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Abstract. We study some classes of infinite words that generalize epis-
turmian words, and analyse the relations occurring among such classes.
In each case, the reversal operator R is replaced by an arbitrary involu-
tory antimorphism of the free monoid A

∗.

1 Introduction

The study of combinatorial and structural properties of finite and infinite words
is a subject of great interest, with many applications in mathematics, physics,
computer science, and biology (see for instance [1, 2]). In such a frame, Sturmian
words play a relevant role (see [1, Chap. 2]). Some natural extensions of Sturmian
words to the case of an alphabet with more than two letters have been recently
given in [3, 4], by introducing the class of the so called episturmian words.

In this paper we consider different extensions of episturmian words, all based
on the replacement of the reversal operator by an arbitrary involutory anti-
morphism of the free monoid A∗. Involutory antimorphisms arise naturally also
in some applications; a famous example is the Watson and Crick antimorphic
involution in molecular biology (see for instance [5]).

We recall that for an infinite word w ∈ Aω , the following conditions are
equivalent (see [3, 4]):

1. There exists an infinite word ∆ = x1x2 · · ·xn · · · ∈ Aω such that w =
limn→∞ un, with u1 = ε and ui+1 = (uixi)

(+) for all i ≥ 1, where (+) is
the right palindrome closure operator.

2. w is closed under reversal, and each of its left special factors is a prefix of w.

An infinite word satisfying such conditions is called a standard episturmian word.
If the reversal operator is replaced by an arbitrary involutory antimorphism

ϑ, then conditions 1 and 2 above are no longer equivalent, but each gives rise to
a natural generalization (or extension) of the usual episturmian words.



Words generalizing condition 1 are called ϑ-standard, and were previously
introduced in [6]. More precisely, a ϑ-standard word w is an infinite word over
A obtained as a limit of a sequence (un)n>0 of ϑ-palindromes, with u1 = ε and
ui+1 = (uixi)

⊕ϑ for a suitable directive word ∆ = x1x2 · · ·xn · · · , where ⊕ϑ is
the right ϑ-palindrome closure operator.

In this paper we introduce and study words generalizing condition 2 above,
that we call standard ϑ-episturmian. Hence, a standard ϑ-episturmian word is
any infinite word w which is closed under ϑ and such that each of its left special
factors is a prefix of w.

The main purpose of this paper is to study various connections amongst these
two families. We shall see that, in general, neither one is a subset of the other.

A further generalization of condition 1 is made by allowing the iterative ϑ-
palindrome closure process to start from an arbitrary word u0 (called seed). In [7]
we called any word constructed in this way a ϑ-standard word with seed. This
is a larger class, strictly containing not only ϑ-standard words (as is trivial by
the definition), but also standard ϑ-episturmian words. Indeed, one of the main
theorems of this paper shows that an infinite word s is ϑ-standard with seed if
and only if it is closed under ϑ and there exists N ≥ 0 such that any left special
factor of s having length n ≥ N is a prefix of s.

In general, we shall refer to the words of these families as pseudoepisturmian
words. In the next sections we shall analyse some properties of pseudoepistur-
mian words, and the relations existing among the above three classes of words.

For standard definitions and notations on words not explicitly given in the
text, we refer to [1, 6].

2 Some Classes of Infinite Words

As is well known, an involutory antimorphism of the free monoid A∗ is an ar-
bitrary map ϑ : A∗ → A∗ such that ϑ(uv) = ϑ(v)ϑ(u) for any u, v ∈ A∗, and
ϑ ◦ ϑ = id. The reversal operator

R : w ∈ A∗ 7→ w̃ ∈ A∗

is the basic example of involutory antimorphism of A∗. Any involutory antimor-
phism is the composition ϑ = τ ◦R = R◦τ where τ is an involutory permutation
of the alphabet A. Thus it makes sense to call ϑ-palindromes the fixed points of
an involutory antimorphism ϑ. We shall denote by PALϑ the set of ϑ-palindromes
over A.

