnAnn
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P-Positions for a=2

622
311
000
BnAnn
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P-Positions for a=2

1043
622
311
000
BnAnn
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P-Positions for a=2

1354
1043
622
311
000
BnAnn
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P-Positions for a=2

1775
1354
1043
622
311
000
BnAnn
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P-Positions for a=2

2086
1775
1354
1043
622
311
000
BnAnn
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P-Positions for a=2

2397
2086
1775
1354
1043
622
311
000
BnAnn
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P-Positions for a=2

27118
2397
2086
1775
1354
1043
622
311
000
BnAnn
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P-Positions for a=2

30129
27118
2397
2086
1775
1354
1043
622
311
000
BnAnn
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The Rule of the Table
For S½Z ¸0, S≠Z ¸0, define
mex S=min Z ¸0\S=least nonnegative

integer not in S. Then     THEOREM.
An=mex{Ai,Bi : 0·i<n},   Bn=An+2n (n¸0).
This result provides a recursive strategy.
Put A=∪n¸1 An, B=∪n¸1 Bn. Then A, B

partition Z ¸1.
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Is the Recursive Strategy Efficient?Is the Recursive Strategy Efficient?
Given (x,y), 0·x·y, what’s the complexity of the

membership question: Is there n such that
(x,y)=(An,Bn)?

Since Bn+1-Bn=An+1-An+2¸3,  we have n·An<2n.
So need to check at most 2n numbers for
deciding whether x∈A.

Is this algorithm therefore linear?
No, it’s exponential!
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Is there a Polynomial Algorithm?

Let α=p2, β=α+2. Put A’n= bnαc, B’n =bnβc.
THEOREM. An=A’n, Bn=B’n.
PROOF. Note that A0=A’0=0, B0=B’0=0.

Also, Bn-An=B’n-A’n=2n. Moreover, A’n , B’n
are complementary, since α-1+β-1=1.
Therefore

A’n=mex{A’i,B’i : 0·i<n}=An.
This theorem leads to a polynomial

strategy.
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Another Polynomial Strategy

Continued fraction expansion of α =[1,a1,a2,… ]
(1<α<2). The numerators of the convergents
pn/qn=[1,a1,…,an] satisfy the recursion p0=1,
p1=a1+1, pn=anpn-1+pn-2  (n¸2).

LEMMA. Every pos integer can be written
uniquely in the form N=∑i=0

m sipi, 0·si·ai+1, and
the special proviso  si+1=ai+2⇒si=0 (i¸0).

Example for α=[1,2,2,2,…] on next slide.
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A Polynomial Arithmetic Strategy (a=2)

401612211
371511111
341410011
30129201
27118101
2397001
208602
177521
135411
104301
6222
3111
000
BnAnn137
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This ends the background material.This ends the background material.
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Apparently Complex SequencesApparently Complex Sequences
For nFor n∈∈ZZ ¸̧00, define the sequences, define the sequences

aann==mex{amex{aii,b,bii : 0 : 0··i<n},  i<n},  bbnn=a=ann++bbn/2n/2cc..
They are in Sloane's encyclopedia, but doThey are in Sloane's encyclopedia, but do

not appear to have a succinct description.not appear to have a succinct description.
Do the Do the sqncssqncs  ssnn==bbnnααcc, , ttnn==bbnnββcc approximate approximate

the above, where the above, where αα=(3+=(3+pp17)/4, 17)/4, ββ==αα
+1/2 ?+1/2 ?

Why should they?Why should they?
Note: xNote: x-1-1+(x+1/2)+(x+1/2)-1-1=1 has the solution x==1 has the solution x=
αα. Both pairs of sequences split . Both pairs of sequences split ZZ ¸̧1.1.



242425251919111123231818
22221717101022221717
202016169919191515
181814148816161212
151512127714141111
131310106613131010
111188559977
9977448866
6655335544
4433223322
2211111111
0000000000
ttnnssnnnnbbnnaann
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ConjecturesConjectures

CONJECTURE 1. Is it the case that
an·sn·an+2 for all n∈Z ¸0?

