Sturmian fixed points of morphisms

V. Berthé

LIRMM-CNRS-Montpellier-France berthe@lirmm.fr http://www.lirmm.fr/~berthe

Recent progress in combinatorics on words Montréal, 2007

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A notion of duality for Sturmian morphisms

- On substitution invariant Sturmian words: an application of Rauzy fractals, B., Ei, Ito and Rao
- On an involution of Christoffel words and Sturmian morphisms, B., de Luca, Reutenauer

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Sturmian fixed points

Question

For which α and ρ is the Sturmian word $s_{\alpha,\rho}$ a fixed point of some non-trivial substitution?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sturmian fixed points

Question

For which α and ρ is the Sturmian word $s_{\alpha,\rho}$ a fixed point of some non-trivial substitution?

- By non-trivial substitution, we mean a substitution that is distinct from the identity.
- By $s_{\alpha,\rho}$ is substitution invariant, we mean that $s_{\alpha,\rho}$ a fixed point of some non-trivial substitution.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Sturmian words

Notation

Let $0 < \alpha < 1$. Let $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$ denote the one-dimensional torus. The rotation of angle α of \mathbb{T}^1 is defined by $R_\alpha : \mathbb{T}^1 \to \mathbb{T}^1, \ x \mapsto x + \alpha$. Let

$$\underline{I}_1 = [0, 1 - \alpha), \quad \underline{I}_2 = [1 - \alpha, 1); \quad \overline{I}_1 = (0, 1 - \alpha], \quad \overline{I}_2 = (1 - \alpha, 1].$$

We define the two Sturmian words:

$$\underline{s}_{\alpha,\rho}(n) = \begin{cases} 1 & \text{if } R_{\alpha}^{n}(\rho) \in \underline{I}_{1}, \\ 2 & \text{if } R_{\alpha}^{n}(\rho) \in \underline{I}_{2}, \end{cases}$$
$$\overline{s}_{\alpha,\rho}(n) = \begin{cases} 1 & \text{if } R_{\alpha}^{n}(\rho) \in \overline{I}_{1}, \\ 2 & \text{if } R_{\alpha}^{n}(\rho) \in \overline{I}_{2}. \end{cases}$$

Sturmian words

Notation

Let $0 < \alpha < 1$. Let $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$ denote the one-dimensional torus. The rotation of angle α of \mathbb{T}^1 is defined by $R_\alpha : \mathbb{T}^1 \to \mathbb{T}^1, \ x \mapsto x + \alpha$. Let

$$\underline{I}_1 = [0, 1 - \alpha), \quad \underline{I}_2 = [1 - \alpha, 1); \quad \overline{I}_1 = (0, 1 - \alpha], \quad \overline{I}_2 = (1 - \alpha, 1].$$

We define the two Sturmian words:

$$\underline{s}_{\alpha,\rho}(n) = \begin{cases} 1 & \text{if } R_{\alpha}^{n}(\rho) \in \underline{I}_{1}, \\ 2 & \text{if } R_{\alpha}^{n}(\rho) \in \underline{I}_{2}, \end{cases}$$
$$\overline{s}_{\alpha,\rho}(n) = \begin{cases} 1 & \text{if } R_{\alpha}^{n}(\rho) \in \overline{I}_{1}, \\ 2 & \text{if } R_{\alpha}^{n}(\rho) \in \overline{I}_{2}. \end{cases}$$

Characteristic word

The characteristic word is obtained for $\rho = \alpha$. One has

$$s_{\alpha,\alpha} := \underline{s}_{\alpha,\alpha} = \overline{s}_{\alpha,\alpha}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sturm number and characteristic case

For a number x in a quadratic field, we denote by x' the conjugate of x in this field.

Theorem [Crisp *et al.*]

Let $0<\alpha<1$ be an irrational number. Then the following two conditions are equivalent:

- the characteristic word $s_{\alpha,\alpha}$ is substitution invariant;
- α is a quadratic irrational with $\alpha' \notin [0, 1]$.

Sturm number and characteristic case

For a number x in a quadratic field, we denote by x' the conjugate of x in this field.

Theorem [Crisp *et al.*]

Let $0<\alpha<1$ be an irrational number. Then the following two conditions are equivalent:

- the characteristic word $s_{\alpha,\alpha}$ is substitution invariant;
- α is a quadratic irrational with $\alpha' \notin [0, 1]$.

Sturm number [Allauzen]

A quadratic number α with $0 < \alpha < 1$ and $\alpha' \notin [0,1]$ is called a Sturm number.

Homogeneous vs nonhomegeneous case

- The homogeneous case corresponds to $ho \in \mathbb{Z} lpha \mod 1$ [Berstel, Séébold, Brown, Fagnot,Lothaire...]
- The nonhomogeneous case corresponds to $\rho \not\in \mathbb{Z}\alpha \mod 1$ [Komatsu,Parvaix...]