Let ϑ be an involutory antimorphism of A∗. One can define the (right)
ϑ-palindrome closure operator: for any w ∈ A∗, w⊕ϑ denotes the shortest ϑ-
palindrome having w as a prefix. Some properties and results on ϑ-palindromes,
relating ϑ-palindrome closure operators with periodicity and conjugacy, are in [6].

In the following, we shall fix an involutory antimorphism ϑ of A∗, and use the
notation w̄ for ϑ(w). We shall also drop the subscript ϑ from the ϑ-palindrome
closure operator ⊕ϑ when no confusion arises.
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If Q is the longest ϑ-palindromic suffix of w and w = sQ, then w⊕ = sQs̄.
In the special case ϑ = R, we shall denote w⊕R by w(+), as usual.

Example 2.1. Let A = {a, b} and w = abaabbaa. One has w(+) = abaabbaaba.
If ϑ = E ◦ R where E is the interchange morphism defined by E(a) = b and
E(b) = a, one has w⊕ = abaabbaabbab.

An infinite word s is said closed under ϑ if for any w ∈ Fact(s) one has
w̄ ∈ Fact(s). One easily derives that if an infinite word is closed under ϑ, then
it is recurrent.

2.1 ϑ-Standard Words with Seed

A wide class of infinite words over the alphabet A can be constructed by iterating
the right ϑ-palindrome closure operator as follows (cf. [7, 6]). Let u0 be a fixed

word of A∗ called seed, and ψ̂ϑ : A∗ → A∗ be the map defined by ψ̂ϑ(ε) = u0

and

ψ̂ϑ(ua) =
(

ψ̂ϑ(u)a
)⊕

for u ∈ A∗ and a ∈ A. For any u, v ∈ A∗, one has ψ̂ϑ(uv) ∈ ψ̂ϑ(u)A∗ ∩A∗ψ̂ϑ(u),

so that the domain of ψ̂ϑ can be extended to infinite words too. More precisely,
if t ∈ Aω, then

ψ̂ϑ(t) = lim
n→∞

ψ̂ϑ(wn) ,

where {wn} = Pref(t)∩An for all n ≥ 0. The word t is called the directive word

of ψ̂ϑ(t), and denoted by ∆(ψ̂ϑ(t)). If u0 6= ε, then any word ψ̂ϑ(t) is called
ϑ-standard with seed.

When the seed u0 is empty, the map ψ̂ϑ is usually denoted by ψϑ, and the
corresponding infinite words are called ϑ-standard words. If ϑ = R, the map ψR

is simply written ψ, and R-standard words are exactly the standard episturmian
words.

Example 2.2. Let A = {a, b, c}, ϑ be the involutory antimorphism exchanging b
and c and fixing a, u0 = ab, and w = aac. Then

ψ̂ϑ(w) =
(

ψ̂ϑ(aa)c
)⊕

=
(

(abacaa)
⊕
c
)⊕

= abacaabacacbabacaabaca .

The following proposition holds (cf. [8]):

Proposition 2.3. Let s = ψ̂ϑ(∆) be a ϑ-standard word with a seed u0 of length
k. The following hold:

1. A word w with |w| > k is a prefix of s if and only if w⊕ is a prefix of s,
2. the set of all ϑ-palindromic prefixes of s is given by

ψ̂ϑ(Pref(∆) \ {ε}) ∪ (PALϑ ∩ Pref(u0)) , (1)

3. s is closed under ϑ.
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By a generalization of an argument used in [3] for episturmian words, one can
prove (see [8]) the following

Proposition 2.4. Any ϑ-standard word s with seed is uniformly recurrent.

Let ψ̂ϑ(∆) be a ϑ-standard word with seed u0 and directive word ∆ =
xt1t2 · · · tn · · · . Define the endomorphism φx of A∗ by setting

φx(a) = ψ̂ϑ(xa)ψ̂ϑ(x)−1

for any letter a ∈ A. From the definition, one has that φx depends on ϑ and u0;
moreover, φx(a) ends with ā for all a ∈ A, so that any word of the set X = φx(A)
is uniquely determined by its last letter. Thus X is a suffix code, and φx is an
injective morphism.

