Defects of fixed points of some substitutions

Ľ. Balková, P. Ambrož, E. Pelantová

Czech Technical University

- 1. Definition of defect
- 2. Basic facts about substitution

- 1. Definition of defect
- 2. Basic facts about substitution
- 3. Words u_{β} associated with β -integers

- 1. Definition of defect
- 2. Basic facts about substitution
- 3. Words u_{β} associated with β -integers
- 4. Palindromes and defects of u_{β}

- 1. Definition of defect
- 2. Basic facts about substitution
- 3. Words u_{β} associated with β -integers
- 4. Palindromes and defects of u_β
- 5. Defects of fixed points of some other substitutions
- 6. Importance of relation between palindromes and their images by substitution

- 1. Definition of defect
- 2. Basic facts about substitution
- 3. Words u_{β} associated with β -integers
- 4. Palindromes and defects of u_{β}
- 5. Defects of fixed points of some other substitutions
- 6. Importance of relation between palindromes and their images by substitution
- 7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff ...
- 8. Open problem: Is this word full or not?

- 1. Definition of defect
- 2. Basic facts about substitution
- 3. Words u_{β} associated with β -integers
- 4. Palindromes and defects of u_{β}
- 5. Defects of fixed points of some other substitutions
- 6. Importance of relation between palindromes and their images by substitution
- 7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff ...
- 8. Open problem: Is this word full or not?

Definition of defect

• Defect of a finite word w equals

|w| + 1 - the number of different palindromes in w.

- ε is considered as a palindrome.
- n+1 is the maximal possible number of palindromes in any word of length n.

Substitution is a non-erasing morphism φ : A* → A* such that there exists d ∈ A satisfying φ(d) = dw for some non-empty word w ∈ A*

- Substitution is a non-erasing morphism φ : A* → A* such that there exists d ∈ A satisfying φ(d) = dw for some non-empty word w ∈ A*
- If $\varphi(u) = u$, then u is called *fixed point* of φ

- Substitution is a non-erasing morphism φ : A* → A* such that there exists d ∈ A satisfying φ(d) = dw for some non-empty word w ∈ A*
- If $\varphi(u) = u$, then u is called *fixed point* of φ
- It is obvious that a substitution φ has at least one fixed point, namely $\lim_{n\to\infty} \varphi^n(d)$.

- Substitution is a non-erasing morphism φ : A* → A* such that there exists d ∈ A satisfying φ(d) = dw for some non-empty word w ∈ A*
- If $\varphi(u) = u$, then u is called *fixed point* of φ
- It is obvious that a substitution φ has at least one fixed point, namely $\lim_{n\to\infty} \varphi^n(d)$.
- A substitution φ over the alphabet A is called *primitive* if there exists k ∈ N such that for any d ∈ A the word φ^k(d) contains all the letters of A.

- Substitution is a non-erasing morphism φ : A* → A* such that there exists d ∈ A satisfying φ(d) = dw for some non-empty word w ∈ A*
- If $\varphi(u) = u$, then u is called *fixed point* of φ
- It is obvious that a substitution φ has at least one fixed point, namely $\lim_{n\to\infty} \varphi^n(d)$.
- A substitution φ over the alphabet A is called *primitive* if there exists k ∈ N such that for any d ∈ A the word φ^k(d) contains all the letters of A.
- An infinite word *u* is *uniformly recurrent*, if for every *n* ∈ N, there exists *R*(*n*) > 0 such that any factor of *u* of length ≥ *R*(*n*) contains all the factors of *u* of length *n*.

- 1. Definition of defect
- 2. Basic facts about substitution
- 3. Words u_{β} associated with β -integers
- 4. Palindromes and defects of u_{β}
- 5. Defects of fixed points of some other substitutions
- 6. Importance of relation between palindromes and their images by substitution
- 7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff ...
- 8. Open problem: Is this word full or not?