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Yasutomi's characterization

Theorem [Yasutomi'97]

Let $0 < \alpha < 1$ and $0 \le \rho \le 1$. Then $s_{\alpha,\rho}$ is substitution invariant if and only if the following two conditions are satisfied:

- α is an irrational quadratic number and $\rho \in \mathbb{Q}(\alpha)$;
- $\bullet \ \alpha' > 1, \ 1-\alpha' \leq \rho' \leq \alpha' \quad \text{or} \quad \alpha' < 0, \ \alpha' \leq \rho' \leq 1-\alpha'.$

Yasutomi's characterization

Theorem [Yasutomi'97]

Let $0 < \alpha < 1$ and $0 \le \rho \le 1$. Then $s_{\alpha,\rho}$ is substitution invariant if and only if the following two conditions are satisfied:

- α is an irrational quadratic number and $\rho \in \mathbb{Q}(\alpha)$;
- $\bullet \ \alpha' > 1, \ 1-\alpha' \leq \rho' \leq \alpha' \quad \text{or} \quad \alpha' < 0, \ \alpha' \leq \rho' \leq 1-\alpha'.$

Corollary

Let α be a Sturm number. Then

- for any $\rho \in \mathbb{Q} \cap (0, 1)$, $\underline{s}_{\alpha, \rho} = \overline{s}_{\alpha, \rho}$ is substitution invariant.
- [Yasutomi, Fagnot] Let $\rho \in [0, 1)$. The Sturmian word $\underline{s}_{\alpha, \{n\alpha\}}$ (resp. $\overline{s}_{\alpha, \{n\alpha\}}$) is substitution invariant if and only if n = -1, 0, 1. In total we obtain exactly five substitution invariant Sturmian words

$$\{21s_{\alpha,\alpha}, 12s_{\alpha,\alpha}, 2s_{\alpha,\alpha}, 1s_{\alpha,\alpha}, s_{\alpha,\alpha}\}$$

in the homogeneous case.

Proofs of Yasutomi's characterization

• [Yasutomi]:

Yasutomi defines three transformations from $[0,1]^2$ to $[0,1]^2$:

$$T_1(\alpha, \rho) = \left(\frac{\alpha}{1+\rho}, \frac{\rho}{1+\alpha}\right), \quad T_2(\alpha, \rho) = \left(\frac{1}{2-\alpha}, \frac{\rho}{2-\alpha}\right),$$
$$T_3(\alpha, \rho) = (1-\alpha, 1-\rho).$$

A Sturmian word $s_{\alpha,\rho}$ is substitution invariant if and only if there exists a sequence S_1, \ldots, S_n with $S_i \in \{T_1, T_2, T_3\}$ such that $(\alpha, \rho) = S_1 \circ \cdots \circ S_n(\alpha, \rho)$

- [Baláži, Masáková, Pelantová]: cut and project schemes, quasicrystals
- [B., Ei, Ito, Rao]: dual substitutions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Sturmian morphisms

Let σ be a substitution over $\{1,2\}$ and let $M_{\sigma} = (m_{ij})$ be its incidence matrix, where m_{ij} counts the number of occurrences of the letter *i* in $\sigma(j)$. We shall call determinant of a Sturmian morphism the determinant of its incidence matrix.

Sturmian morphisms

Let σ be a substitution over $\{1,2\}$ and let $M_{\sigma} = (m_{ij})$ be its incidence matrix, where m_{ii} counts the number of occurrences of the letter *i* in $\sigma(j)$.

We shall call determinant of a Sturmian morphism the determinant of its incidence matrix.

The monoid of Sturmian morphisms is called the Sturmian monoid and is denoted by St.

Let St_0 denote the special Sturmian monoid, which is the submonoid of St of endomorphisms whose determinant is 1.

The monoid St_0 is generated by the endomorphisms $G, D, \tilde{G}, \tilde{D}$ which are respectively:

$$G=(x,xy),\ D=(yx,y),\ \tilde{G}=(x,yx),\ \tilde{D}=(xy,y).$$

Invertible substitution

Definition

A substitution is said to be invertible if it is an automorphism of the free group F_2 .

Theorem [Mignosi-Séébold, Wen-Wen]

A word is a Sturmian substitution invariant word if and only if it is a fixed point of some primitive and invertible substitution.

Theorem [Séébold]

Let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a primitive unimodular matrix with non-negative entries. The number of invertible substitutions with incidence matrix M is equal to a + b + c + d - 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Sturm number

Property

A number $\alpha \in (0, 1)$ is a Sturm number if and only if there exists a 2 × 2 primitive unimodular matrix M with non-negative integral entries such that $(1 - \alpha, \alpha)$ is an expanding eigenvector of M.

Consequently, if the Sturmian word $s_{\alpha,\rho}$ is substitution invariant, then this implies that α is a Sturm number.

Sturm number

Property

A number $\alpha \in (0, 1)$ is a Sturm number if and only if there exists a 2 × 2 primitive unimodular matrix M with non-negative integral entries such that $(1 - \alpha, \alpha)$ is an expanding eigenvector of M. Consequently, if the Sturmian word $s_{\alpha,\rho}$ is substitution invariant, then this implies

that α is a Sturm number.

