Complexity of the Membership Question

Aviezri Fraenkel
aviezri.fraenkel@weizmann.ac.il
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science
76100 Rehovot
ISRAEL

Abstract

The question whether an n-tuple $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ is in $\left(A^{1}, \ldots, A^{n}\right)$, where the A^{i} are given integer sequences, can sometimes be decided efficiently (in polynomial space and polynomial time). More often, depending on the sequences A^{i}, the answer is unknown, and the best known algorithms are exponential. Our main purpose is to introduce the notion of a probabilistic algorithm for deciding this question for some sequences A_{i}. The motivation comes from combinatorial game theory, where the $\left(A^{1}, \ldots, A^{n}\right)$ are the second player winning positions.