• Let $\beta > 1$ and $x \ge 0$, any convergent series of the form $x = \sum_{i=-\infty}^{k} x_i \beta^i$, where $x_i \in \mathbb{N}$, is called a β -representation of x and denoted $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$

- Let $\beta > 1$ and $x \ge 0$, any convergent series of the form $x = \sum_{i=-\infty}^{k} x_i \beta^i$, where $x_i \in \mathbb{N}$, is called a β -representation of x and denoted $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$
- β -expansion of x is the lexicographically largest among representations of x.

- Let $\beta > 1$ and $x \ge 0$, any convergent series of the form $x = \sum_{i=-\infty}^{k} x_i \beta^i$, where $x_i \in \mathbb{N}$, is called a β -representation of x and denoted $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$
- β -expansion of x is the lexicographically largest among representations of x.
- Nonnegative β -integers $\mathbb{Z}_{\beta}^{+} := \{x \ge 0 \mid \langle x \rangle_{\beta} = x_{k} x_{k-1} \dots x_{0} \bullet \}.$

- Let $\beta > 1$ and $x \ge 0$, any convergent series of the form $x = \sum_{i=-\infty}^{k} x_i \beta^i$, where $x_i \in \mathbb{N}$, is called a β -representation of x and denoted $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$
- β -expansion of x is the lexicographically largest among representations of x.
- Nonnegative β -integers $\mathbb{Z}_{\beta}^{+} := \{x \ge 0 \mid \langle x \rangle_{\beta} = x_{k} x_{k-1} \dots x_{0} \bullet \}.$

models of quasicrystals

 $^\circ\,$ in non-standard numeration- analogy of $\mathbb N$ in $\mathbb R$

• Rényi expansion of unity is the lexicographically largest sequence $t_1t_2t_3...$, where $t_i \in \mathbb{N}$ and such that

$$1 = \sum_{i \ge 1} t_i \beta^{-i}$$

- Rényi expansion of unity is the lexicographically largest sequence $t_1t_2t_3...$, where $t_i \in \mathbb{N}$ and such that $1 = \sum_{i \ge 1} t_i \beta^{-i}$.
- Parry condition

- Rényi expansion of unity is the lexicographically largest sequence $t_1t_2t_3...$, where $t_i \in \mathbb{N}$ and such that $1 = \sum_{i \ge 1} t_i \beta^{-i}$.
- Parry condition
 - Let $d_{\beta}(1)$ be an infinite Rényi expansion of unity. $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$ is a β -expansion if and only if $x_i x_{i-1} \dots \prec d_{\beta}(1)$ for all $i \leq k$.

- Rényi expansion of unity is the lexicographically largest sequence $t_1t_2t_3...$, where $t_i \in \mathbb{N}$ and such that $1 = \sum_{i \ge 1} t_i \beta^{-i}$.
- Parry condition
 - Let $d_{\beta}(1)$ be an infinite Rényi expansion of unity. $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$ is a β -expansion if and only if $x_i x_{i-1} \dots \prec d_{\beta}(1)$ for all $i \leq k$.
 - Let $d_{\beta}(1)$ be a finite Rényi expansion of unity, i.e., $d_{\beta}(1) = t_1 t_2 \dots t_m$. We define $d_{\beta}(1)^* := (t_1 t_2 \dots t_{m-1} (t_m - 1))^{\omega}$. Then $x_k x_{k-1} \dots x_0 \bullet x_{-1} \dots$ is a β -expansion if and only if $x_i x_{i-1} \dots \prec d_{\beta}(1)^*$ for all $i \leq k$.

• Thurston: Distances in \mathbb{Z}_{β}^+ form the set $\{\Delta_k \mid k \in \mathbb{N}\}$, where

$$\Delta_k := \sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^i} \, .$$

• Thurston: Distances in \mathbb{Z}_{β}^+ form the set $\{\Delta_k \mid k \in \mathbb{N}\}$, where

$$\Delta_k := \sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^i} \, .$$

• $\{\Delta_k \mid k \in \mathbb{N}\}$ is finite if and only if $d_\beta(1)$ is eventually periodic.