Example 2.5. Let A, ϑ, and u0 be defined as in Example 2.2, and let x = a.
Then

φa(a) = ψ̂ϑ(aa)ψ̂ϑ(a)−1 = abaca ,

φa(b) = ψ̂ϑ(ab)ψ̂ϑ(a)−1 = abac ,

φa(c) = ψ̂ϑ(ac)ψ̂ϑ(a)−1 = abacacb .

The following important theorem on ϑ-standard words with seed, whose proof is
in [7], shows that such words are morphic images of standard episturmian words.

Theorem 2.6. Let w ∈ Aω and x ∈ A. Then

ψ̂ϑ(xw) = φx(ψ(w)) ,

i.e., any ϑ-standard word s with seed is the image, by an injective morphism, of
the standard episturmian word whose directive word is obtained by deleting the
first letter of the directive word of s.

In general, a ϑ-standard word with seed (empty or not) can have left special fac-
tors which are not prefixes. However, the following noteworthy theorem, proven
in [7], shows that all sufficiently long left special factors of a ϑ-standard word
with seed are prefixes of it.

Theorem 2.7. Let t be a ϑ-standard word with seed. Then there exists an inte-
ger N ≥ 0 such that for every n ≥ N , t has at most one left (resp. right) special
factor of length n.

An infinite word s ∈ Aω is called a ϑ-word with seed if there exists a ϑ-
standard word t with seed such that Fact(s) = Fact(t).

2.2 ϑ-Standard Words

The class of ϑ-standard words was introduced in [6]. This is a (proper) subclass
of ϑ-standard words with seed, obtained exactly by choosing the seed u0 = ε.
Similarly, a ϑ-word with seed ε will be called simply a ϑ-word. We recall the
following theorem proved in [6]:
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Theorem 2.8. For any w ∈ A∞, one has ψϑ(w) = µϑ(ψ(w)), where µϑ is the
injective morphism defined for any letter a ∈ A as µϑ(a) = a⊕.

The preceding theorem is a stronger version of Theorem 2.6 since in the case of
an empty seed, the morphism φx can be replaced by the simple morphism µϑ,
and moreover the ϑ-standard word ψϑ(w) has the same directive word as ψ(w).

The following theorem, whose proof is in [7], gives a noteworthy improvement
of Theorem 2.7 in the case of ϑ-standard words:

Theorem 2.9. Let w be a left special factor of a ϑ-standard word t = µϑ(s),
with s a standard episturmian word. If |w| ≥ 3, then w is a prefix of t.

2.3 ϑ-Episturmian Words

As was previously mentioned in the introduction, another extension of epistur-
mian words can be obtained by introducing infinite words w (called standard
ϑ-episturmian) satisfying the two following requirements:

1. w is closed under ϑ,

2. any left special factor of w is a prefix of w.

A word is called ϑ-episturmian if there exists a standard ϑ-episturmian word
having the same set of factors. In the following we shall denote by Epiϑ the class
of ϑ-episturmian words over A, and by SEpiϑ the set of standard ϑ-episturmian
words. When ϑ = R, EpiR is just the class of episturmian words.

More generally, it will be useful to introduce for any N ≥ 0 the family
SWϑ(N) of all infinite words w which are closed under ϑ and such that every
left special factor of w whose length is at least N is a prefix of w. Moreover, by
Wϑ(N) we denote the class of all infinite words having the same set of factors
of some word in SWϑ(N). Thus SWϑ(0) = SEpiϑ and Wϑ(0) = Epiϑ.

By adapting some arguments used in [3], it is not difficult to prove (cf. [8])
the following

Proposition 2.10. An infinite word s is in Wϑ(N) if and only if s is closed
under ϑ and it has at most one left special factor of any length greater than or
equal to N .

As an immediate consequence, one obtains:

Corollary 2.11. An infinite word is ϑ-episturmian if and only if it is closed
under ϑ and it has at most one left special factor of each length.

3 General Properties of Pseudoepisturmian Words

Let us recall that SWϑ(N) is the family of all infinite words w which are closed
under ϑ and such that, every left special factor of w whose length is at least N
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is a prefix of w. Let us denote by SWϑ the class of words which are in SWϑ(N)
for some N ≥ 0, i.e.,

SWϑ =
⋃

N≥0

SWϑ(N) .

