# Sturmian fixed points of morphisms 

V. Berthé

LIRMM-CNRS-Montpellier-France
berthe@lirmm.fr
http://www.lirmm.fr/ ${ }^{\text {berthe }}$


Recent progress in combinatorics on words Montréal, 2007

## A notion of duality for Sturmian morphisms

- On substitution invariant Sturmian words: an application of Rauzy fractals, B., Ei, Ito and Rao
- On an involution of Christoffel words and Sturmian morphisms, B., de Luca, Reutenauer


## Sturmian fixed points

## Question

For which $\alpha$ and $\rho$ is the Sturmian word $s_{\alpha, \rho}$ a fixed point of some non-trivial substitution?

## Sturmian fixed points

## Question

For which $\alpha$ and $\rho$ is the Sturmian word $s_{\alpha, \rho}$ a fixed point of some non-trivial substitution?

- By non-trivial substitution, we mean a substitution that is distinct from the identity.
- By $s_{\alpha, \rho}$ is substitution invariant, we mean that $s_{\alpha, \rho}$ a fixed point of some non-trivial substitution.


## Sturmian words

## Notation

Let $0<\alpha<1$. Let $\mathbb{T}^{1}=\mathbb{R} / \mathbb{Z}$ denote the one-dimensional torus. The rotation of angle $\alpha$ of $\mathbb{T}^{1}$ is defined by $R_{\alpha}: \mathbb{T}^{1} \rightarrow \mathbb{T}^{1}, x \mapsto x+\alpha$.
Let

$$
\underline{I}_{1}=[0,1-\alpha), \quad \underline{I}_{2}=[1-\alpha, 1) ; \quad \bar{I}_{1}=(0,1-\alpha], \quad \bar{I}_{2}=(1-\alpha, 1] .
$$

We define the two Sturmian words:

$$
\begin{aligned}
& \underline{s}_{\alpha, \rho}(n)= \begin{cases}1 & \text { if } R_{\alpha}^{n}(\rho) \in I_{1}, \\
2 & \text { if } R_{\alpha}^{n}(\rho) \in \underline{I}_{2},\end{cases} \\
& \bar{s}_{\alpha, \rho}(n)= \begin{cases}1 & \text { if } R_{\alpha}^{n}(\rho) \in \bar{I}_{1}, \\
2 & \text { if } R_{\alpha}^{n}(\rho) \in \bar{I}_{2} .\end{cases}
\end{aligned}
$$

## Sturmian words

## Notation

Let $0<\alpha<1$. Let $\mathbb{T}^{1}=\mathbb{R} / \mathbb{Z}$ denote the one-dimensional torus. The rotation of angle $\alpha$ of $\mathbb{T}^{1}$ is defined by $R_{\alpha}: \mathbb{T}^{1} \rightarrow \mathbb{T}^{1}, x \mapsto x+\alpha$.
Let

$$
\underline{I}_{1}=[0,1-\alpha), \quad \underline{I}_{2}=[1-\alpha, 1) ; \quad \bar{I}_{1}=(0,1-\alpha], \quad \bar{I}_{2}=(1-\alpha, 1] .
$$

We define the two Sturmian words:

$$
\begin{aligned}
& \underline{s}_{\alpha, \rho}(n)= \begin{cases}1 & \text { if } R_{\alpha}^{n}(\rho) \in \underline{I}_{1}, \\
2 & \text { if } R_{\alpha}^{n}(\rho) \in \underline{I}_{2},\end{cases} \\
& \bar{s}_{\alpha, \rho}(n)= \begin{cases}1 & \text { if } R_{\alpha}^{n}(\rho) \in \bar{I}_{1}, \\
2 & \text { if } R_{\alpha}^{n}(\rho) \in \bar{I}_{2} .\end{cases}
\end{aligned}
$$

## Characteristic word

The characteristic word is obtained for $\rho=\alpha$. One has

$$
s_{\alpha, \alpha}:=\underline{s}_{\alpha, \alpha}=\bar{s}_{\alpha, \alpha}
$$

## Sturm number and characteristic case

For a number $x$ in a quadratic field, we denote by $x^{\prime}$ the conjugate of $x$ in this field.

## Theorem [Crisp et al.]

Let $0<\alpha<1$ be an irrational number. Then the following two conditions are equivalent:

- the characteristic word $s_{\alpha, \alpha}$ is substitution invariant;
- $\alpha$ is a quadratic irrational with $\alpha^{\prime} \notin[0,1]$.


## Sturm number and characteristic case

For a number $x$ in a quadratic field, we denote by $x^{\prime}$ the conjugate of $x$ in this field.

## Theorem [Crisp et al.]

Let $0<\alpha<1$ be an irrational number. Then the following two conditions are equivalent:

- the characteristic word $s_{\alpha, \alpha}$ is substitution invariant;
- $\alpha$ is a quadratic irrational with $\alpha^{\prime} \notin[0,1]$.


## Sturm number [Allauzen]

A quadratic number $\alpha$ with $0<\alpha<1$ and $\alpha^{\prime} \notin[0,1]$ is called a Sturm number.

## Homogeneous vs nonhomegeneous case

- The homogeneous case corresponds to $\rho \in \mathbb{Z} \alpha \bmod 1$
[Berstel, Séébold, Brown, Fagnot,Lothaire...]
- The nonhomogeneous case corresponds to $\rho \notin \mathbb{Z} \alpha \bmod 1$
[Komatsu,Parvaix...]


## Yasutomi's characterization

## Theorem [Yasutomi'97]

Let $0<\alpha<1$ and $0 \leq \rho \leq 1$. Then $s_{\alpha, \rho}$ is substitution invariant if and only if the following two conditions are satisfied:

- $\alpha$ is an irrational quadratic number and $\rho \in \mathbb{Q}(\alpha)$;
- $\alpha^{\prime}>1,1-\alpha^{\prime} \leq \rho^{\prime} \leq \alpha^{\prime}$ or $\alpha^{\prime}<0, \alpha^{\prime} \leq \rho^{\prime} \leq 1-\alpha^{\prime}$.