- Let σ be a primitive unimodular substitution over $\{1,2\}$. Let β be the maximal eigenvalue of its incidence matrix M_{σ} . Its algebraic conjugate β' is also an eigenvalue of M_{σ} .
- Furthermore, the vector of densities of the letters 1 and 2 denoted by (1 − α, α), with 0 ≤ α ≤ 1, is easily proven to be an expanding eigenvector, i.e., an eigenvector associated with the expanding eigenvalue β.
- Since α is (irrational) quadratic, the vector $(1 \alpha', \alpha')$ is an eigenvector associated with the eigenvalue β' .
- By Perron-Frobenius' theorem, coordinates 1 − α', α' cannot both be positive, hence α'(1 − α') ≤ 0, which implies that α' ∉]0,1[. Hence α is a Sturm number.

Sturm number

Property

A number $\alpha \in (0, 1)$ is a Sturm number if and only if there exists a 2 × 2 primitive unimodular matrix M with non-negative integral entries such that $(1 - \alpha, \alpha)$ is an expanding eigenvector of M.

Consequently, if the Sturmian word $s_{\alpha,\rho}$ is substitution invariant, then this implies that α is a Sturm number.

Example

Let σ be the substitution $1 \mapsto 121$, $2 \mapsto 12$, i.e., the square of the Fibonacci substitution. This substitution admits as a unique fixed point the Fibonacci word $s_{\alpha,\alpha}$, with $\alpha = \frac{3-\sqrt{5}}{2}$, whose first terms are

12112121121121212121

One has
$$M_{\sigma} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\beta = \frac{3+\sqrt{5}}{2}$, and $\beta' = \frac{3-\sqrt{5}}{2} = \alpha = \frac{1}{\beta} > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Rauzy fractals

Let σ be a primitive substitution with determinant 1 over $\{1, 2\}$. Let \vec{e}_1, \vec{e}_2 be the canonical basis of \mathbb{R}^2 . Let $f : \{1, 2\}^* \to \mathbb{Z}^2$ be the Parikh map, defined by $f(w) = |w|_1 \vec{e}_1 + |w|_2 \vec{e}_2$. Let V be the expanding eigenspace of the matrix M_σ corresponding to the eigenvalue β , and V' the contracting eigenspace corresponding to β' . Then $V \oplus V' = \mathbb{R}^2$ is a direct sum decomposition of \mathbb{R}^2 . According to this direct sum, we define the projection

Rauzy fractals

Let $s = (s_k)_{k \ge 0}$ be a fixed point of σ^2 . We first define

$$Y = \{f(s_0 \dots s_{k-1}); \ k \ge 0\}.$$

We then divide Y into two parts:

$$Y_1 = \{f(s_0 \dots s_{k-1}); \ s_k = 1\}, \ Y_2 = \{f(s_0 \dots s_{k-1}); \ s_k = 2\}.$$

Projecting Y_1, Y_2 onto the contracting eigenspace V' and taking the closures, we get

$$X_1 = \overline{\pi(Y_1)}, \ X_2 = \overline{\pi(Y_2)}.$$

We call X_1 and X_2 the Rauzy fractals of the substitution σ .

Rauzy fractals of invertible substitutions

Connectedness

Let σ be a primitive invertible substitution. Then there exists $h \in \mathbb{Z}$ such that the Rauzy fractals satisfy

$$X_1 = [-1 + \alpha + h, h], \quad X_2 = [h, \alpha + h],$$

where $(1 - \alpha, \alpha)$ is the Perron-Frobenius eigenvector with positive entries of the incidence matrix M_{σ} .

Furthermore, if $\overline{s}_{\alpha,\rho}$ or $\underline{s}_{\alpha,\rho}$ is a fixed point point of σ^2 , then

$$\rho = 1 - \alpha - h.$$

Rauzy fractals of invertible substitutions

Connectedness

Let σ be a primitive invertible substitution. Then there exists $h \in \mathbb{Z}$ such that the Rauzy fractals satisfy

$$X_1 = [-1 + \alpha + h, h], \quad X_2 = [h, \alpha + h],$$

where $(1 - \alpha, \alpha)$ is the Perron-Frobenius eigenvector with positive entries of the incidence matrix M_{σ} .

Furthermore, if $\overline{s}_{\alpha,\rho}$ or $\underline{s}_{\alpha,\rho}$ is a fixed point point of σ^2 , then

$$\rho = 1 - \alpha - h.$$

Remark

Let $0 < \alpha < 1$ be an irrational number and $0 \le \rho \le 1$. Then $\underline{s}_{\alpha,\rho}$ is substitution invariant if and only $\overline{s}_{\alpha,\rho}$ is also substitution invariant.

Stepped surface

Recall that V' is the contracting eigenline of M_{σ} . We denote the upper closed half-plane delimited by V' as $(V')^+$, and the lower open half-plane delimited by V' as $(V')^-$. We define

$$S = \{[z, i^*]; \hspace{0.2cm} z \in \mathbb{Z}^2, z \in (V')^+ \hspace{0.2cm} ext{and} \hspace{0.2cm} z - ec e_i \in (V')^-\},$$

where the notation $[z, i^*]$, for $z \in \mathbb{Z}^2$ and $i^* \in \{1^*, 2^*\}$, $[z, 1^*]$ (resp. $[z, 2^*]$) is defined as the closed line segment from z to $z + \vec{e}_2$ (resp. to $z + \vec{e}_1$). Then the stepped surface \overline{S} of V' is defined as the broken line consisting of the

following segments

$$\overline{S} = \bigcup_{[z,i^*] \in S} \overline{[z,i^*]}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Stepped surface

Projecting the stepped surface \overline{S} onto V', we first obtain a tiling \mathcal{J}' of V' by two intervals of length $1 - \alpha$ and α . We label the tiles of \mathcal{J} by the two-sided sequence $(T_k)_{k \in \mathbb{Z}}$.

