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Diophantine properties
of automatic real numbers

• Combinatorial vs. arithmetic properties of numbers

• Borel’s conjecture

• Transcendence of numbers with Sturmian expansions

• Transcendence of low-complexity numbers

• Automatic numbers

• Automatic numbers are not Liouville numbers

• Generalizations
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b-adic expansion

Let ξ ∈ R. For simplicity, assume 0 ≤ ξ < 1.

Fix b ∈ N, b ≥ 2. Then ξ can be written as

ξ =
∞∑

n=1

xnb−n

where 0 ≤ xn < b

Moreover, the sequence (xn) is unique if we impose that xn 6= b − 1

for infinitely many n. It is called the b-adic expansion of ξ.
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b-adic expansions as infinite words

Let A = {0,1, . . . , b− 1} be the alphabet of b-adic digits.

The b-adic expansion of ξ can then be viewed as an infinite word

x = x1x2x3 . . . ∈ Aω.

We thus have a bijection between [0,1) and Aω \A∗(b− 1)ω.

General problem

If ξ is defined by some equation, can we say something about x?

Conversely, if x is defined by some generating device, can we say

something about ξ?

Yes: ξ ∈ Q iff x is eventually periodic. What else?
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Algebraic numbers

The real number ξ is algebraic if it is the root of a polynomial with

integer coefficients.

Meta-conjecture

The b-adic expansion of an algebraic irrational number has all the

combinatorial properties of a random infinite word.

Conjecture [Émile Borel 1909]

Let ξ be algebraic irrational. Then it is normal in every base b, i.e.,

every word w ∈ A∗ occurs in x with frequency b−|w|.
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Borel’s conjecture: discussion

Borel’s conjecture seems currently out of reach. We do not even

know that every digit of A occurs in x when b ≥ 3.

Actually, we do not know a single example of a triplet (ξ, b, a) with

ξ algebraic irrational, b ≥ 3, and a ∈ A, for which we can prove that

the digit a occurs infinitely often in the b-adic expansion of ξ, while

Borel’s conjecture implies that it should be true for all such triplets.

What we can do: prove that certain very particular classes of infinite

words do not contain the expansion of any algebraic irrational.
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Subword complexity

Let u = u1u2u3 . . . be an infinite word.

A finite word w ∈ A∗ is a factor of u if w = ukuk+1 . . . uk+n−1 for some

k and n.

The subword complexity of u is the function pu that maps n to the

number pu(n) of factors of length n of u.

Conjecture (weaker than Borel’s, but still out of reach)

If ξ is algebraic irrational, then px(n) = bn for all n.
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Sturmian expansions

An infinite word u is Sturmian if pu(n) = n + 1 for all n.
This is the lowest possible complexity for non-periodic words.

Theorem [Ferenczi-Mauduit 1997]
If x is a Sturmian word, then ξ is transcendental.

Proof on a simple example, with b = 2: the Fibonacci word.
Let x be the fixed point of the substitution ϕ : 0 7→ 01, 1 7→ 0:

x = 0100101001001010010100100101001001 . . .

Sketch of the proof:
• find good rational approximations of ξ;
• apply a transcendence criterion like Roth’s theorem.
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Roth’s theorem

Theorem [Roth 1955]

Let ξ ∈ R \Q, and ε > 0. If there are infinitely many rational numbers
p
q such that ∣∣∣∣∣ξ − p

q

∣∣∣∣∣ <
1

q2+ε

then ξ is transcendental.

(For general Sturmian words, this is actually not enough; Ferenczi

and Mauduit use a p-adic variant of this theorem, Ridout’s theorem

[Ridout 1957].)
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Initial repetitions in the Fibonacci word

Observe that x starts with 01001.01001.0:

x = 0100101001001010010100100101001001 . . .

Consequently, it starts with ϕk(01001)ϕk(01001)ϕk(0) for all k.

Let Fk = |ϕk(0)| (Fibonacci numbers), then |ϕk(01001)| = Fk+3.

Consider the rational number η = p
q with expansion y = (ϕk(01001))ω.

It is obviously a good approximation of ξ: |ξ − η| < b−2Fk+3−Fk, since

x and y have a common prefix of length 2Fk+3 + Fk.