• Thurston: Distances in \mathbb{Z}_{β}^+ form the set $\{\Delta_k \mid k \in \mathbb{N}\}$, where

$$\Delta_k := \sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^i} \, .$$

- $\{\Delta_k \mid k \in \mathbb{N}\}$ is finite if and only if $d_\beta(1)$ is eventually periodic.
- If $d_{\beta}(1)$ is eventually periodic, β is called a *Parry number*.

• Thurston: Distances in \mathbb{Z}_{β}^+ form the set $\{\Delta_k \mid k \in \mathbb{N}\}$, where

$$\Delta_k := \sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^i} \, .$$

- $\{\Delta_k \mid k \in \mathbb{N}\}$ is finite if and only if $d_\beta(1)$ is eventually periodic.
- If $d_{\beta}(1)$ is eventually periodic, β is called a *Parry number*. If $d_{\beta}(1)$ is finite, β is called a *simple Parry number*.

Infinite words associated with β -integers

• Let β be a simple Parry number, $d_{\beta}(1) = t_1...t_m$. If we associate to each Δ_k the letter k, where $k \in \{0, \ldots, m-1\}$, we obtain $u_{\beta} = \lim_{n \to \infty} \varphi^n(0)$, where the substitution φ is given by

$$\begin{aligned} \varphi(0) &= 0^{t_1} 1\\ \varphi(1) &= 0^{t_2} 2\\ \dots\\ \varphi(m+p-2) &= 0^{t_{m-1}} (m-1)\\ \varphi(m+p-1) &= 0^{t_m}. \end{aligned}$$

Infinite words associated with β -integers

• Let β be a non-simple Parry number, in particular, let $m \in \mathbb{N}$ and $p \in \mathbb{N}$ be minimal such that $d_{\beta}(1) = t_1...t_m(t_{m+1}...t_{m+p})^{\omega}$. If we associate to each Δ_k the letter k, where $k \in \{0, ..., m + p - 1\}$, we obtain $u_{\beta} = \lim_{n \to \infty} \varphi^n(0)$, where the substitution φ is given by

$$\begin{split} \varphi(0) &= 0^{t_1} 1\\ \varphi(1) &= 0^{t_2} 2\\ \dots\\ \varphi(m+p-2) &= 0^{t_{m+p-1}} (m+p-1)\\ \varphi(m+p-1) &= 0^{t_{m+p}} m. \end{split}$$

 Studied problems for both simple and non-simple Parry numbers:

- Studied problems for both simple and non-simple Parry numbers:
 - factor and palindromic complexity,

- Studied problems for both simple and non-simple Parry numbers:
 - factor and palindromic complexity,
 - return words,
Combinatorial and arithmetical properties of u_{β}

- Studied problems for both simple and non-simple Parry numbers:
 - factor and palindromic complexity,
 - return words,
 - recurrence function and balances (only for quadratic case),

Combinatorial and arithmetical properties of u_{β}

- Studied problems for both simple and non-simple Parry numbers:
 - factor and palindromic complexity,
 - return words,
 - recurrence function and balances (only for quadratic case),
 - the upper bound on the fractional part length resulting from addition of two β -integers.

Outline of the talk

- 1. Definition of defect
- 2. Basic facts about substitution
- 3. Words u_{β} associated with β -integers
- 4. Palindromes and defects of u_{β}
- 5. Defects of fixed points of some other substitutions
- 6. Importance of relation between palindromes and their images by substitution
- 7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff ...
- 8. Open problem: Is this word full or not?

The language L(u) of a word u is closed under reversal if it contains with every factor w₁w₂...w_k also its reversal w_k...w₂w₁.

- The language L(u) of a word u is closed under reversal if it contains with every factor w₁w₂...w_k also its reversal w_k...w₂w₁.
- If a uniformly recurrent word u contains for every length n a palindrome of length > n, then L(u) is closed under reversal.