We define the two-sided word $(t_n)_{n \in \mathbb{Z}}$ as:

$$\forall n \in \mathbb{Z}, \ t_n = \begin{cases} 1, & \text{if } |T_n| = 1 - \alpha \\ 2, & \text{if } |T_n| = \alpha. \end{cases}$$

One checks that $(t_n)_{n\in\mathbb{Z}}$ is the upper two-sided cutting sequence of the line $V': y = \frac{1-\alpha'}{\alpha'}x$. Hence

$$t_{-1}t_{-2}t_{-3}\cdots=1s_{\gamma,\gamma},\quad t_0t_1t_2\cdots=2s_{\gamma,\gamma},$$

with

$$\gamma = \frac{\alpha' - 1}{2\alpha' - 1},$$

called dual angle.

Self-similar structure of Rauzy fractals

Let σ be a primitive substitution over $\{1,2\}$ and let β be the Perron-Frobenius eigenvalue of M_{σ} . We recall that $|\beta'| < 1$. The Rauzy fractals X_1 and X_2 have a self-similar structure:

> both $\frac{1}{\beta'}X_1$ and $\frac{1}{\beta'}X_2$ are unions of translated copies of X_1 and X_2 . [Arnoux-Ito,Sirvent-Wang]

うして ふぼう ふほう ふほう しょうく

Self-similar structure of Rauzy fractals

Let σ be a primitive substitution over $\{1,2\}$ and let β be the Perron-Frobenius eigenvalue of M_{σ} . We recall that $|\beta'| < 1$. The Rauzy fractals X_1 and X_2 have a self-similar structure:

> both $\frac{1}{\beta'}X_1$ and $\frac{1}{\beta'}X_2$ are unions of translated copies of X_1 and X_2 . [Arnoux-Ito,Sirvent-Wang]

Example

Let σ be the substitution 1 \mapsto 121, 2 \mapsto 12. One checks that

$$\frac{X_1}{\beta'} = [-1, 1/\alpha - 2] = [-1, 1 - \alpha] = (X_1 + \alpha - 1) + X_1 + X_2,$$
$$\frac{X_2}{\beta'} = [1/\alpha - 2, 1/\alpha - 1] = [1 - \alpha, 2 - \alpha] = (X_1 + 1) + (X_2 + 1).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Set equation

Let $X_1 = [-1 + \alpha + h, h], X_2 = [h, h + \alpha]$ be the Rauzy fractals of the primitive invertible substitution σ . Then

$$\frac{X_1}{\beta'} = \left(\bigcup_{T \in \mathcal{D}_1} T\right) + h, \quad \frac{X_2}{\beta'} = \left(\bigcup_{T \in \mathcal{D}_2} T\right) + h,$$

where $\mathcal{D}_1, \mathcal{D}_2$ and $\mathcal{D}_1 \cup \mathcal{D}_2$ are connected patches of the tiling \mathcal{J} .

うして ふぼう ふほう ふほう しょうく

Set equation

Let $X_1 = [-1 + \alpha + h, h], X_2 = [h, h + \alpha]$ be the Rauzy fractals of the primitive invertible substitution σ . Then

$$\frac{X_1}{\beta'} = \left(\bigcup_{T \in \mathcal{D}_1} T\right) + h, \quad \frac{X_2}{\beta'} = \left(\bigcup_{T \in \mathcal{D}_2} T\right) + h,$$

where $\mathcal{D}_1, \mathcal{D}_2$ and $\mathcal{D}_1 \cup \mathcal{D}_2$ are connected patches of the tiling \mathcal{J} .

Example

Let
$$\sigma$$
 be the substitution $1 \mapsto 121$, $2 \mapsto 12$.
One has $\mathcal{D}_1 = \{T_{-2}, T_{-1}, T_0\}$, $\mathcal{D}_2 = \{T_1, T_2\}$, $\frac{X_1}{\beta'} = h + T_{-2} + T_{-1} + T_0$, $\frac{X_2}{\beta'} = h + T_1 + T_2$.

Set equation

Let $X_1 = [-1 + \alpha + h, h], X_2 = [h, h + \alpha]$ be the Rauzy fractals of the primitive invertible substitution σ . Then

$$\frac{X_1}{\beta'} = \left(\bigcup_{T \in \mathcal{D}_1} T\right) + h, \quad \frac{X_2}{\beta'} = \left(\bigcup_{T \in \mathcal{D}_2} T\right) + h,$$

where $\mathcal{D}_1, \mathcal{D}_2$ and $\mathcal{D}_1 \cup \mathcal{D}_2$ are connected patches of the tiling \mathcal{J} .