If this holds then it’s easy to show that
bn·tn·bn+3 for all n∈Z ¸0.
CONJECTURE 2. Is it true that for the

majority of n,  an=sn-1 and bn=tn-1?



26

Numerical EvidenceNumerical Evidence

Eric Duchene has verified Conjecture 1 for nEric Duchene has verified Conjecture 1 for n··
100,000. %age of n for which a100,000. %age of n for which ann==ssnn is 19%, is 19%,
aann=s=snn-1: 73%,  a-1: 73%,  ann=s=snn-2: 8%. Plots follow-2: 8%. Plots follow
below. They form strikingly straight lines. %agebelow. They form strikingly straight lines. %age
of n for which of n for which bbnn==ttnn: 9,8%, : 9,8%, bbnn=t=tnn-1: 65.4%,-1: 65.4%,
bbnn=t=tnn-2: 24.7%, -2: 24.7%, bbnn=t=tnn-3: 0,02%. %ages again-3: 0,02%. %ages again
have very small variation when n grows.have very small variation when n grows.
Smallest n for which Smallest n for which ttnn=b=bnn+3 is n=723+3 is n=723..

DoritDorit Ron has verified Conj 1 for n Ron has verified Conj 1 for n··10107 7 ..
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aann=s=snn--11, , aann==ssnn, , aann=s=snn--22
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Conj 1 became Thm, 2 weeks ago

THEOREM 1, joint with Udi Haddad. For
all n∈Z ¸0  we have,  an·sn·an+2.

Sketch of proof.
Lemma 1. If am·2m-2, then
an+am·an+m·an+am+1+1.
Cor 1. bn+bm·bn+m·bn+bm+1+1.
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Auxiliary ResultAuxiliary Result

For proving Lemma 1, we useFor proving Lemma 1, we use
Lemma 2.Lemma 2.  There exists c  There exists c∈∈ ZZ , independent, independent

of n, such that for all sufficiently large n,of n, such that for all sufficiently large n,
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FeketeFekete’’ss Lemma Lemma

DefinitionDefinition. Sequence {a. Sequence {ann}}nn¸̧11 is  is subadditivesubadditive if if
aam+nm+n··aamm+a+ann for all m, n. It for all m, n. It’’s s superadditivesuperadditive
if if aamm+a+ann··aam+nm+n   for all m, n. for all m, n.

FeketeFekete’’ss Lemma. Lemma. If {a If {ann}}nn¸̧11 is  is subadditivesubadditive
then then limlim a ann/n exists and its value is /n exists and its value is infinf
aann/n (might be -/n (might be -∞∞). If {a). If {ann}}nn¸̧11 is is
superadditivesuperadditive then  then limlim a ann/n exists and its/n exists and its
value is sup avalue is sup ann/n (might be /n (might be ∞∞).).
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Establishing the Left-Hand Inequality:Establishing the Left-Hand Inequality:
aann··ssnn

By By FeketeFekete’’ss Lemma and  Lemma and aamm+a+ann··aam+nm+n
we have awe have ann//nn→→supsup a ann/n:=/n:=αα,,
bbnn/n/n→→supsup  bbnn/n/n:=:=ββ..

(b(bnn-a-ann)/n)/n→→1/2, so 1/2, so ββ==αα+1/2.+1/2.
As in the warm-up, As in the warm-up, αα-1-1++ββ-1-1=1.=1.
By By FeketeFekete, , αα=sup a=sup ann/n. Hence /n. Hence aann··nnαα,,

so so aann·b·bnnααcc==ssnn..
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Right-Hand Inequality: sRight-Hand Inequality: snn··aann+2+2

From Lemma 2: aFrom Lemma 2: an+mn+m··aann+a+am+1m+1+1.+1.  Increase n byIncrease n by
1: a1: an+1+mn+1+m··aan+1n+1+a+am+1m+1+1. Put +1. Put AAkk:=a:=ak+1k+1. Then. Then
AAn+mn+m··AAnn+A+Amm+1. Add 1:  (A+1. Add 1:  (An+mn+m+1)+1)· · (A(Ann+1)+1)
+(A+(Amm+1). Put +1). Put BBkk:=A:=Akk+1. Then +1. Then BBn+mn+m··BBnn+B+Bmm..