The next two propositions are simple extensions of analogous results for
episturmian words (cf. [3, 8]).

Proposition 3.1. Let w ∈ SWϑ(N) and u be a ϑ-palindromic factor of w such
that |u| ≥ N . Then the leftmost occurrence of u in w is a median factor of a
ϑ-palindromic prefix of w, i.e., there exists a word λ such that λuλ̄ ∈ Pref(w).

Proposition 3.2. Any word in SWϑ(N) has infinitely many ϑ-palindromic pre-
fixes.

For a (fixed and arbitrary) word w ∈ SWϑ(N) we denote by (Bn)n≥1 the se-
quence of all ϑ-palindromic prefixes of w, ordered by increasing length. Moreover,
for any i > 0 let xi be the unique letter such that Bixi is a prefix of w. The
infinite word x = x1x2 · · ·xn · · · will be called the subdirective word of w. The
proof of Proposition 3.2 shows that for any i > 0, Bi+1 coincides with the prefix
of w ending with the first occurrence of x̄iBi. The next lemma shows that, under
suitable circumstances, a stronger relation holds.

Lemma 3.3. Let w ∈ SWϑ(N). With the above notation, let n > 1 be such that
xn = xk for some k < n with |Bk| ≥ N − 2. Then Bn+1 = (Bnxn)⊕.

Proof. Let k be the greatest integer satisfying the hypotheses of the lemma. Let
us first prove that Q = x̄nBkxn does not occur in Bn. By contradiction, consider
the rightmost occurrence of Q in Bn, i.e., let Qρ be a suffix of Bn such that Q
does not occur in any shorter suffix. If |ρ| ≤ |Bk|, then one can easily show that
the suffix Qρxn of Bnxn is a ϑ-palindrome, which is absurd because its length
is |Qρxn| > |Q|.

Suppose then Qρ = x̄nBkxnvx̄nBk for some v ∈ A∗. Since Qρ is a suffix of
Bn, one has that ρ̄Q = Bkxnv̄Q is a prefix of Bn. Now there is no proper suffix
u of v̄ such that uQ is left special in w. Indeed, if such u existed, then uQ would
be a prefix of Bn, and so Qū would be a suffix of Bn, contradicting (as |u| < |ρ|)
the fact that Qρ begins with the rightmost occurrence of Q in Bn. Hence every
occurrence of Q in w is preceded by v̄. Since ρxn = vx̄nBkxn is a factor of w,
one obtains v = v̄, so that Qρxn = x̄nBkxnvx̄nBkxn is a ϑ-palindromic suffix of
Bnxn longer than Q, a contradiction.

Thus Q does not occur in Bn. Since Q is the longest ϑ-palindromic suffix of
Bnxn, we can write

w = Bnxnw
′ = sQw′ ,

where (s, w′) is the leftmost occurrence of Q in w. By Proposition 3.1, sQs̄ =
(Bnxn)⊕ is a prefix of w. From this one derives Bn+1 = (Bnxn)⊕. ut

Theorem 3.4. Let s ∈ Aω. The following conditions are equivalent:
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1. s ∈ SWϑ,
2. s has infinitely many ϑ-palindromic prefixes, and if (Bn)n>0 is the sequence

of all its ϑ-palindromic prefixes ordered by increasing length, there exists an
integer h such that

Bn+1 = (Bnxn)⊕ ,

for all n ≥ h, for a suitable letter xn,
3. s is a ϑ-standard word with seed.

Proof. 1.⇒2. Let s ∈ SWϑ(N), and let Bi and xi (i > 0) be defined as above.
We consider the minimal integer p such that |Bp| ≥ N − 2. We set x[p] =
xpxp+1 · · ·xn · · · ∈ Aω, and take the minimal m such that alph(xp · · ·xp+m) =
alph(x[p]). Let h = p+m+1. Then for all n ≥ h, there exists k with p ≤ k ≤ p+m
such that xk = xn. Since k ≥ p one has |Bk| ≥ N − 2, so that by Lemma 3.3,
Bn+1 = (Bnxn)⊕.