We assume that the determinant of M is equal to 1. One has $1/\beta' = \beta > 0$ so that $\frac{X_1}{\beta'}$ is on the left side of $\frac{X_2}{\beta'}$. There exists k with $1 \le k \le a + b + c + d - 1$ such that

$$\mathcal{D}_1 = \{ T_{-k}, T_{-k+1}, \dots, T_{-k+a+b-1} \}, \mathcal{D}_2 = \{ T_{-k+a+b}, T_{-k+a+b+1}, \dots, T_{-k+a+c+b+d-1} \}.$$
 (1)

There are a + b + c + d - 1 invertible substitutions with incidence matrix M in a one-to-one correspondence with the set equations determined by (1). We denote these substitutions by σ_k , $1 \le k \le a + b + c + d - 1$.

Intersection point

Projecting the stepped surface \overline{S} onto V', we first obtain a tiling \mathcal{J}' of V' by two intervals of length $1 - \alpha$ and α . We label the tiles of \mathcal{J} by the two-sided sequence $(T_k)_{k \in \mathbb{Z}}$. We furthermore define the two-sided sequence $(g_k)_{k \in \mathbb{Z}}$ as the sequence of left endpoints of tiles T_k (one has $g_0 = 0$).

Let *M* be a 2 × 2 primitive matrix with non-negative entries such that det M = 1. Let σ_k , $1 \le k \le a + b + c + d - 1$, be the invertible substitutions with incidence matrix *M*, and let $X_1 = [-1 + \alpha + h_k, h_k]$, $X_2 = [h_k, \alpha + h_k]$ be the Rauzy fractals of σ_k^2 . Let β be the Perron-Frobenius eigenvalue of *M*. Then

$$h_k = \frac{g_{-k+a+b}}{\beta - 1}.$$

Intersection point

Projecting the stepped surface \overline{S} onto V', we first obtain a tiling \mathcal{J}' of V' by two intervals of length $1 - \alpha$ and α . We label the tiles of \mathcal{J} by the two-sided sequence $(T_k)_{k \in \mathbb{Z}}$. We furthermore define the two-sided sequence $(g_k)_{k \in \mathbb{Z}}$ as the sequence of left endpoints of tiles T_k (one has $g_0 = 0$).

Let *M* be a 2 × 2 primitive matrix with non-negative entries such that det M = 1. Let σ_k , $1 \le k \le a + b + c + d - 1$, be the invertible substitutions with incidence matrix *M*, and let $X_1 = [-1 + \alpha + h_k, h_k]$, $X_2 = [h_k, \alpha + h_k]$ be the Rauzy fractals of σ_k^2 . Let β be the Perron-Frobenius eigenvalue of *M*. Then

$$h_k = \frac{g_{-k+a+b}}{\beta - 1}.$$

- One has $\frac{X_1}{\beta'} \cap \frac{X_2}{\beta'} = \{(\beta')^{-1}h_k\} = \{\beta h_k\}.$
- This intersection point is the left endpoint of the interval $\cup \{T + h_k; T \in D_2\}$, i.e., the left endpoint of $T_{-k+a+b} + h_k$. So we get $g_{-k+a+b} + h_k = \beta h_k$, and $h_k = \frac{g_{-k+a+b}}{\beta 1}$.

(日) (同) (三) (三) (三) (○) (○)

Sketch of the proof of Yasutomi's characterization

- Let σ be an invertible substitution with Perron-Frobenius postive eigenvector $(1 \alpha, \alpha)$. Then α is a Sturm number, and the Rauzy fractals X_1 , X_2 are intervals with length 1α and α , respectively. Suppose $s = \overline{s}_{\alpha,\rho}$ or $s = \underline{s}_{\alpha,\rho}$ is a fixed point of σ^2 . One checks that $\rho = 1 \alpha h$, where $\{h\} = X_1 \cap X_2$.
- Let V' be the contracting line $y = \frac{1-\alpha'}{\alpha'}x$, where α' is the algebraic conjugate of α . A broken line in \mathbb{R}^2 , the so-called stepped surface, is associated with line V', defined as a discretization of V'.
- The sets X_1 , X_2 have a self-similar structure: indeed they satisfy a set equation which is controlled by the stepped surface of V'. Hence, by connectedness and self-similarity of Rauzy fractals, we express the intersection $X_1 \cap X_2$ in terms of the stepped surface.
- Then we show that the stepped surface is associated with the so-called dual rotation R_{γ} with $\gamma = \frac{\alpha'-1}{2\alpha'-1}$. An arithmetic characterization of the stepped surface is obtained. This allows us to get an algebraic description of the intersection set $X_1 \cap X_2$ for an invertible substitution σ , which yields a proof of Yasutomi's Theorem.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Rigid words

Definition

An infinite word generated by a substitution is rigid if all the subtitutions which generate this word are powers of the same unique substitution.

Theorem [Séébold]

Let $s_{\alpha,\rho}$ be a substitution invariant Sturmian word. There exists a substitution such that all the substitutions that fix this word are powers of σ .

- · Combinatorial proof based on Rauzy rules
- Arithmetic proof based on Pell's equations and Dirichlet's theorem on the group of units of Q(√D) which is isomorphic to Z.