## Yasutomi's characterization

## Theorem [Yasutomi'97]

Let $0<\alpha<1$ and $0 \leq \rho \leq 1$. Then $s_{\alpha, \rho}$ is substitution invariant if and only if the following two conditions are satisfied:

- $\alpha$ is an irrational quadratic number and $\rho \in \mathbb{Q}(\alpha)$;
- $\alpha^{\prime}>1,1-\alpha^{\prime} \leq \rho^{\prime} \leq \alpha^{\prime}$ or $\alpha^{\prime}<0, \alpha^{\prime} \leq \rho^{\prime} \leq 1-\alpha^{\prime}$.


## Corollary

Let $\alpha$ be a Sturm number. Then

- for any $\rho \in \mathbb{Q} \cap(0,1), \underline{s}_{\alpha, \rho}=\bar{s}_{\alpha, \rho}$ is substitution invariant.
- [Yasutomi, Fagnot] Let $\rho \in\left[0,1\right.$ ). The Sturmian word $\underline{s}_{\alpha,\{n \alpha\}}$ (resp. $\overline{\boldsymbol{s}}_{\alpha,\{n \alpha\}}$ ) is substitution invariant if and only if $n=-1,0,1$. In total we obtain exactly five substitution invariant Sturmian words

$$
\left\{21 s_{\alpha, \alpha}, 12 s_{\alpha, \alpha}, 2 s_{\alpha, \alpha}, 1 s_{\alpha, \alpha}, s_{\alpha, \alpha}\right\}
$$

in the homogeneous case.

## Proofs of Yasutomi's characterization

- [Yasutomi]:

Yasutomi defines three transformations from $[0,1]^{2}$ to $[0,1]^{2}$ :

$$
\begin{gathered}
T_{1}(\alpha, \rho)=\left(\frac{\alpha}{1+\rho}, \frac{\rho}{1+\alpha}\right), \quad T_{2}(\alpha, \rho)=\left(\frac{1}{2-\alpha}, \frac{\rho}{2-\alpha}\right) \\
T_{3}(\alpha, \rho)=(1-\alpha, 1-\rho)
\end{gathered}
$$

A Sturmian word $s_{\alpha, \rho}$ is substitution invariant if and only if there exists a sequence $S_{1}, \ldots, S_{n}$ with $S_{i} \in\left\{T_{1}, T_{2}, T_{3}\right\}$ such that $(\alpha, \rho)=S_{1} \circ \cdots \circ S_{n}(\alpha, \rho)$

- [Baláži, Masáková, Pelantová]: cut and project schemes, quasicrystals
- [B., Ei, Ito, Rao]: dual substitutions


## Sturmian morphisms

Let $\sigma$ be a substitution over $\{1,2\}$ and let $M_{\sigma}=\left(m_{i j}\right)$ be its incidence matrix, where $m_{i j}$ counts the number of occurrences of the letter $i$ in $\sigma(j)$.
We shall call determinant of a Sturmian morphism the determinant of its incidence matrix.

## Sturmian morphisms

Let $\sigma$ be a substitution over $\{1,2\}$ and let $M_{\sigma}=\left(m_{i j}\right)$ be its incidence matrix, where $m_{i j}$ counts the number of occurrences of the letter $i$ in $\sigma(j)$.
We shall call determinant of a Sturmian morphism the determinant of its incidence matrix.
The monoid of Sturmian morphisms is called the Sturmian monoid and is denoted by St.
Let $S t_{0}$ denote the special Sturmian monoid, which is the submonoid of $S t$ of endomorphisms whose determinant is 1 .
The monoid $S t_{0}$ is generated by the endomorphisms $G, D, \tilde{G}, \tilde{D}$ which are respectively:

$$
G=(x, x y), D=(y x, y), \tilde{G}=(x, y x), \tilde{D}=(x y, y)
$$

## Invertible substitution

## Definition

A substitution is said to be invertible if it is an automorphism of the free group $F_{2}$.

## Theorem [Mignosi-Séébold, Wen-Wen]

A word is a Sturmian substitution invariant word if and only if it is a fixed point of some primitive and invertible substitution.

## Theorem [Séébold]

Let $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a primitive unimodular matrix with non-negative entries. The number of invertible substitutions with incidence matrix $M$ is equal to $a+b+c+d-1$.

## Sturm number

## Property

A number $\alpha \in(0,1)$ is a Sturm number if and only if there exists a $2 \times 2$ primitive unimodular matrix $M$ with non-negative integral entries such that $(1-\alpha, \alpha)$ is an expanding eigenvector of $M$.
Consequently, if the Sturmian word $s_{\alpha, \rho}$ is substitution invariant, then this implies that $\alpha$ is a Sturm number.

## Sturm number

## Property

A number $\alpha \in(0,1)$ is a Sturm number if and only if there exists a $2 \times 2$ primitive unimodular matrix $M$ with non-negative integral entries such that $(1-\alpha, \alpha)$ is an expanding eigenvector of $M$.
Consequently, if the Sturmian word $s_{\alpha, \rho}$ is substitution invariant, then this implies that $\alpha$ is a Sturm number.

- Let $\sigma$ be a primitive unimodular substitution over $\{1,2\}$. Let $\beta$ be the maximal eigenvalue of its incidence matrix $M_{\sigma}$. Its algebraic conjugate $\beta^{\prime}$ is also an eigenvalue of $M_{\sigma}$.
- Furthermore, the vector of densities of the letters 1 and 2 denoted by $(1-\alpha, \alpha)$, with $0 \leq \alpha \leq 1$, is easily proven to be an expanding eigenvector, i.e., an eigenvector associated with the expanding eigenvalue $\beta$.
- Since $\alpha$ is (irrational) quadratic, the vector $\left(1-\alpha^{\prime}, \alpha^{\prime}\right)$ is an eigenvector associated with the eigenvalue $\beta^{\prime}$.
- By Perron-Frobenius' theorem, coordinates $1-\alpha^{\prime}, \alpha^{\prime}$ cannot both be positive, hence $\alpha^{\prime}\left(1-\alpha^{\prime}\right) \leq 0$, which implies that $\left.\alpha^{\prime} \notin\right] 0,1[$. Hence $\alpha$ is a Sturm number.