By By FeketeFekete, , BBnn/n/n→→infinf  BBnn/n/n. Now . Now BBnn=A=Ann+1=a+1=an+1n+1+1,+1,
so (aso (an+1n+1+1)/n+1)/n→→inf (ainf (an+1n+1+1)/n=+1)/n=αα. Hence. Hence
aan+1n+1+1+1¸̧nnαα. So a. So an+1n+1¸̧nnαα -1=(n+1) -1=(n+1)αα--αα-1> (n+1)-1> (n+1)
αα-3-3¸̧bb(n+1)(n+1)ααcc-3=s-3=sn+1n+1-3. So s-3. So sn+1n+1··aan+1n+1+2.+2.
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Las Vegas

A strengthened Conj 2, namely in over
73% of n we have an=sn+1, seems to
follow from the form of the fractional
part of α. Not yet done.

So if a game with the above P-positions
is put up in Las Vegas, then our
probabilistic strategy will beat the
house in 73% of the games..
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Lemma 3Lemma 3
Let ULet U∈∈ZZ ¸̧11. . ((ii)) For indexes m For indexes m==mm((UU)), n, n==nn((UU))

such that such that aamm··UU<a<am+1m+1, , bbnn··UU<b<bn+1n+1, we have, we have
mm((UU)+)+nn((UU)=)=U+1U+1..

((iiii)) For indexes m' For indexes m'==m'm'((UU)), n', n'==n'n'((UU)) such such
that that ssm'm'··UU<s<sm'+1m'+1, , ttn'n'··UU<t<tn'+1n'+1::
m'm'((UU)+)+n'n'((UU)=)=UU..

Proof of (ii). Since the s- and t-sequencesProof of (ii). Since the s- and t-sequences
split split ZZ ¸̧11, the integers in [s, the integers in [s11,s,smm’’]]∪∪[t[t11,t,tnn’’]]
are but a permutation of {1,are but a permutation of {1,……,U}. Thus,U}. Thus
mm’’+n+n’’=U. For (i), the number 1 is=U. For (i), the number 1 is
assumed twice..assumed twice..
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Corollary and TheoremCorollary and Theorem
COROLLARY 2.COROLLARY 2.

m(U)+n(U)=m'(U)+n'(U)+1=U+1.m(U)+n(U)=m'(U)+n'(U)+1=U+1.
Theorem 1 implies:Theorem 1 implies:
Theorem 2.Theorem 2. For every U For every U∈∈ZZ ¸̧11,  ,  m(U)m(U)¸̧mm’’(U(U),),

n(U)n(U)¸̧nn’’(U(U).).
Thus Corollary 2 implies either m=mThus Corollary 2 implies either m=m’’,,

n=nn=n’’+1, or else m=m+1, or else m=m’’+1, n=n+1, n=n’’..
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AppreciationAppreciation

Thank you for listeningThank you for listening
or sleeping..or sleeping..
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EquivalenceEquivalence

THEOREM 3. Theorems 1 and 2 areTHEOREM 3. Theorems 1 and 2 are
equivalent.equivalent.

In other words, the assertion aIn other words, the assertion ann··ssnn··aann+2+2
for all for all ZZ ¸̧11, is equivalent to , is equivalent to m(U)m(U)¸̧mm’’(U(U),),
n(U)n(U)¸̧nn’’(U(U).).