2.⇒3. Let ψ̂ϑ(∆) be the ϑ-standard word with seed u0 = Bh and directive

word ∆ = xhxh+1 · · ·xn · · · . One has then ψ̂ϑ(∆) = s.
3.⇒1. This follows from Theorem 2.7. ut

Let us set

Wϑ =
⋃

N≥0

Wϑ(N) .

The following corollary is a direct consequence of the preceding theorem.

Corollary 3.5. Wϑ coincides with the set of all ϑ-words with seed.

Let us observe that the proof of Theorem 3.4 shows that for any given ϑ-
standard word s with seed there exists an integer h with the property that all
n ≥ h satisfy the conditions of Lemma 3.3, i.e., there exists k < n such that
|Bk| ≥ N − 2 and xn = xk. The minimal h satisfying the above property will
be called the critical integer of s. Thus by Lemma 3.3 one has Bn+1 = (Bnxn)⊕

for all n ≥ h.

Corollary 3.6. Any standard ϑ-episturmian word is a ϑ-standard word with
seed. Moreover, if s ∈ SEpiϑ and x = x1x2 · · ·xn · · · is its subdirective word,
then the critical integer of s is the minimal integer h such that alph(x) =
alph(x1 · · ·xh).

Proof. It is sufficient to observe that a standard ϑ-episturmian word s is in
SWϑ(0) as all its left special factors are prefixes of s. Therefore by Theorem 3.4,
s is a ϑ-standard word with seed Bh. Since for all n > 0 one has trivially
|Bn| ≥ N − 2, the assertion follows from the definition of critical integer. ut

We recall that if s is a standard episturmian word, any prefix p of s has a
palindromic suffix which is unrepeated in p (cf. [3]). The following proposition
(see [8] for a proof) shows that a similar but weaker result holds in the case of
ϑ-standard words with seed.
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Proposition 3.7. Let s be a ϑ-standard word with seed and h be its critical
integer. Any prefix p of s of length > |Bh| has a ϑ-palindromic suffix with a
unique occurrence in p.

We call a factor w of s ∈ A∞ a first return to v if w contains exactly two
occurrences of v, one as a prefix and the other as a suffix, so that w = vµ = λv.
As a consequence of Proposition 3.7, one derives the following result (cf. [8]):

Proposition 3.8. Let s be a ϑ-standard word with seed, and h be its critical
integer. For any ϑ-palindromic factor P of length |P | > |Bh|, every first return
to P in s is a ϑ-palindrome.

In the case of episturmian words, one has the stronger result that every first
return to a palindrome is a palindrome. This was proven in [9] (see also [7]).
However this cannot be extended to ϑ-episturmian words. For instance, let s be
the standard ϑ-episturmian word (abaca)ω, where ϑ(a) = a and ϑ(b) = c. Then
aba is a first return to a in s, but it is not a ϑ-palindrome.

4 Structure of ϑ-Episturmian Words

In this section we shall analyse in detail the class of ϑ-episturmian words, also
by showing some relations with the other classes introduced so far.

From Corollary 3.6 and Theorem 2.6, one derives the following

Proposition 4.1. Let s be a standard ϑ-episturmian word, h be its critical in-
teger, and x = x1x2 · · ·xn · · · be the subdirective word of s. Then s is the image,
by an injective morphism, of the standard episturmian word t whose directive
word is xh+1xh+2 · · ·xn · · · .

However, this can be improved. In fact, the next results will show (cf. Theo-
rem 4.4) that every s ∈ SEpiϑ is a morphic image, by an injective morphism, of
the standard episturmian word whose directive word is precisely x, the subdi-
rective word of s.

In the following we shall denote by P the set of unbordered ϑ-palindromes.
We remark that P is a biprefix code, i.e., none of its elements is a proper prefix
or suffix of other elements of P . The following lemma, whose proof we omit for
the sake of brevity (cf. [8]), shows that any nonempty ϑ-palindrome admits a
unique factorization in unbordered ϑ-palindromes.