## Sturm number

## Property

A number $\alpha \in(0,1)$ is a Sturm number if and only if there exists a $2 \times 2$ primitive unimodular matrix $M$ with non-negative integral entries such that $(1-\alpha, \alpha)$ is an expanding eigenvector of $M$.
Consequently, if the Sturmian word $s_{\alpha, \rho}$ is substitution invariant, then this implies that $\alpha$ is a Sturm number.

## Example

Let $\sigma$ be the substitution $1 \mapsto 121,2 \mapsto 12$, i.e., the square of the Fibonacci substitution. This substitution admits as a unique fixed point the Fibonacci word $s_{\alpha, \alpha}$, with $\alpha=\frac{3-\sqrt{5}}{2}$, whose first terms are

121121211211212112121
One has $M_{\sigma}=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right], \beta=\frac{3+\sqrt{5}}{2}$, and $\beta^{\prime}=\frac{3-\sqrt{5}}{2}=\alpha=\frac{1}{\beta}>0$.

## Rauzy fractals

Let $\sigma$ be a primitive substitution with determinant 1 over $\{1,2\}$.
Let $\vec{e}_{1}, \vec{e}_{2}$ be the canonical basis of $\mathbb{R}^{2}$. Let $f:\{1,2\}^{*} \rightarrow \mathbb{Z}^{2}$ be the Parikh map, defined by $f(w)=|w|_{1} \vec{e}_{1}+|w|_{2} \vec{e}_{2}$.
Let $V$ be the expanding eigenspace of the matrix $M_{\sigma}$ corresponding to the eigenvalue $\beta$, and $V^{\prime}$ the contracting eigenspace corresponding to $\beta^{\prime}$.
Then $V \oplus V^{\prime}=\mathbb{R}^{2}$ is a direct sum decomposition of $\mathbb{R}^{2}$. According to this direct sum, we define the projection


## Rauzy fractals



Let $s=\left(s_{k}\right)_{k \geq 0}$ be a fixed point of $\sigma^{2}$. We first define

$$
Y=\left\{f\left(s_{0} \ldots s_{k-1}\right) ; k \geq 0\right\}
$$

We then divide $Y$ into two parts:

$$
Y_{1}=\left\{f\left(s_{0} \ldots s_{k-1}\right) ; s_{k}=1\right\}, \quad Y_{2}=\left\{f\left(s_{0} \ldots s_{k-1}\right) ; s_{k}=2\right\}
$$

Projecting $Y_{1}, Y_{2}$ onto the contracting eigenspace $V^{\prime}$ and taking the closures, we get

$$
X_{1}=\overline{\pi\left(Y_{1}\right)}, \quad X_{2}=\overline{\pi\left(Y_{2}\right)}
$$

We call $X_{1}$ and $X_{2}$ the Rauzy fractals of the substitution $\sigma$.

## Rauzy fractals of invertible substitutions

## Connectedness

Let $\sigma$ be a primitive invertible substitution. Then there exists $h \in \mathbb{Z}$ such that the Rauzy fractals satisfy

$$
X_{1}=[-1+\alpha+h, h], \quad X_{2}=[h, \alpha+h],
$$

where $(1-\alpha, \alpha)$ is the Perron-Frobenius eigenvector with positive entries of the incidence matrix $M_{\sigma}$.
Furthermore, if $\bar{s}_{\alpha, \rho}$ or $\underline{s}_{\alpha, \rho}$ is a fixed point point of $\sigma^{2}$, then

$$
\rho=1-\alpha-h .
$$

## Rauzy fractals of invertible substitutions

## Connectedness

Let $\sigma$ be a primitive invertible substitution. Then there exists $h \in \mathbb{Z}$ such that the Rauzy fractals satisfy

$$
X_{1}=[-1+\alpha+h, h], \quad X_{2}=[h, \alpha+h],
$$

where $(1-\alpha, \alpha)$ is the Perron-Frobenius eigenvector with positive entries of the incidence matrix $M_{\sigma}$.
Furthermore, if $\bar{s}_{\alpha, \rho}$ or $\underline{s}_{\alpha, \rho}$ is a fixed point point of $\sigma^{2}$, then

$$
\rho=1-\alpha-h
$$

## Remark

Let $0<\alpha<1$ be an irrational number and $0 \leq \rho \leq 1$. Then $\underline{s}_{\alpha, \rho}$ is substitution invariant if and only $\overline{\boldsymbol{s}}_{\alpha, \rho}$ is also substitution invariant.

## Stepped surface

Recall that $V^{\prime}$ is the contracting eigenline of $M_{\sigma}$. We denote the upper closed half-plane delimited by $V^{\prime}$ as $\left(V^{\prime}\right)^{+}$, and the lower open half-plane delimited by $V^{\prime}$ as $\left(V^{\prime}\right)^{-}$. We define

$$
S=\left\{\left[z, i^{*}\right] ; \quad z \in \mathbb{Z}^{2}, z \in\left(V^{\prime}\right)^{+} \text {and } z-\vec{e}_{i} \in\left(V^{\prime}\right)^{-}\right\}
$$

where the notation $\left[z, i^{*}\right]$, for $z \in \mathbb{Z}^{2}$ and $i^{*} \in\left\{1^{*}, 2^{*}\right\}, \overline{\left[z, 1^{*}\right]}$ (resp. $\overline{\left[z, 2^{*}\right]}$ ) is defined as the closed line segment from $z$ to $z+\vec{e}_{2}$ (resp. to $z+\vec{e}_{1}$ ).
Then the stepped surface $\bar{S}$ of $V^{\prime}$ is defined as the broken line consisting of the following segments

$$
\bar{S}=\bigcup_{\left[z, i^{*}\right] \in S} \overline{\left[z, i^{*}\right]} .
$$