Christoffel words

[On an involoution of Christoffel words and Sturmian morphisms, B., de Luca, Reutenauer]

Definition

Let *p* and *q* be positive relatively prime integers and n = p + q. Given an ordered two-letter alphabet $\{x < y\}$, the Christoffel word *w* of slope $\frac{p}{q}$ on this alphabet is defined as $w = x_1 \cdots x_n$, with

$$x_i = \begin{cases} x & \text{if} \quad (i-1)p \in \{0,1,\ldots,q-1\} \mod n \\ y & \text{if} \quad (i-1)p \in \{q,q+1,\ldots,n-1\} \mod n \\ & \text{for } i = 1,\ldots,n. \end{cases}$$

Christoffel words

[On an involoution of Christoffel words and Sturmian morphisms, B., de Luca, Reutenauer]

Definition

Let *p* and *q* be positive relatively prime integers and n = p + q. Given an ordered two-letter alphabet $\{x < y\}$, the Christoffel word *w* of slope $\frac{p}{q}$ on this alphabet is defined as $w = x_1 \cdots x_n$, with

$$x_i = \begin{cases} x & \text{if} \quad (i-1)p \in \{0, 1, \dots, q-1\} \mod n \\ y & \text{if} \quad (i-1)p \in \{q, q+1, \dots, n-1\} \mod n \\ & \text{for } i = 1, \dots, n. \end{cases}$$

Remark

One has

$$(i-1)p\in\{0,1,\ldots,q-1\}\mod n \text{ iff } ip \mod n>(i-1)p \mod n.$$

Christoffel words

In other words, label the edges of the Cayley graph of $\mathbb{Z}/n\mathbb{Z} = \{0, 1, ..., n-1\}$ with generator p as follows:

- the label of the edge $h \to k$ (where $h + p \equiv k \mod n$) is x if h < k and y if h > k;
- then read the word w, of length n, starting with the label of the edge $0 \rightarrow p$.

Remark

Note that

$$|w|_x = q$$
 and $|w|_y = p$.

Thus, if we know the number of occurrences of each letter in w, we know its slope, hence w.

Dual Christoffel word

Definition

Given the proper Christoffel word of slope $\frac{p}{q}$, we define the dual Christoffel word w^* of slope $\frac{p^*}{q^*}$, where p^* and q^* are the respective multiplicative inverses in $\{0, 1, \ldots, n-1\}$ of p and q.

- These inverses exist since p and q are relatively prime.
- A Christoffel word and its dual have the same length.

Example

Let

$$w = xxyxxyxxyxy$$

be the Christoffel word of slope $\frac{4}{7}$, on the alphabet $\{x < y\}$, with p = 4, q = 7, n = 11 and its dual Christoffel word of slope $\frac{3}{8}$ on the alphabet $\{x < y\}$, $p^* = 3$, $q^* = 8$, n = 11:

$$0 \xrightarrow{x} 3 \xrightarrow{x} 6 \xrightarrow{x} 9 \xrightarrow{y} 1 \xrightarrow{x} 4 \xrightarrow{x} 7 \xrightarrow{x} 10 \xrightarrow{y} 2 \xrightarrow{x} 5 \xrightarrow{x} 8 \xrightarrow{y} 0$$

Lyndon factorization

Lyndon Factorization

Each Christoffel word w is a Lyndon word. Thus, a proper Christoffel word has a standard factorization

 $w = w_1 w_2$,

where w_1, w_2 are also Christoffel words and $w_1 < w_2$ in lexicographic order.

Factorization and Cayley graph

Let w be a proper Christoffel word of slope $\frac{p}{a}$ and

$$w = w_1 w_2$$

its factorization in an increasing product of two Christoffel words. Then

$$|w_1| = p^*$$
 and $|w_2| = q^*$.

Moreover, w_1 (resp. w_2) is the label of the path from 0 to 1 (resp. 1 to 0) in the previous Cayley graph.

Central words

Palindrome

If w is a proper Christoffel word on the alphabet $\{x < y\}$, then w = xuy, where u is a palindrome.

This is easily seen on the Cayley graph of $\mathbb{Z}/n\mathbb{Z}$ by reversing edges.

Central words

The words *u* such that *xuy* are Christoffel words (necessarily proper) on the alphabet $\{x < y\}$ are called central words.

Standard word

It is a word on the alphabet $\{x, y\}$ which is either a letter or of the form

uxy or uyx,

where *u* is a central word.

Central words

The central words on the alphabet $\{x, y\}$ have been completely characterized:

they are the words which for some relatively prime positive integers p and q are of length p + q - 2 and have periods p and q [de Luca-Mignosi].

The set of central words is equal to the set of palindromic prefixes of standard Sturmian sequences [Berstel-Séébold].

Periodicity and central words [de Luca-Mignosi]

Let w = xuy be the Christoffel word of slope $\frac{p}{q}$ on the alphabet $\{x < y\}$. Then the central word u has the periods p^* and q^* where $pp^*, qq^* \equiv 1 \mod p + q$.

Dual word and Fine and Wilf Theorem

Periodicity and central words [de Luca-Mignosi]

Let w = xuy be the Christoffel word of slope $\frac{p}{q}$ on the alphabet $\{x < y\}$. Then the central word u has the periods p^* and q^* where $pp^*, qq^* \equiv 1 \mod p + q$.

The dual of a Christoffel word may be read on the graph which defines this latter word. For example, take the graph below, and remove the vertices 0 and n - 1 = 10, the labels and the orientation (cf. the proof of the theorem of Fine and Wilf by [Choffrut-Karhumäki]).