Lemma 4.2. PAL∗
ϑ = P∗.

We remark that from the preceding lemma one derives that any standard
ϑ-episturmian word s admits a (unique) infinite factorization in elements of P ,
i.e., one can write

s = π1π2 · · ·πn · · · , with πi ∈ P for all i > 0 . (2)

Lemma 4.3. Let s ∈ SEpiϑ, with s = π1π2 · · ·πn · · · as above. Let u be a
nonempty and proper prefix of πn, for some n > 0. Then u is not right special
in s.
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Proof. By contradiction, assume that u is a right special factor of s. Then it
is not left special; indeed, otherwise it would be a ϑ-palindrome since s is ϑ-
episturmian, and this is clearly absurd as πn ∈ P .

Consider now the smallest integer h such that u is a prefix of πh. If h = 1,
then u would be a ϑ-palindrome, which is again a contradiction. Let then h > 1.
Since u is not left special, āh−1u is its unique left extension in s. One can keep
extending to the left in a unique way, until one gets a left special factor, or
reaches the beginning of the word. In either case, the factor q of s that one
obtains is a prefix of s. Moreover it is right special in s, as every occurrence
of the right special factor u extends to the left to q. Hence q̄ is a left special
factor of s, and then a prefix of s. Thus q is a ϑ-palindrome, and therefore it
begins with ū. One has |q| ≥ 2|u|, for otherwise there would be a nonempty
word in Pref(u) ∩ Suff(ū), that is, a nonempty ϑ-palindromic prefix of u, which
contradicts the hypothesis that u is a proper prefix of πh. Thus q = ūq′u for
some q′ ∈ PALϑ.

We have π1 · · ·πh−1 ∈ P∗ and, by Lemma 4.2, q′ ∈ P∗. Since P is a biprefix
code, this implies π1 · · ·πh−1(q

′)−1 ∈ P∗, i.e., q′ = πh′ · · ·πh−1 for some h′ ≤ h (if
h′ = h, then q′ = ε). Then π1 · · ·πh′−1 has ū as a suffix. As ū has no nonempty
ϑ-palindromic suffixes, it is a proper suffix of πh′−1, which then begins in u,
contradicting the minimality of h. ut

Theorem 4.4. Let s ∈ Aω be a standard ϑ-episturmian word, ∆ be its subdi-
rective word, and B = alph(∆). There exists a morphism µ : B∗ → A∗ such that
s = µ(ψ(∆)) and µ(B) ⊆ P.

Proof. We can assume that s can be factorized as in (2). For any n ≥ 0, let an

be the first letter of πn. We shall prove that if n,m ≥ 0 are such that an = am,
then πn = πm.

Let u be the longest common prefix of πn and πm, which is nonempty as
an = am. By contradiction, suppose πn 6= πm. Then, as P is a biprefix code,
u must be a proper prefix of both πn and πm, so that there exist two distinct
letters bn, bm such that ubn is a prefix of πn and ubm is a prefix of πm. Hence u
is a right special factor of s, but this contradicts the previous lemma.

We have shown that for any n > 0, πn is determined by its first letter an.
Thus, letting C = {an | n > 0} ⊆ A, it makes sense to define an injective
morphism µ : C∗ → A∗ by setting µ(an) = πn for all n > 0. The word

t = µ−1(s) = a1a2 · · · an · · · ∈ Cω

has infinitely many palindrome prefixes, corresponding to the inverse images of
the ϑ-palindromic prefixes of s. Indeed, if π1 · · ·πn is a ϑ-palindromic prefix of
s, by the uniqueness of the factorization over P one obtains πi = πn+1−i for
i = 1, . . . , n. Hence t is closed under reversal.

Let w be a left special factor of t, and let i, j be such that ai 6= aj and
aiw, ajw ∈ Fact(t). Then āiµ(w), ājµ(w) ∈ Fact(s), so that µ(w) is a left special
factor of s, and hence a prefix of it. Again by the uniqueness of the factorization
of s over P , one derives w ∈ Pref(t). Therefore t is a standard episturmian word
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over C. Finally, since µ(PAL ∩ Pref(t)) = PALϑ ∩ Pref(s) as shown above, one
easily obtains that the directive word of t is exactly ∆, so that C = B. ut

Corollary 4.5. A standard ϑ-episturmian word s is ϑ-standard if and only if
s = µϑ(t) for some t ∈ Aω.