- The language L(u) of a word u is closed under reversal if it contains with every factor w₁w₂...w_k also its reversal w_k...w₂w₁.
- If a uniformly recurrent word u contains for every length n a palindrome of length > n, then L(u) is closed under reversal.
- The language $\mathcal{L}(u_{\beta})$
 - for β simple Parry is closed under reversal if and only if $t_1 = \cdots = t_{m-1}$,

Infinite words associated with β -integers

• Let β be a simple Parry number, $d_{\beta}(1) = t_1...t_m$. If we associate to each Δ_k the letter k, where $k \in \{0, \ldots, m-1\}$, we obtain $u_{\beta} = \lim_{n \to \infty} \varphi^n(0)$, where the substitution φ is given by

$$\begin{aligned} \varphi(0) &= 0^{t_1} 1\\ \varphi(1) &= 0^{t_2} 2\\ \dots\\ \varphi(m+p-2) &= 0^{t_{m-1}} (m-1)\\ \varphi(m+p-1) &= 0^{t_m}. \end{aligned}$$

Language of u_{β} closed under reversal

• The language $\mathcal{L}(u_{\beta})$ for β simple Parry is closed under reversal if and only if $t_1 = \cdots = t_{m-1}$, i.e., $d_{\beta}(1) = t...ts$, where $t \ge s \ge 1$. The infinite word u_{β} is the fixed point of the substitution φ given by

$$\begin{split} \varphi(0) &= 0^{t} 1\\ \varphi(1) &= 0^{t} 2\\ ...\\ \varphi(m+p-2) &= 0^{t} (m-1)\\ \varphi(m+p-1) &= 0^{s}. \end{split}$$

- The language L(u) of a word u is closed under reversal if it contains with every factor w₁w₂...w_k also its reversal w_k...w₂w₁.
- If a uniformly recurrent word u contains for every length n a palindrome of length > n, then L(u) is closed under reversal.
- The language $\mathcal{L}(u_{\beta})$
 - for β simple Parry is closed under reversal if and only if $t_1 = \cdots = t_{m-1}$,
 - $^\circ~$ for β non-simple Parry is closed under reversal if and only if m=p=1.

Infinite words associated with β -integers

• Let β be a non-simple Parry number, in particular, let $m \in \mathbb{N}$ and $p \in \mathbb{N}$ be minimal such that $d_{\beta}(1) = t_1...t_m(t_{m+1}...t_{m+p})^{\omega}$. If we associate to each Δ_k the letter k, where $k \in \{0, ..., m + p - 1\}$, we obtain $u_{\beta} = \lim_{n \to \infty} \varphi^n(0)$, where the substitution φ is given by

$$\begin{split} \varphi(0) &= 0^{t_1} 1\\ \varphi(1) &= 0^{t_2} 2\\ \dots\\ \varphi(m+p-2) &= 0^{t_{m+p-1}} (m+p-1)\\ \varphi(m+p-1) &= 0^{t_{m+p}} m. \end{split}$$

Language of u_β closed under reversal

The language L(u_β) for β non-simple Parry is closed under reversal if and only if m = p = 1, i.e., d_β(1) = t₁(t₂)^ω = ab^ω, a > b ≥ 1. The infinite word u_β is the fixed point of the substitution φ given by

 $\begin{aligned} \varphi(0) &= 0^a 1\\ \varphi(1) &= 0^b 1. \end{aligned}$

• If β is a Parry number and u_{β} is closed under reversal, then there exists infinitely many palindromes:

- If β is a Parry number and u_{β} is closed under reversal, then there exists infinitely many palindromes:
 - $^{\circ}\;$ simple Parry: p is a palindrome if and only if $\varphi(p)0^t$ is a palindrome,

- If β is a Parry number and u_{β} is closed under reversal, then there exists infinitely many palindromes:
 - $^\circ\,$ simple Parry: p is a palindrome if and only if $\varphi(p)0^t$ is a palindrome,
 - $^\circ\,$ non-simple Parry: p is a palindrome if and only if $1\varphi(p)$ is a palindrome.