3 - 6 - 9 - 1 - 4 - 7 2 - 5 - 8

This graph expresses the equality of letters according to their positions in a word of length 9 with periods 3 and 8. The central word of the dual of this Christoffel word

хуххуххух

(since the x's are in positions 3, 6, 9, 1, 4, 7 and the y's in positions 2, 5, 8). We thus recover the Christoffel word

xxyxxyxxyxy.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Palindromic closure

The right palindromic closure w^+ of a word w is defined as the unique shortest palindrome having w as a prefix.

This word exists and is equal to $uv\tilde{u}$, where w = uv, \tilde{u} is the mirror image of u, and v is the longest palindromic suffix of w.

Palindromic closure

The right palindromic closure w^+ of a word w is defined as the unique shortest palindrome having w as a prefix.

This word exists and is equal to $uv\tilde{u}$, where w = uv, \tilde{u} is the mirror image of u, and v is the longest palindromic suffix of w.

Example

For example, $(xyxxyxx)^+ = xyxxyxx.yx$.

Palindromic closure

The right palindromic closure w^+ of a word w is defined as the unique shortest palindrome having w as a prefix.

This word exists and is equal to $uv\tilde{u}$, where w = uv, \tilde{u} is the mirror image of u, and v is the longest palindromic suffix of w.

The right iterated palindromic closure of w is denoted by Pal(w) and is defined recursively by $Pal(w) = (Pal(u)z)^+$, where w = uz, z the last letter of w, together with the initial condition $Pal(\varepsilon) = \varepsilon$.

Theorem [Carpi-de Luca]

- The set $\{Pal(v), v \in \{x, y\}^*\}$ coincides with the set of central words.
- If w = Pal(v), then v is uniquely defined by w; v is called the directive word of w.
- Pal(v) is the dual central word of the central word Pal(v).

Arithmetic expression

Let matrix M be the image of $v \in \{x, y\}^*$ under the multiplicative morphism $\mu : x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, y \mapsto \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Let u = Pal(v) and let w be the Christoffel word xuy. Let $w = w_1w_2$ be its decomposition into two Christoffel words with $w_1 < w_2$ in lexicographic order. Then

$$M=M_{\mathbf{v}}=\left(\begin{array}{cc}|w_1|_{\mathbf{x}}&|w_2|_{\mathbf{x}}\\|w_1|_{\mathbf{y}}&|w_2|_{\mathbf{y}}\end{array}\right).$$

Arithmetic expression

Let matrix M be the image of $v \in \{x, y\}^*$ under the multiplicative morphism $\mu : x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, y \mapsto \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Let u = Pal(v) and let w be the Christoffel word xuy. Let $w = w_1w_2$ be its decomposition into two Christoffel words with $w_1 < w_2$ in lexicographic order. Then

$$M = M_{\mathbf{v}} = \begin{pmatrix} |w_1|_x & |w_2|_x \\ |w_1|_y & |w_2|_y \end{pmatrix}.$$

If u = Pal(v) and $M_v = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $|u|_x = a + b - 1$, $|u|_y = c + d - 1$ and u has the relatively prime periods a + c and b + d. Moreover the Christoffel word w = xuy has slope $\frac{c+a}{a+b}$ and its dual has slope $\frac{c+a}{d+b}$.

Arithmetic expression

Let matrix M be the image of $v \in \{x, y\}^*$ under the multiplicative morphism $\mu : x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, y \mapsto \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. Let u = Pal(v) and let w be the Christoffel word xuy. Let $w = w_1w_2$ be its decomposition into two Christoffel words with $w_1 < w_2$ in lexicographic order. Then

$$M = M_{\mathbf{v}} = \begin{pmatrix} |w_1|_x & |w_2|_x \\ |w_1|_y & |w_2|_y \end{pmatrix}.$$

If u = Pal(v) and $M_v = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $|u|_x = a + b - 1$, $|u|_y = c + d - 1$ and u has the relatively prime periods a + c and b + d. Moreover the Christoffel word w = xuy has slope $\frac{c+a}{a+b}$ and its dual has slope $\frac{c+a}{a+b}$.

Let p/q and p'/q' be two positive rational numbers, in irreducible form. Then the paths in the Stern-Brocot tree defining the corresponding nodes are mirror each of another if and only if p + q = p' + q' and $pp', qq' \equiv 1 \mod p + q$.

Sturmian fixed points

Rauzy fractals

Dual Christoffel words

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Back to Sturmian morphisms

A Sturmian morphism is an endomorphism of the free monoid $\{x, y\}^*$ that sends each Sturmian sequence onto a Sturmian sequence.

Back to Sturmian morphisms

A Sturmian morphism is an endomorphism of the free monoid $\{x, y\}^*$ that sends each Sturmian sequence onto a Sturmian sequence.

Definition

Given two Sturmian morphisms f and f', f' is a right conjugate of f if for some word $w \in \{x, y\}^*$, one has

$$uw = wu', vw = wv'$$

where f = (u, v) and f' = (u', v').

Theorem [Nielsen]

Two automorphisms f and f' of the free group with two elements have the same commutative image iff

$$f = \varphi f'$$

for some inner automorphism φ of F_2 .