Proof. If s is ϑ-standard, then by Theorem 2.8 there exists a standard epistur-
mian word t such that s = µϑ(t). Conversely, if t ∈ Aω and s = µϑ(t), then, since
µϑ(a) ∈ P for any a ∈ A, by the uniqueness of the factorization over P one has
that µϑ is the morphism µ considered in the preceding theorem. Thus t = µ−1

ϑ (s)
is a standard episturmian word and s is ϑ-standard by Theorem 2.8. ut

Proposition 4.6. Let t be a standard episturmian word with alph(t) = B, µ :
B∗ → A∗ be a morphism, and s = µ(t). If

1. µ(x) ∈ PALϑ for all x ∈ B,
2. card(alph(s)) =

∑

x∈B |µ(x)|,

then s is a standard ϑ-episturmian word.

Proof. From the first condition one obtains that µ sends palindromes into ϑ-
palindromes, so that s has infinitely many ϑ-palindromic prefixes, and is there-
fore closed under ϑ.

Let w be a nonempty left special factor of s. Suppose first that w is a proper
factor of µ(x) for some x ∈ B, and is not a prefix of µ(x). Let a be the first letter
of w. The second condition in the hypothesis can be restated as follows: for every
letter c of s there exists a unique y ∈ B such that c occurs – exactly once – in
µ(y). Thus our a occurs only in µ(x); since a is not a prefix of µ(x), it is always
preceded in s by the letter which precedes a in µ(x). Hence a is not left special,
a contradiction. Thus we can write w as w1µ(u)w2, where w1 is a proper suffix
of µ(x1) and w2 is a proper prefix of µ(x2), for some suitable x1, x2 ∈ B such
that x1ux2 ∈ Fact(t). One can prove that w1 = ε by showing, as done above,
that otherwise its first letter, which would not be a prefix of µ(x1), could not be
left special in s.

Therefore w = µ(u)w2. Reasoning as above, one can prove that if w2 6= ε,
then w is not right special, and more precisely that each occurrence of w can be
extended on the right to an occurrence of µ(ux2). Since w is left special in s, so is
µ(ux2). Without loss of generality, we can then suppose w = µ(u). Since w is left
special in s, there exist two letters a, b ∈ A, a 6= b, such that aw, bw ∈ Fact(s).
Hence there exist two (distinct) letters xa, xb ∈ B such that xau, xbu ∈ Fact(t).
Then u is a left special factor of t and hence a prefix of t, so that w = µ(u) is a
prefix of s. ut

Example 4.7. Consider the standard Sturmian word t = aabaaabaaabaab · · ·
having the directive word (aab)ω. Let A = {a, b, c, d, e}, and ϑ be the involutory
antimorphism defined by ā = b, c̄ = c, d̄ = e. If µ is the morphism µ : {a, b}∗ →
A∗ defined by µ(a) = acb and µ(b) = de, then the word

s = µ(t) = acbacbdeacbacbacbde · · ·
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is a standard ϑ-episturmian word. We observe that s is not ϑ-standard, as ab =
a⊕ is not a prefix of s.

Remark 4.8. Any morphism satisfying the two conditions in the statement of
Proposition 4.6 is such that µ(x) ∈ P for any letter x. However there exist
standard ϑ-episturmian words for which the morphism µ given by Theorem 4.4
does not satisfy such conditions. For instance, the standard ϑ-episturmian word
s = (abaca)ω, with ā = a and b̄ = c, is given by s = µ(t), where t = ψ(abaω),
µ(a) = a, and µ(b) = bac.

We say that a subset B of the alphabet A is ϑ-skew if B ∩ ϑ(B) ⊆ PALϑ,
that is, if

x ∈ B, x 6= x̄ =⇒ x̄ /∈ B . (3)

Proposition 4.9. Let s be a standard ϑ-episturmian word and ∆ be its subdi-
rective word. Then B = alph(∆) is ϑ-skew.