- If β is a Parry number and u_{β} is closed under reversal, then there exists infinitely many palindromes:
 - $^\circ\,$ simple Parry: p is a palindrome if and only if $\varphi(p)0^t$ is a palindrome,
 - $^\circ\,$ non-simple Parry: p is a palindrome if and only if $1\varphi(p)$ is a palindrome.
- The relation between complexity and palindromic complexity:

P(n) + P(n+1) = C(n+1) - C(n) + 2 for all $n \in \mathbb{N}$.

- If β is a Parry number and u_{β} is closed under reversal, then there exists infinitely many palindromes:
 - $^\circ\,$ simple Parry: p is a palindrome if and only if $\varphi(p)0^t$ is a palindrome,
 - $^\circ\,$ non-simple Parry: p is a palindrome if and only if $1\varphi(p)$ is a palindrome.
- The relation between complexity and palindromic complexity:

P(n) + P(n+1) = C(n+1) - C(n) + 2 for all $n \in \mathbb{N}$.

• In general, for uniformly recurrent words with language closed under reversal, we have $P(n) + P(n+1) \le C(n+1) - C(n) + 2.$

Outline of the talk

- 1. Definition of defect
- 2. Basic facts about substitution
- 3. Words u_{β} associated with β -integers
- 4. Palindromes and defects of u_{β}
- 5. Defects of fixed points of some other substitutions
- 6. Importance of relation between palindromes and their images by substitution
- 7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff ...
- 8. Open problem: Is this word full or not?

Inspiration for study of defects

Inspiration for study of defects

X. Droubay, J. Justin, G. Pirillo, *Episturmian words and some constructions of de Luca and Rauzy*, Theoret. Comput. Sci. 255 (2001), 539-553.

Inspiration for study of defects

- X. Droubay, J. Justin, G. Pirillo, *Episturmian words and some constructions of de Luca and Rauzy*, Theoret. Comput. Sci. 255 (2001), 539-553.
- *Defect* of a finite word *w* equals

|w| + 1 - the number of different palindromes in w.

• A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.

• A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word *w* equals to the number of prefixes of *w* satisfying *Ju*.
- w = abbabbaababbbabbabbab, the set of palindromes is $\{a, b, aa, bb, aba, bab, bbb, abba, baab, \dots\}$

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word *w* equals to the number of prefixes of *w* satisfying *Ju*.
- w = abbabbaababbbabbabbab, the set of palindromes is $\{a, b, aa, bb, aba, bab, bbb, abba, baab, \dots\}$

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word *w* equals to the number of prefixes of *w* satisfying *Ju*.
- w = abbabbaababbbabbabbab, the set of palindromes is $\{a, b, aa, bb, aba, bab, bbb, abba, baab, \ldots\}$

• w = abbabbaab ababbbabbab

 u_{baab}

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.
- Every finite word w contains at most |w| + 1 different palindromes (the empty word being considered as a palindrome, too).

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.
- Every finite word w contains at most |w| + 1 different palindromes (the empty word being considered as a palindrome, too).

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.
- Every finite word w contains at most |w| + 1 different palindromes (the empty word being considered as a palindrome, too).
- We call a finite word w containing the maximal possible number |w| + 1 of palindromes *full*. An infinite word is *full* if all of its prefixes are full.

• $u_F = 0100101001001...$

- $u_F = 0100101001001\ldots$
- $u_F = 0 | 100101001001 \dots$

- $u_F = 0100101001001...$
- $u_F = 0 | 100101001001 \dots$
- $u_F = 01|00101001001...$

- $u_F = 0100101001001\ldots$
- $u_F = 0 |100101001001...$
- $u_F = 01|00101001001...$
- $u_F = 010|0101001001...$
Example $\varphi(0) = 01, \quad \varphi(1) = 0$

- $u_F = 0100101001001\ldots$
- $u_F = \mathbf{0} | 100101001001 \dots$
- $u_F = 01|00101001001...$
- $u_F = 010|0101001001...$
- $u_F = 0100 | 101001001 \dots$