Two Sturmian morphisms f and f' are conjugate if and only if they have the same commutative image.

Back to Sturmian morphisms

A Sturmian morphism is an endomorphism of the free monoid $\{x, y\}^*$ that sends each Sturmian sequence onto a Sturmian sequence.

Characterization A morphism f is Sturmian if and only if it sends each Christoffel word onto the conjugate of a Christoffel word.

Remark

An endomorphism of the free monoid on x and y is Sturmian if and only if it sends the three Christoffel words

xy, xxy, xyy

onto conjugates of Christoffel words.

Conjugacy classes

- Take a Sturmian morphism with determinant 1.
- Since xy is a Christoffel word, f(xy) is conjugate to a proper Christoffel word w. We say that w is the Christoffel word associated with f.
- If f and f' are conjugate Sturmian morphisms, then f(xy) and f'(xy) are conjugate words, so that f and f' have the same associated Christoffel word.
- Conversely, suppose that f and f' with determinant 1 have the same Christoffel word. Then, f(xy) and f'(xy) are conjugate. Let $\binom{a \ b}{c \ d}$, $\binom{a' \ b'}{c' \ d'}$ be the matrices associated to f, f'. Then $a + b = |f(xy)|_x = |f'(xy)|_x = a' + b'$, and similarly, c + d = c' + d'. Thus, these matrices are equal and, by Nielsen's theorem, f and f' are conjugate.

Property

The map $f \mapsto f(xy)$ induces a bijection between conjugacy classes of Sturmian morphisms of determinant 1, and conjugacy classes of Christoffel words.

Dual Sturmian morphisms

Denote by (x^{-1}, y) the automorphism of the free group F_2 sending x onto x^{-1} and y onto y.

Recall that $G, D, \tilde{G}, \tilde{D}$ are defined as

$$G = (x, xy), D = (yx, y), \tilde{G} = (x, yx), \tilde{D} = (xy, y).$$

Theorem [B., de Luca, Reutenauer]

The mapping

$$f \mapsto f^* = (x^{-1}, y)f^{-1}(x^{-1}, y)$$

is an involutive anti-automorphism of the Sturmian monoid of morphisms with determinant 1, that exchanges D and \tilde{D} and fixes G and \tilde{G} . It sends conjugacy classes of morphisms onto conjugacy classes.

Dual Sturmian morphisms

Denote by (x^{-1}, y) the automorphism of the free group F_2 sending x onto x^{-1} and y onto y.

Recall that $G, D, \tilde{G}, \tilde{D}$ are defined as

$$G = (x, xy), D = (yx, y), \tilde{G} = (x, yx), \tilde{D} = (xy, y).$$

Theorem [B., de Luca, Reutenauer]

The mapping

$$f \mapsto f^* = (x^{-1}, y)f^{-1}(x^{-1}, y)$$

is an involutive anti-automorphism of the Sturmian monoid of morphisms with determinant 1, that exchanges D and \tilde{D} and fixes G and \tilde{G} . It sends conjugacy classes of morphisms onto conjugacy classes.

Theorem

Let w = xuy be a Christoffel word of length n and slope $\frac{p}{q}$, and w^* the dual word. Let $\{f_1, \ldots, f_{n-1}\}$ (resp. $\{f'_1, \ldots, f'_{n-1}\}$) be the conjugacy class of Sturmian morphisms associated with w (resp. w^*), in the previous description. Then

$$f_i^* = f_{ip}',$$

where the subscript is taken modulo n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Self-dual words

- The Christoffel word xPal(v)y is self-dual if and only if the directive word v of Pal(v) is a palindrome.
- This implies that Pal(v) is harmonic [Carpi, de Luca].
- A Christoffel word of slope p/q is self-dual if and only if $p^2 \equiv 1 \mod (p+q)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual christoffel words

This duality equivalently consists in

- using the slope of the word, and changing the numerator and the denominator respectively in their inverses modulo the length;
- using the cyclic graph allowing the construction of the word, by interpreting it in two ways
 - one as a permutation and its ascents and descents, coded by the two letters of the word,
 - the other in the setting of the Fine and Wilf periodicity theorem;
- by using central words and generation through iterated palindromic closure, by reversing the directive word.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dual christoffel words

This duality equivalently consists in

- using the slope of the word, and changing the numerator and the denominator respectively in their inverses modulo the length;
- using the cyclic graph allowing the construction of the word, by interpreting it in two ways
 - one as a permutation and its ascents and descents, coded by the two letters of the word,
 - the other in the setting of the Fine and Wilf periodicity theorem;
- by using central words and generation through iterated palindromic closure, by reversing the directive word.
- This involution extends to Sturmian morphisms: it preserves conjugacy classes of these morphisms, which are in bijection with Christoffel words.
- This involution on morphisms is the restriction of some conjugation of the automorphisms of the free group.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Higher-dimensional case

- Words
 - Fine and Wilf theorem for three letter words and generalized Euclid's algorithms

[Castelli-Mignosi-Restivo, Zamboni-Tijdeman]

- Multidimensional words
 - Multididimensional Sturmian words [B.-Vuillon]
 - Generalized substitutions [Arnoux-Ito]
 - Discrete geometry [B.-Fernique]