## Stepped surface

Projecting the stepped surface $\bar{S}$ onto $V^{\prime}$, we first obtain a tiling $\mathcal{J}^{\prime}$ of $V^{\prime}$ by two intervals of length $1-\alpha$ and $\alpha$.
We label the tiles of $\mathcal{J}$ by the two-sided sequence $\left(T_{k}\right)_{k \in \mathbb{Z}}$.
We define the two-sided word $\left(t_{n}\right)_{n \in \mathbb{Z}}$ as:

$$
\forall n \in \mathbb{Z}, t_{n}= \begin{cases}1, & \text { if }\left|T_{n}\right|=1-\alpha \\ 2, & \text { if }\left|T_{n}\right|=\alpha .\end{cases}
$$

One checks that $\left(t_{n}\right)_{n \in \mathbb{Z}}$ is the upper two-sided cutting sequence of the line $V^{\prime}: y=\frac{1-\alpha^{\prime}}{\alpha^{\prime}} x$. Hence

$$
t_{-1} t_{-2} t_{-3} \cdots=1 s_{\gamma, \gamma}, \quad t_{0} t_{1} t_{2} \cdots=2 s_{\gamma, \gamma},
$$

with

$$
\gamma=\frac{\alpha^{\prime}-1}{2 \alpha^{\prime}-1},
$$

called dual angle.

## Self-similar structure of Rauzy fractals

Let $\sigma$ be a primitive substitution over $\{1,2\}$ and let $\beta$ be the Perron-Frobenius eigenvalue of $M_{\sigma}$. We recall that $\left|\beta^{\prime}\right|<1$.
The Rauzy fractals $X_{1}$ and $X_{2}$ have a self-similar structure:
both $\frac{1}{\beta^{\prime}} X_{1}$ and $\frac{1}{\beta^{\prime}} X_{2}$ are unions of translated copies of $X_{1}$ and $X_{2}$.
[Arnoux-Ito,Sirvent-Wang]

## Self-similar structure of Rauzy fractals

Let $\sigma$ be a primitive substitution over $\{1,2\}$ and let $\beta$ be the Perron-Frobenius eigenvalue of $M_{\sigma}$. We recall that $\left|\beta^{\prime}\right|<1$.
The Rauzy fractals $X_{1}$ and $X_{2}$ have a self-similar structure:
both $\frac{1}{\beta^{\prime}} X_{1}$ and $\frac{1}{\beta^{\prime}} X_{2}$ are unions of translated copies of $X_{1}$ and $X_{2}$.
[Arnoux-Ito,Sirvent-Wang]

## Example

Let $\sigma$ be the substitution $1 \mapsto 121,2 \mapsto 12$.
One checks that

$$
\begin{gathered}
\frac{X_{1}}{\beta^{\prime}}=[-1,1 / \alpha-2]=[-1,1-\alpha]=\left(X_{1}+\alpha-1\right)+X_{1}+X_{2}, \\
\frac{X_{2}}{\beta^{\prime}}=[1 / \alpha-2,1 / \alpha-1]=[1-\alpha, 2-\alpha]=\left(X_{1}+1\right)+\left(X_{2}+1\right) .
\end{gathered}
$$

## Set equation

Let $X_{1}=[-1+\alpha+h, h], X_{2}=[h, h+\alpha]$ be the Rauzy fractals of the primitive invertible substitution $\sigma$. Then

$$
\frac{X_{1}}{\beta^{\prime}}=\left(\bigcup_{T \in \mathcal{D}_{1}} T\right)+h, \quad \frac{X_{2}}{\beta^{\prime}}=\left(\bigcup_{T \in \mathcal{D}_{2}} T\right)+h
$$

where $\mathcal{D}_{1}, \mathcal{D}_{2}$ and $\mathcal{D}_{1} \cup \mathcal{D}_{2}$ are connected patches of the tiling $\mathcal{J}$.

## Set equation

Let $X_{1}=[-1+\alpha+h, h], X_{2}=[h, h+\alpha]$ be the Rauzy fractals of the primitive invertible substitution $\sigma$. Then

$$
\frac{X_{1}}{\beta^{\prime}}=\left(\bigcup_{T \in \mathcal{D}_{1}} T\right)+h, \quad \frac{X_{2}}{\beta^{\prime}}=\left(\bigcup_{T \in \mathcal{D}_{2}} T\right)+h
$$

where $\mathcal{D}_{1}, \mathcal{D}_{2}$ and $\mathcal{D}_{1} \cup \mathcal{D}_{2}$ are connected patches of the tiling $\mathcal{J}$.

## Example

Let $\sigma$ be the substitution $1 \mapsto 121,2 \mapsto 12$.
One has $\mathcal{D}_{1}=\left\{T_{-2}, T_{-1}, T_{0}\right\}, \mathcal{D}_{2}=\left\{T_{1}, T_{2}\right\}, \frac{X_{1}}{\beta^{\prime}}=h+T_{-2}+T_{-1}+T_{0}$, $\frac{\chi_{2}}{\beta^{\prime}}=h+T_{1}+T_{2}$.

## Set equation

Let $X_{1}=[-1+\alpha+h, h], X_{2}=[h, h+\alpha]$ be the Rauzy fractals of the primitive invertible substitution $\sigma$. Then

$$
\frac{X_{1}}{\beta^{\prime}}=\left(\bigcup_{T \in \mathcal{D}_{1}} T\right)+h, \quad \frac{X_{2}}{\beta^{\prime}}=\left(\bigcup_{T \in \mathcal{D}_{2}} T\right)+h
$$

where $\mathcal{D}_{1}, \mathcal{D}_{2}$ and $\mathcal{D}_{1} \cup \mathcal{D}_{2}$ are connected patches of the tiling $\mathcal{J}$.
We assume that the determinant of $M$ is equal to 1 . One has $1 / \beta^{\prime}=\beta>0$ so that $\frac{x_{1}}{\beta^{\prime}}$ is on the left side of $\frac{X_{2}}{\beta^{\prime}}$. There exists $k$ with $1 \leq k \leq a+b+c+d-1$ such that

$$
\begin{align*}
& \mathcal{D}_{1}=\left\{T_{-k}, T_{-k+1}, \ldots, T_{-k+a+b-1}\right\},  \tag{1}\\
& \mathcal{D}_{2}=\left\{T_{-k+a+b}, T_{-k+a+b+1}, \ldots, T_{-k+a+c+b+d-1}\right\} .
\end{align*}
$$

There are $a+b+c+d-1$ invertible substitutions with incidence matrix $M$ in a one-to-one correspondence with the set equations determined by (1).
We denote these substitutions by $\sigma_{k}, 1 \leq k \leq a+b+c+d-1$.