Example $\varphi(0) = 01, \quad \varphi(1) = 0$

- $u_F = 0100101001001\ldots$
- $u_F = 0 |100101001001...$
- $u_F = 01|00101001001...$
- $u_F = 010|0101001001...$
- $u_F = 0100 | 101001001 \dots$
- $u_F = 01001|01001001...$

Example $\varphi(0) = 01, \quad \varphi(1) = 0$

- $u_F = 0100101001001\ldots$
- $u_F = \mathbf{0} | 100101001001 \dots$
- $u_F = 01|00101001001...$
- $u_F = 010|0101001001...$
- $u_F = 0100 | 101001001 \dots$
- $u_F = 01001 | 01001001 \dots$
- $u_F = 010010|1001001...$

• Obviously, an infinite word can be full only if its language contains infinitely many palindromes.

- Obviously, an infinite word can be full only if its language contains infinitely many palindromes.
- Droubay, Justin, Pirillo have proved that Sturmian and episturmian words are full.

- Obviously, an infinite word can be full only if its language contains infinitely many palindromes.
- Droubay, Justin, Pirillo have proved that Sturmian and episturmian words are full.
- We will show for fixed points of some well-known substitutions whether they are or are not full.

Outline of the talk

- 1. Definition of defect
- 2. Basic facts about substitution
- 3. Words u_{β} associated with β -integers
- 4. Palindromes and defects of u_{β}
- 5. Defects of fixed points of some other substitutions
- 6. Importance of relation between palindromes and their images by substitution
- 7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff ...
- 8. Open problem: Is this word full or not?

• u_{β} is the fixed point of φ defined by

$$\varphi(0) = 0^a 1, \quad \varphi(1) = 0^b 1, \quad 1 \le b \le a - 1.$$

• u_{β} is the fixed point of φ defined by

$$\varphi(0) = 0^a 1, \quad \varphi(1) = 0^b 1, \quad 1 \le b \le a - 1.$$

• Sturmian case for
$$b = a - 1$$
.

• u_{β} is the fixed point of φ defined by

 $\varphi(0) = 0^a 1, \quad \varphi(1) = 0^b 1, \quad 1 \le b \le a - 1.$

- Sturmian case for b = a 1.
- Lemma: A factor p of u_{β} is a palindrome if and only if $T(p) = 1\varphi(p)$ is a palindrome. Moreover, for every palindrome p containing at least one letter 1, we find a palindrome q shorter than p such that p occurs only as a central factor of the palindrome $1\varphi(q)$.

• u_{β} is the fixed point of φ defined by

 $\varphi(0) = 0^a 1, \quad \varphi(1) = 0^b 1, \quad 1 \le b \le a - 1.$

- Sturmian case for b = a 1.
- Lemma: A factor p of u_{β} is a palindrome if and only if $T(p) = 1\varphi(p)$ is a palindrome. Moreover, for every palindrome p containing at least one letter 1, we find a palindrome q shorter than p such that p occurs only as a central factor of the palindrome $1\varphi(q)$.
- Theorem: u_{β} is full.

• Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.

• Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.

•
$$u_{\beta} = v \cdots = upwp \dots$$

- Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.
- $u_{\beta} = v \cdots = upwp \dots$
- p contains 1 since a block 0^r , $r \le a$, cannot be the longest palindromic suffix of v

- Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.
- $u_{\beta} = v \cdots = upwp \dots$
- p contains 1 since a block 0^r , $r \le a$, cannot be the longest palindromic suffix of v
- p occurs only as a central factor of the palindrome $1\varphi(q)$, |q| < |p|, q palindrome

- Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.
- $u_{\beta} = v \cdots = upwp \dots$
- p contains 1 since a block 0^r , $r \le a$, cannot be the longest palindromic suffix of v
- p occurs only as a central factor of the palindrome $1\varphi(q)$, |q| < |p|, q palindrome

•
$$u_{\beta} = v \cdots = \varphi(u'qw'q) \dots$$

- Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.
- $u_{\beta} = v \cdots = upwp \dots$
- p contains 1 since a block 0^r , $r \le a$, cannot be the longest palindromic suffix of v
- p occurs only as a central factor of the palindrome $1\varphi(q)$, |q| < |p|, q palindrome
- $u_{\beta} = v \cdots = \varphi(u'qw'q) \ldots$
- contradiction with the minimality of \boldsymbol{v}

• u_{β} is the fixed point of φ defined by $\varphi(0) = 0^{t}1$ $\varphi(1) = 0^{t}2$... $\varphi(m+p-2) = 0^{t}(m-1)$ $\varphi(m+p-1) = 0^{s}$ $t \ge s \ge 1$.