Proof depends on a few technical lemmas.Proof depends on a few technical lemmas.
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General Class of Games on 2 PilesGeneral Class of Games on 2 Piles

Throughout assume Throughout assume xx··yy..
(a) Remove any pos number from (a) Remove any pos number from singlesingle  pile.  pile.
(b) Move (x(b) Move (x00,y,y00) ) →→ (x (x11,y,y11) by removing m>0 from) by removing m>0 from

one, n>0 from the other pile, such thatone, n>0 from the other pile, such that
||m-nm-n|=|(y|=|(y00-y-y11)-(x)-(x00-x-x11)|=|(y)|=|(y00-x-x00)-(y)-(y11-x-x11)|<)|<

f(xf(x11,y,y11,x,x00), f a real ), f a real constraint functionconstraint function..
Examples: (i) f=xExamples: (i) f=x11+1; (ii) f=x+1; (ii) f=x00-x-x11..



39

P-Positions for f=xP-Positions for f=x11+1+1

THM. P=THM. P=∪∪nn¸̧00 (a (ann, , bbnn),  a),  ann==mex{amex{aii,b,bii  : 0: 0··i<n},i<n},
bbnn=b=bn-1n-1+a+ann+1  (b+1  (b-1-1=-1, n=-1, n¸̧0).0).
Is there a polynomial strategy?Is there a polynomial strategy?

82826868555544443434252517171111662200bbnn

1313121210109988775544331100aann

101099887766554433221100nn
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Goedel, Escher Bach Connection
Hofstaedter asks the reader in his well-

known book to characterize the
sequence:

B’={1,3,7,12,18,26,35,45,56,…}.
Answer: A’={2,4,5,6,8,10,11,…} is both

the set of differences of consecutive
terms of B’, and the complement of B’.
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The P-Positions andThe P-Positions and
GoedelGoedel, Escher,, Escher,  BachBach

83836969565645453535262618181212773311BB’’

141413131111101099886655442200AA’’

82826868555544443434252517171111662200bbnn

1313121210109988775544331100aann

101099887766554433221100nn
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P-Positions for f=xP-Positions for f=x00-x-x11

THM. P=THM. P=∪∪nn¸̧00 (a (ann, , bbnn),),
aann==mex{amex{aii,b,bii  : 0: 0··i<n},  i<n},  bbnn=2a=2ann (n (n¸̧0).0).
Is there a polynomial strategy?Is there a polynomial strategy?
Yes, as indicated next:Yes, as indicated next:

303026262424222218181414101088662200bbnn

151513131212111199775544331100aann

101099887766554433221100nn
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P-Positions and P-Positions and Prouhet-Thue-MorseProuhet-Thue-Morse

aann: (1) All pos integers with binary representation ending: (1) All pos integers with binary representation ending
in even number of 0s. (2) Parity of number of 1in even number of 0s. (2) Parity of number of 1’’s ins in
binary representation alternates. (3) Complement isbinary representation alternates. (3) Complement is
double the sequence. So double the sequence. So bbnn contains all pos integers contains all pos integers
with binary representation ending in odd number ofwith binary representation ending in odd number of
0s.  0s.  CCnn=0=0aa11-a-a0011aa22-a-a1100aa33-a-a22……00aa2n+12n+1-a-a2n2n11aa2n+22n+2-a-a2n+12n+1..
=011010011001011010010=011010011001011010010…… is the famous PTM is the famous PTM
sequence.sequence.

303026262424222218181414101088662200bbnn

151513131212111199775544331100aann

101099887766554433221100nn
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Master TheoremMaster Theorem

THEOREM. S=∪i¸0 (ai,bi),
an=mex{ai,bi:0·i<n},

bn=f(an-1,bn-1, an)+bn-1+an-an-1.
If f is positive, monotone and semi-

additive, then S is the set of P-positions
of a general 2-pile subtraction game
with constraint function f.
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Epilogue

For any given infinite binary word W,
put A={locations of 0s}, B={locations
of 1s}. Then (A,B) constitute the P-
positions of some game G. If the
subword complexity of W is
sufficiently high, the membership
question for (A,B) likely doesn’t have a
polynomial solution. Then look for an
approximating sequence.