## Intersection point

Projecting the stepped surface $\bar{S}$ onto $V^{\prime}$, we first obtain a tiling $\mathcal{J}^{\prime}$ of $V^{\prime}$ by two intervals of length $1-\alpha$ and $\alpha$.
We label the tiles of $\mathcal{J}$ by the two-sided sequence $\left(T_{k}\right)_{k \in \mathbb{Z}}$.
We furthermore define the two-sided sequence $\left(g_{k}\right)_{k \in \mathbb{Z}}$ as the sequence of left endpoints of tiles $T_{k}$ (one has $g_{0}=0$ ).

Let $M$ be a $2 \times 2$ primitive matrix with non-negative entries such that $\operatorname{det} M=1$. Let $\sigma_{k}, 1 \leq k \leq a+b+c+d-1$, be the invertible substitutions with incidence matrix $M$, and let $X_{1}=\left[-1+\alpha+h_{k}, h_{k}\right], \quad X_{2}=\left[h_{k}, \alpha+h_{k}\right]$ be the Rauzy fractals of $\sigma_{k}^{2}$. Let $\beta$ be the Perron-Frobenius eigenvalue of $M$. Then

$$
h_{k}=\frac{g-k+a+b}{\beta-1}
$$

## Intersection point

Projecting the stepped surface $\bar{S}$ onto $V^{\prime}$, we first obtain a tiling $\mathcal{J}^{\prime}$ of $V^{\prime}$ by two intervals of length $1-\alpha$ and $\alpha$.
We label the tiles of $\mathcal{J}$ by the two-sided sequence $\left(T_{k}\right)_{k \in \mathbb{Z}}$.
We furthermore define the two-sided sequence $\left(g_{k}\right)_{k \in \mathbb{Z}}$ as the sequence of left endpoints of tiles $T_{k}$ (one has $g_{0}=0$ ).

Let $M$ be a $2 \times 2$ primitive matrix with non-negative entries such that $\operatorname{det} M=1$. Let $\sigma_{k}, 1 \leq k \leq a+b+c+d-1$, be the invertible substitutions with incidence matrix $M$, and let $X_{1}=\left[-1+\alpha+h_{k}, h_{k}\right], \quad X_{2}=\left[h_{k}, \alpha+h_{k}\right]$ be the Rauzy fractals of $\sigma_{k}^{2}$. Let $\beta$ be the Perron-Frobenius eigenvalue of $M$. Then

$$
h_{k}=\frac{g_{-k+a+b}}{\beta-1} .
$$

- One has $\frac{X_{1}}{\beta^{\prime}} \cap \frac{X_{2}}{\beta^{\prime}}=\left\{\left(\beta^{\prime}\right)^{-1} h_{k}\right\}=\left\{\beta h_{k}\right\}$.
- This intersection point is the left endpoint of the interval $\cup\left\{T+h_{k} ; T \in \mathcal{D}_{2}\right\}$, i.e., the left endpoint of $T_{-k+a+b}+h_{k}$. So we get $g_{-k+a+b}+h_{k}=\beta h_{k}$, and $h_{k}=\frac{g_{-k+a+b}}{\beta-1}$.


## Sketch of the proof of Yasutomi's characterization

- Let $\sigma$ be an invertible substitution with Perron-Frobenius postive eigenvector $(1-\alpha, \alpha)$. Then $\alpha$ is a Sturm number, and the Rauzy fractals $X_{1}, X_{2}$ are intervals with length $1-\alpha$ and $\alpha$, respectively. Suppose $s=\bar{s}_{\alpha, \rho}$ or $s=\underline{s}_{\alpha, \rho}$ is a fixed point of $\sigma^{2}$. One checks that $\rho=1-\alpha-h$, where $\{h\}=X_{1} \cap X_{2}$.
- Let $V^{\prime}$ be the contracting line $y=\frac{1-\alpha^{\prime}}{\alpha^{\prime}} x$, where $\alpha^{\prime}$ is the algebraic conjugate of $\alpha$. A broken line in $\mathbb{R}^{2}$, the so-called stepped surface, is associated with line $V^{\prime}$, defined as a discretization of $V^{\prime}$.
- The sets $X_{1}, X_{2}$ have a self-similar structure: indeed they satisfy a set equation which is controlled by the stepped surface of $V^{\prime}$. Hence, by connectedness and self-similarity of Rauzy fractals, we express the intersection $X_{1} \cap X_{2}$ in terms of the stepped surface.
- Then we show that the stepped surface is associated with the so-called dual rotation $R_{\gamma}$ with $\gamma=\frac{\alpha^{\prime}-1}{2 \alpha^{\prime}-1}$. An arithmetic characterization of the stepped surface is obtained. This allows us to get an algebraic description of the intersection set $X_{1} \cap X_{2}$ for an invertible substitution $\sigma$, which yields a proof of Yasutomi's Theorem.


## Rigid words

## Definition

An infinite word generated by a substitution is rigid if all the subtitutions which generate this word are powers of the same unique substitution.

## Theorem [Séébold]

Let $s_{\alpha, \rho}$ be a substitution invariant Sturmian word. There exists a substitution such that all the substitutions that fix this word are powers of $\sigma$.

- Combinatorial proof based on Rauzy rules
- Arithmetic proof based on Pell's equations and Dirichlet's theorem on the group of units of $\mathbb{Q}(\sqrt{D})$ which is isomorphic to $\mathbb{Z}$.