Note that q = bFk+3 − 1. As Fk/Fk+3 tends to Φ−3 > 0.2, for k large

enough we have |ξ − η| < q−2.2, so we can apply Roth’s theorem.
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Stammering words

Let κ > 1. The infinite word x is said to be κ-stammering if there

exists a sequence (un, vn, wn) of triplets of words such that

• unvnwn is a prefix of x;

• wn is a prefix of vnwn;

• |vn| is not bounded;

• |wn|/|vn| ≥ κ− 1;

• |un|/|vn| is bounded.

The proof of Ferenczi and Mauduit uses the fact that Stumian words

are (2 + ε)-stammering, and then Ridout’s theorem ensures that ir-

rational numbers with a (2 + ε)-stammering expansion are transcen-

dental.
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The theorem of Adamczewski and Bugeaud

Using a p-adic version of Schmidt’s subspace theorem [Wolfgang
Schmidt 1967] instead of Ridout’s theorem allows a great improve-
ment:

Theorem [Adamczewski-Bugeaud 2004]
If x is (1 + ε)-stammering, then ξ is rational or transcendental.

Corollary [Adamczewski-Bugeaud 2004]
If px(n) = O(n), then ξ is rational or transcendental.

Theorem [Bugeaud 2007]
There exists γb > 0 such that, if px(n) = O(n(logn)γb),
then ξ is rational or transcendental.
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Low-complexity words are (1 + ε)-stammering

Corollary [Adamczewski-Bugeaud 2004]

If px(n) = O(n), then ξ is rational or transcendental.

Proof

Assume that px(n) ≤ cn for n ≥ 1.

By the pigeon-hole principle, the prefix of length px(n) + n of x con-

tains two occurrences of the same factor of length n. Let wn be this

factor, un the prefix up to the first occurrence of wn, and vn the word

starting at the first occurrence of wn (included) and ending before

the second occurrence. Then the triplets (un, vn, wn) show that x is

(1 + 1/c)-stammering.
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Automatic numbers

Let k ≥ 2 be an integer.

An infinite word u ∈ Aω is said to be k-automatic if there exists a finite

automaton that takes as input the k-adic expansion of an integer n,

and outputs the n-th letter of u.

Equivalently, u is k-automatic iff there exists an alphabet B, two k-

uniform substitutions f : B∗ → B∗ and g : B∗ → A∗ (i.e., |f(a)| =

|g(a)| = k for all a ∈ B) and an infinite word v ∈ Bω such that v is a

fixed point of f and u = g(v).

A number ξ is said to be k-automatic in base b if its b-adic expansion

is k-automatic.
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Diophantine properties of automatic numbers

As k-automatic words have complexity O(n), by the theorem of Adam-

czewski and Bugeaud all automatic numbers are either rational or

transcendental.

This property was conjectured by Cobham [1968] and announced as

solved by Loxton and van der Poorten [1982, 1988] using Mahler’s

method; unfortunately their proof had an unrecoverable gap.

Is it possible to say more about the diophantine properties of those

numbers? How do they fit in Mahler’s classification of transcendental

numbers? How well can they be approximated by rationals?

Shallit conjectured [1999] that they are not Liouville numbers.
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Liouville numbers

Let ξ ∈ R. The irrationality measure of ξ is the supremum µ(ξ) of

all τ ∈ R such that there exist infinitely many p/q ∈ Q satisfying∣∣∣ξ − p
q

∣∣∣ < 1
qτ .

If ξ ∈ Q, then µ(ξ) = 1; otherwise µ(ξ) ≥ 2 by the theory of continued

fractions. If ξ is algebraic irrational, then µ(ξ) = 2 by Roth’s theorem.

Actually µ(ξ) = 2 for almost every ξ ∈ R [Khintchine 1924].

A Liouville number [Liouville 1844] is a real number with infinite

irrationality measure. It can therefore be very well approximated by

rationals.
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Automatic numbers are not Liouville numbers

Theorem [Adamczewski-Cassaigne 2006]

Let ξ be a k-automatic number in base b. Then µ(ξ) ≤ dk(km + 1),

where d = #B is the cardinality of the internal alphabet of x, and

m = #Nk(x) is the cardinality of the k-kernel of x.

In short, µ(ξ) can be effectively bounded knowing the automaton of

x. As a consequence, ξ is not a Liouville number.