Proof. We can factorize s as in (2). By Theorem 4.4, it suffices to show that if
πn = xwx̄ for some n > 0 and w ∈ A∗, then πk does not begin with x̄, for any
k > 0. By contradiction, let k be the smallest integer such that x̄ ∈ Pref(πk).
Without loss of generality, we can assume n < k. By Lemma 4.3, no suffix of
wx̄ is a left special factor of s. Hence every occurrence of x̄ in s is preceded by
xw (or by a proper suffix of it, if the beginning of the word is reached). First
suppose that πk is preceded in s by xw. Then, since w ∈ PALϑ ⊆ P∗ and P is
a biprefix code, one has w = πk′ · · ·πk−1 for some k′ ≤ k. Thus πk′−1 ends in x
and therefore begins with x̄, contradicting the minimality of k.

If π1 · · ·πk−1 ∈ Suff(w), from n < k it follows that πn = xwx̄ is a proper
factor of itself, which is trivially absurd. ut

A ϑ-standard word s can have left special factors which are not prefixes
of s. Such factors have length at most 2, by Theorem 2.9. For instance, con-
sider the ϑ-standard word s with ϑ = E ◦ R and ∆(s) = (ab)ω. One has
s = abbaababbaabbaab · · · . As one easily verifies, b and ba are two left special
factors which are not prefixes. Hence in general, a ϑ-standard word is not stan-
dard ϑ-episturmian. The next proposition gives a characterization of ϑ-standard
words which are standard ϑ-episturmian.

Proposition 4.10. A ϑ-standard word s is standard ϑ-episturmian if and only
if B = alph(∆(s)) is ϑ-skew.

Proof. Let s be a ϑ-standard word such that B is ϑ-skew. By Theorem 2.8, one
has s = µϑ(t), where t = ψ(∆(s)) is a standard episturmian word. The morphism
µϑ satisfies condition 1 in Proposition 4.6 by definition. By (3), one easily derives
that the restriction of µϑ to alph(t) = B satisfies also the second statement of
Proposition 4.6, so that s = µϑ(t) is a standard ϑ-episturmian word.

The converse is a consequence of Proposition 4.9, as the subdirective word
of a ϑ-standard word s is ∆(s). ut
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Example 4.11. Let A = {a, b, c, d, e}, ∆ = (acd)ω, and ϑ be defined by ā = b,
c̄ = c, and d̄ = e. The ϑ-standard word ψϑ(∆) = abcabdeabcaba · · · is standard
ϑ-episturmian.

Let us observe that in general a standard ϑ-episturmian word is not a ϑ-standard
word. A simple example is given by the word s = (abaca)ω, where ϑ is the
antimorphism which exchanges b with c and fixes a. One easily verifies that ε
and a are the only left special factors of s, so that s is standard ϑ-episturmian.
However (cf. Proposition 2.3) s is not ϑ-standard, since ab is a prefix of s, but
(ab)⊕ = abca is not. Another example is the word s considered in Example 4.7:
s is standard ϑ-episturmian, but it is not ϑ-standard because its first nonempty
ϑ-palindromic prefix is acb and not ab = a⊕.

Although neither of the two classes (ϑ-standard and standard ϑ-episturmian
words) is included in the other one, the following relation holds (cf. [8]).

Proposition 4.12. Every ϑ-standard word is a morphic image, under a literal
morphism, of a standard ϑ̂-episturmian word, where ϑ̂ is an extension of ϑ to a
larger alphabet.

Example 4.13. Let A = {a, b}, ϑ = E ◦R (i.e., ā = b), and s be the ϑ-standard
word having the directive sequence ∆ = (ab)ω, so that s = abbaababbaabbaab · · · .
Then s is the image, under the literal morphism g defined by g(a) = g(d) = a

and g(b) = g(c) = b, of the ϑ̂-standard (and standard ϑ̂-episturmian) word

ŝ = abcdababcdabcdabab · · · ,

where ϑ̂(a) = b and ϑ̂(c) = d.
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