## Christoffel words

[On an involoution of Christoffel words and Sturmian morphisms, B., de Luca, Reutenauer]

## Definition

Let $p$ and $q$ be positive relatively prime integers and $n=p+q$.
Given an ordered two-letter alphabet $\{x<y\}$, the Christoffel word $w$ of slope $\frac{p}{q}$ on this alphabet is defined as $w=x_{1} \cdots x_{n}$, with

$$
x_{i}=\left\{\begin{array}{lll}
x & \text { if } & (i-1) p \in\{0,1, \ldots, q-1\} \quad \bmod n \\
y & \text { if } & (i-1) p \in\{q, q+1, \ldots, n-1\} \bmod n \\
& \text { for } i=1, \ldots, n .
\end{array}\right.
$$

## Christoffel words

[On an involoution of Christoffel words and Sturmian morphisms, B., de Luca, Reutenauer]

## Definition

Let $p$ and $q$ be positive relatively prime integers and $n=p+q$.
Given an ordered two-letter alphabet $\{x<y\}$, the Christoffel word $w$ of slope $\frac{p}{q}$ on this alphabet is defined as $w=x_{1} \cdots x_{n}$, with

$$
\begin{aligned}
& x_{i}=\left\{\begin{array}{lll}
x & \text { if } & (i-1) p \in\{0,1, \ldots, q-1\} \quad \bmod n \\
y & \text { if } & (i-1) p \in\{q, q+1, \ldots, n-1\} \quad \bmod n
\end{array}\right. \\
& \text { for } i=1, \ldots, n \text {. }
\end{aligned}
$$

## Remark

One has

$$
(i-1) p \in\{0,1, \ldots, q-1\} \quad \bmod n \text { iff ip } \bmod n>(i-1) p \bmod n .
$$

## Christoffel words

In other words, label the edges of the Cayley graph of $\mathbb{Z} / n \mathbb{Z}=\{0,1, \ldots, n-1\}$ with generator $p$ as follows:

- the label of the edge $h \rightarrow k$ (where $h+p \equiv k \bmod n)$ is $x$ if $h<k$ and $y$ if $h>k$;
- then read the word $w$, of length $n$, starting with the label of the edge $0 \rightarrow p$.



## Remark

Note that

$$
|w|_{x}=q \text { and }|w|_{y}=p
$$

Thus, if we know the number of occurrences of each letter in $w$, we know its slope, hence $w$.

## Dual Christoffel word

## Definition

Given the proper Christoffel word of slope $\frac{p}{q}$, we define the dual Christoffel word $w^{*}$ of slope $\frac{p^{*}}{q^{*}}$, where $p^{*}$ and $q^{*}$ are the respective multiplicative inverses in $\{0,1, \ldots, n-1\}$ of $p$ and $q$.

- These inverses exist since $p$ and $q$ are relatively prime.
- A Christoffel word and its dual have the same length.


## Example

Let

$$
w=x x y x x y x x y x y
$$

be the Christoffel word of slope $\frac{4}{7}$, on the alphabet $\{x<y\}$, with $p=4, q=7, n=11$ and its dual Christoffel word of slope $\frac{3}{8}$ on the alphabet $\{x<y\}, p^{*}=3, q^{*}=8, n=11$ :
$0 \xrightarrow{x} 3 \xrightarrow{x} 6 \xrightarrow{x} 9 \xrightarrow{y} 1 \xrightarrow{x} 4 \xrightarrow{x} 7 \xrightarrow{x} 10 \xrightarrow{y} 2 \xrightarrow{x} 5 \xrightarrow{x} 0$

## Lyndon factorization

## Lyndon Factorization

Each Christoffel word $w$ is a Lyndon word. Thus, a proper Christoffel word has a standard factorization

$$
w=w_{1} w_{2},
$$

where $w_{1}, w_{2}$ are also Christoffel words and $w_{1}<w_{2}$ in lexicographic order.

## Factorization and Cayley graph

Let $w$ be a proper Christoffel word of slope $\frac{p}{q}$ and

$$
w=w_{1} w_{2}
$$

its factorization in an increasing product of two Christoffel words. Then

$$
\left|w_{1}\right|=p^{*} \text { and }\left|w_{2}\right|=q^{*} .
$$

Moreover, $w_{1}$ (resp. $w_{2}$ ) is the label of the path from 0 to 1 (resp. 1 to 0 ) in the previous Cayley graph.

## Central words

## Palindrome

If $w$ is a proper Christoffel word on the alphabet $\{x<y\}$, then $w=x u y$, where $u$ is a palindrome.

This is easily seen on the Cayley graph of $\mathbb{Z} / n \mathbb{Z}$ by reversing edges.

## Central words

The words $u$ such that xuy are Christoffel words (necessarily proper) on the alphabet $\{x<y\}$ are called central words.

## Standard word

It is a word on the alphabet $\{x, y\}$ which is either a letter or of the form

$$
u x y \text { or uyx, }
$$

where $u$ is a central word.

## Central words

The central words on the alphabet $\{x, y\}$ have been completely characterized: they are the words which for some relatively prime positive integers $p$ and $q$ are of length $p+q-2$ and have periods $p$ and $q$ [de Luca-Mignosi].

The set of central words is equal to the set of palindromic prefixes of standard Sturmian sequences [Berstel-Séébold].

## Periodicity and central words [de Luca-Mignosi]

Let $w=x u y$ be the Christoffel word of slope $\frac{p}{q}$ on the alphabet $\{x<y\}$. Then the central word $u$ has the periods $p^{*}$ and $q^{*}$ where $p p^{*}, q q^{*} \equiv 1 \bmod p+q$.

## Dual word and Fine and Wilf Theorem

## Periodicity and central words [de Luca-Mignosi]

Let $w=x u y$ be the Christoffel word of slope $\frac{p}{q}$ on the alphabet $\{x<y\}$. Then the central word $u$ has the periods $p^{*}$ and $q^{*}$ where $p p^{*}, q q^{*} \equiv 1 \bmod p+q$.

The dual of a Christoffel word may be read on the graph which defines this latter word. For example, take the graph below, and remove the vertices 0 and $n-1=10$, the labels and the orientation (cf. the proof of the theorem of Fine and Wilf by [Choffrut-Karhumäki]).