The k-kernel of a sequence u = (un)n≥0 is defined as the set Nk(u)

of all sequences (uki.n+j)n≥0, where i ≥ 0 and 0 ≤ j < ki. An infinite

word is k-automatic iff its k-kernel is finite [Eilenberg 1974].
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Combinatorial lemma

Lemma

Let x be a non-eventually periodic k-automatic infinite word on A.

Let u ∈ A∗, v ∈ A+, and w ∈ A∗ be such that uvw is a prefix of x and

w is a prefix of vw. Let m = #Nk(x). Then |uvw|
|uv| < km.
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Sketch of the proof of the lemma (1)

(h, p, l) ∈ N3 is admissible (with respect to x) if:

(i) 1 ≤ p ≤ h ≤ l;

(ii) for n = h, . . . , l − 1, xn−p = xn;

(iii) xl−p 6= xl.

If u, v, w are as in the lemma, with w of maximal length, then

(|uv|, |v|, |uvw|) is admissible.

Assume that (h, p, l) is admissible and l ≥ hkm.
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Sketch of the proof of the lemma (2)

For 0 ≤ i ≤ m, we define x(i) ∈ Nk(x) and (hi, p, li) admissible with
respect to x(i).

We start with x(0) = x, h0 = h, and l0 = l.

Then, given x(i) and (hi, p, li), for 0 ≤ i < m, let li+1 = bli/kc, ri =

li−kli+1, x(i+1) = (u(i)
kn+ri

)n≥0, and hi+1 = li+1+p−b(li +p−hi)/kc.
Note that (li) is strictly decreasing, with li ≥ h0km−i, and (hi) is
nondecreasing.

Since #Nk(x) = m, we have x(i) = x(j) for some i < j.
(hi, p, li) and (hj, p, lj) are admissible for the same sequence,
with hi ≤ h0 ≤ h0km−j ≤ lj < li, a contradiction.
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Sketch of the proof of the theorem (1)

We construct a family of rational numbers pn/qn such that

1

qkm+1+ε
n

<

∣∣∣∣∣ξ − pn

qn

∣∣∣∣∣ <
1

q
1+1/d
n

where the upper bound comes from the construction (pigeon-hole

principle in the internal alphabet) and the lower bound from the

lemma. Moreover, we ensure that qn < qn+1 < qk+ε
n .
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Sketch of the proof of the theorem (2)

Assume that p/q is a rational number such that
∣∣∣ξ − p

q

∣∣∣ < 1
qM+δ , where

M = dk(km + 1) and δ > 0.

We choose n such that qn−1 ≤ (2q)d < qn.

Then by the triangle inequality∣∣∣∣∣pq − pn

qn

∣∣∣∣∣ ≤
∣∣∣∣∣ξ − pn

qn

∣∣∣∣∣ +
∣∣∣∣∣ξ − p

q

∣∣∣∣∣ <
1

q
1+1/d
n

+
1

qM+δ

and we find that if q is large enough (and ε correctly adjusted) this

is less than 1
qqn

, implying that p/q = pn/qn, but the lower bound on∣∣∣ξ − pn
qn

∣∣∣ contradicts the assumption on
∣∣∣ξ − p

q

∣∣∣.
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Example: Thue-Morse numbers

Let b ≥ 2 and x be the fixed point of the substitution θ : 0 7→ 01,

1 7→ 10, with the initial 0 deleted:

x = 1101001100101101001011001101001 . . .

The associated real number θb is 2-automatic in base b, hence tran-

scendental (this has been known for a long time [Mahler 1929]) and

not a Liouville number.

Our theorem gives µ(θb) ≤ 20. But a specific study yields µ(θb) ≤ 5.
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Generalizations

b-adic expansions can be replaced by β-expansions [Rényi 1957], where
β is a Pisot or Salem number (real algebraic integer larger than 1,
with all its conjugates of modulus at most 1). Most results that
we have mentioned have an analogue in this setting. In particular,
a number with an automatic β-expansion is either in Q(β), or it is
transcendental but not a Liouville number.

Another possible generalization is to consider continued fraction ex-
pansions instead of b-adic expansions. If ξ has an automatic continued
fraction expansion, we can conjecture that it is either rational (finite
expansion), or quadratic (periodic expansion), or transcendental (ape-
riodic expansion), but this is not yet proved. Obviously such a number
is not a Liouville number.
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