This graph expresses the equality of letters according to their positions in a word of length 9 with periods 3 and 8. The central word of the dual of this Christoffel word

$$
x y x x y x x y x
$$

(since the $x$ 's are in positions $3,6,9,1,4,7$ and the $y$ 's in positions $2,5,8$ ). We thus recover the Christoffel word

$$
x x y x x y x x y x y
$$

## Palindromic closure

The right palindromic closure $w^{+}$of a word $w$ is defined as the unique shortest palindrome having $w$ as a prefix.

This word exists and is equal to $u v \tilde{u}$, where $w=u v, \tilde{u}$ is the mirror image of $u$, and $v$ is the longest palindromic suffix of $w$.

## Palindromic closure

The right palindromic closure $w^{+}$of a word $w$ is defined as the unique shortest palindrome having $w$ as a prefix.

This word exists and is equal to $u v \tilde{u}$, where $w=u v, \tilde{u}$ is the mirror image of $u$, and $v$ is the longest palindromic suffix of $w$.

## Example

For example, $(x y x x y x x)^{+}=x y x x y x x . y x$.

## Palindromic closure

The right palindromic closure $w^{+}$of a word $w$ is defined as the unique shortest palindrome having $w$ as a prefix.

This word exists and is equal to $u v \tilde{u}$, where $w=u v, \tilde{u}$ is the mirror image of $u$, and $v$ is the longest palindromic suffix of $w$.

The right iterated palindromic closure of $w$ is denoted by $\operatorname{Pal}(w)$ and is defined recursively by $\operatorname{Pal}(w)=(\operatorname{Pal}(u) z)^{+}$, where $w=u z, z$ the last letter of $w$, together with the initial condition $\operatorname{Pal}(\varepsilon)=\varepsilon$.

## Theorem [Carpi-de Luca]

- The set $\left\{\operatorname{Pal}(v), v \in\{x, y\}^{*}\right\}$ coincides with the set of central words.
- If $w=\operatorname{Pal}(v)$, then $v$ is uniquely defined by $w ; v$ is called the directive word of $w$.
- $\operatorname{Pal}(\tilde{v})$ is the dual central word of the central word $\operatorname{Pal}(v)$.


## Arithmetic expression

Let matrix $M$ be the image of $v \in\{x, y\}^{*}$ under the multiplicative morphism $\mu: x \mapsto\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), y \mapsto\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Let $u=\operatorname{Pal}(v)$ and let $w$ be the Christoffel word xuy. Let $w=w_{1} w_{2}$ be its decomposition into two Christoffel words with $w_{1}<w_{2}$ in lexicographic order. Then

$$
M=M_{v}=\left(\begin{array}{ll}
\left|w_{1}\right|_{x} & \left|w_{2}\right|_{x} \\
\left|w_{1}\right|_{y} & \left|w_{2}\right|_{y}
\end{array}\right) .
$$

## Arithmetic expression

Let matrix $M$ be the image of $v \in\{x, y\}^{*}$ under the multiplicative morphism $\mu: x \mapsto\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), y \mapsto\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Let $u=\operatorname{Pal}(v)$ and let $w$ be the Christoffel word xuy. Let $w=w_{1} w_{2}$ be its decomposition into two Christoffel words with $w_{1}<w_{2}$ in lexicographic order. Then

$$
M=M_{v}=\left(\begin{array}{ll}
\left|w_{1}\right|_{x} & \left|w_{2}\right|_{x} \\
\left|w_{1}\right|_{y} & \left|w_{2}\right|_{y}
\end{array}\right) .
$$

If $u=\operatorname{Pal}(v)$ and $M_{v}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $|u|_{x}=a+b-1,|u|_{y}=c+d-1$ and $u$ has the relatively prime periods $a+c$ and $b+d$. Moreover the Christoffel word $w=x u y$ has slope $\frac{c+d}{a+b}$ and its dual has slope $\frac{c+a}{d+b}$.

## Arithmetic expression

Let matrix $M$ be the image of $v \in\{x, y\}^{*}$ under the multiplicative morphism $\mu: x \mapsto\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), y \mapsto\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Let $u=\operatorname{Pal}(v)$ and let $w$ be the Christoffel word xuy. Let $w=w_{1} w_{2}$ be its decomposition into two Christoffel words with $w_{1}<w_{2}$ in lexicographic order. Then

$$
M=M_{v}=\left(\begin{array}{ll}
\left|w_{1}\right|_{x} & \left|w_{2}\right|_{x} \\
\left|w_{1}\right|_{y} & \left|w_{2}\right|_{y}
\end{array}\right) .
$$

If $u=\operatorname{Pal}(v)$ and $M_{v}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $|u|_{x}=a+b-1,|u|_{y}=c+d-1$ and $u$ has the relatively prime periods $a+c$ and $b+d$. Moreover the Christoffel word $w=x u y$ has slope $\frac{c+d}{a+b}$ and its dual has slope $\frac{c+a}{d+b}$.

Let $p / q$ and $p^{\prime} / q^{\prime}$ be two positive rational numbers, in irreducible form. Then the paths in the Stern-Brocot tree defining the corresponding nodes are mirror each of another if and only if $p+q=p^{\prime}+q^{\prime}$ and $p p^{\prime}, q q^{\prime} \equiv 1 \bmod p+q$.

## Back to Sturmian morphisms

A Sturmian morphism is an endomorphism of the free monoid $\{x, y\}^{*}$ that sends each Sturmian sequence onto a Sturmian sequence.

## Back to Sturmian morphisms

A Sturmian morphism is an endomorphism of the free monoid $\{x, y\}^{*}$ that sends each Sturmian sequence onto a Sturmian sequence.

## Definition

Given two Sturmian morphisms $f$ and $f^{\prime}, f^{\prime}$ is a right conjugate of $f$ if for some word $w \in\{x, y\}^{*}$, one has

$$
u w=w u^{\prime}, v w=w v^{\prime}
$$

where $f=(u, v)$ and $f^{\prime}=\left(u^{\prime}, v^{\prime}\right)$.

## Theorem [Nielsen]

Two automorphisms $f$ and $f^{\prime}$ of the free group with two elements have the same commutative image iff

$$
f=\varphi f^{\prime}
$$

for some inner automorphism $\varphi$ of $F_{2}$.
Two Sturmian morphisms $f$ and $f^{\prime}$ are conjugate if and only if they have the same commutative image.

## Back to Sturmian morphisms

A Sturmian morphism is an endomorphism of the free monoid $\{x, y\}^{*}$ that sends each Sturmian sequence onto a Sturmian sequence.

## Characterization

A morphism $f$ is Sturmian if and only if it sends each Christoffel word onto the conjugate of a Christoffel word.

## Remark

An endomorphism of the free monoid on $x$ and $y$ is Sturmian if and only if it sends the three Christoffel words

$$
x y, x x y, x y y
$$

onto conjugates of Christoffel words.

## Conjugacy classes

- Take a Sturmian morphism with determinant 1.
- Since $x y$ is a Christoffel word, $f(x y)$ is conjugate to a proper Christoffel word $w$. We say that $w$ is the Christoffel word associated with $f$.
- If $f$ and $f^{\prime}$ are conjugate Sturmian morphisms, then $f(x y)$ and $f^{\prime}(x y)$ are conjugate words, so that $f$ and $f^{\prime}$ have the same associated Christoffel word.
- Conversely, suppose that $f$ and $f^{\prime}$ with determinant 1 have the same Christoffel word. Then, $f(x y)$ and $f^{\prime}(x y)$ are conjugate. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$ be the matrices associated to $f, f^{\prime}$. Then $a+b=|f(x y)|_{x}=\left|f^{\prime}(x y)\right|_{x}=a^{\prime}+b^{\prime}$, and similarly, $c+d=c^{\prime}+d^{\prime}$. Thus, these matrices are equal and, by Nielsen's theorem, $f$ and $f^{\prime}$ are conjugate.


## Property

The map $f \mapsto f(x y)$ induces a bijection between conjugacy classes of Sturmian morphisms of determinant 1, and conjugacy classes of Christoffel words.

## Dual Sturmian morphisms

Denote by $\left(x^{-1}, y\right)$ the automorphism of the free group $F_{2}$ sending $x$ onto $x^{-1}$ and $y$ onto $y$.
Recall that $G, D, \tilde{G}, \tilde{D}$ are defined as

$$
G=(x, x y), \quad D=(y x, y), \tilde{G}=(x, y x), \tilde{D}=(x y, y)
$$

## Theorem [B., de Luca, Reutenauer]

The mapping

$$
f \mapsto f^{*}=\left(x^{-1}, y\right) f^{-1}\left(x^{-1}, y\right)
$$

is an involutive anti-automorphism of the Sturmian monoid of morphisms with determinant 1 , that exchanges $D$ and $\tilde{D}$ and fixes $G$ and $\tilde{G}$.
It sends conjugacy classes of morphisms onto conjugacy classes.

## Dual Sturmian morphisms

Denote by $\left(x^{-1}, y\right)$ the automorphism of the free group $F_{2}$ sending $x$ onto $x^{-1}$ and $y$ onto $y$.
Recall that $G, D, \tilde{G}, \tilde{D}$ are defined as

$$
G=(x, x y), D=(y x, y), \tilde{G}=(x, y x), \tilde{D}=(x y, y)
$$

## Theorem [B., de Luca, Reutenauer]

The mapping

$$
f \mapsto f^{*}=\left(x^{-1}, y\right) f^{-1}\left(x^{-1}, y\right)
$$

is an involutive anti-automorphism of the Sturmian monoid of morphisms with determinant 1 , that exchanges $D$ and $\tilde{D}$ and fixes $G$ and $\tilde{G}$.
It sends conjugacy classes of morphisms onto conjugacy classes.

## Theorem

Let $w=$ xuy be a Christoffel word of length $n$ and slope $\frac{p}{q}$, and $w^{*}$ the dual word. Let $\left\{f_{1}, \ldots, f_{n-1}\right\}$ (resp. $\left\{f_{1}^{\prime}, \ldots, f_{n-1}^{\prime}\right\}$ ) be the conjugacy class of Sturmian morphisms associated with $w\left(\right.$ resp. $w^{*}$ ), in the previous description. Then

$$
f_{i}^{*}=f_{i p}^{\prime}
$$

where the subscript is taken modulo $n$.

## Self-dual words

- The Christoffel word $x \operatorname{Pal}(v) y$ is self-dual if and only if the directive word $v$ of $\operatorname{Pal}(v)$ is a palindrome.
- This implies that $\operatorname{Pal}(v)$ is harmonic [Carpi, de Luca].
- A Christoffel word of slope $p / q$ is self-dual if and only if $p^{2} \equiv 1 \bmod (p+q)$.


## Dual christoffel words

This duality equivalently consists in

- using the slope of the word, and changing the numerator and the denominator respectively in their inverses modulo the length;
- using the cyclic graph allowing the construction of the word, by interpreting it in two ways
- one as a permutation and its ascents and descents, coded by the two letters of the word,
- the other in the setting of the Fine and Wilf periodicity theorem;
- by using central words and generation through iterated palindromic closure, by reversing the directive word.


## Dual christoffel words

This duality equivalently consists in

- using the slope of the word, and changing the numerator and the denominator respectively in their inverses modulo the length;
- using the cyclic graph allowing the construction of the word, by interpreting it in two ways
- one as a permutation and its ascents and descents, coded by the two letters of the word,
- the other in the setting of the Fine and Wilf periodicity theorem;
- by using central words and generation through iterated palindromic closure, by reversing the directive word.
- This involution extends to Sturmian morphisms: it preserves conjugacy classes of these morphisms, which are in bijection with Christoffel words.
- This involution on morphisms is the restriction of some conjugation of the automorphisms of the free group.


## Higher-dimensional case

- Words
- Fine and Wilf theorem for three letter words and generalized Euclid's algorithms
[Castelli-Mignosi-Restivo, Zamboni-Tijdeman]
- Multidimensional words
- Multididimensional Sturmian words [B.-Vuillon]
- Generalized substitutions [Arnoux-Ito]
- Discrete geometry [B.-Fernique]