- u_{β} is the fixed point of φ defined by $\varphi(0) = 0^{t}1$ $\varphi(1) = 0^{t}2$... $\varphi(m+p-2) = 0^{t}(m-1)$ $\varphi(m+p-1) = 0^{s}$ $t \ge s \ge 1$.
- For s = 1, the word u_{β} is episturmian.

- u_{β} is the fixed point of φ defined by $\varphi(0) = 0^{t}1$ $\varphi(1) = 0^{t}2$... $\varphi(m+p-2) = 0^{t}(m-1)$ $\varphi(m+p-1) = 0^{s}$ $t \ge s \ge 1$.
- For s = 1, the word u_{β} is episturmian.
- Lemma: A factor p of u_{β} is a palindrome if and only if $\varphi(p)0^t$ is a palindrome. Moreover, for every palindrome p that is not equal to 0^r , $r \leq t$, there exists a palindrome q shorter than p such that p occurs only as a central factor of the palindrome $\varphi(q)0^t$.

- u_{β} is the fixed point of φ defined by $\varphi(0) = 0^{t}1$ $\varphi(1) = 0^{t}2$... $\varphi(m+p-2) = 0^{t}(m-1)$ $\varphi(m+p-1) = 0^{s}$ $t \ge s \ge 1$.
- For s = 1, the word u_{β} is episturmian.
- Lemma: A factor p of u_{β} is a palindrome if and only if $\varphi(p)0^t$ is a palindrome. Moreover, for every palindrome p that is not equal to 0^r , $r \leq t$, there exists a palindrome q shorter than p such that p occurs only as a central factor of the palindrome $\varphi(q)0^t$.
- Theorem: u_{β} is full.

• Definition: The Thue-Morse word u_{TM} is the fixed point starting with 0 of φ defined by

$$\varphi(0) = 01, \ \varphi(1) = 10.$$

• Definition: The Thue-Morse word u_{TM} is the fixed point starting with 0 of φ defined by

 $\varphi(0) = 01, \ \varphi(1) = 10.$

• Lemma: A factor p of u_{TM} is a palindrome if and only if $\varphi^2(p)$ is a palindrome. Every palindrome p of u_{TM} of length ≥ 6 occurs only as a central factor $\varphi^2(q)$ for some palindrome q shorter than p.

• Definition: The Thue-Morse word u_{TM} is the fixed point starting with 0 of φ defined by

 $\varphi(0) = 01, \ \varphi(1) = 10.$

- Lemma: A factor p of u_{TM} is a palindrome if and only if φ²(p) is a palindrome. Every palindrome p of u_{TM} of length ≥ 6 occurs only as a central factor φ²(q) for some palindrome q shorter than p.
- Theorem: u_{TM} is not full!

• Definition: The Thue-Morse word u_{TM} is the fixed point starting with 0 of φ defined by

 $\varphi(0) = 01, \ \varphi(1) = 10.$

- Lemma: A factor p of u_{TM} is a palindrome if and only if φ²(p) is a palindrome. Every palindrome p of u_{TM} of length ≥ 6 occurs only as a central factor φ²(q) for some palindrome q shorter than p.
- Theorem: u_{TM} is not full!
- $u_{TM} = 011010011|0010110|$

Defects of the period-doubling word u_{PD}

• Definition: The period-doubling word u_{PD} is the fixed point of the substitution φ defined by $\varphi(0) = 01$, $\varphi(1) = 00$.

Defects of the period-doubling word u_{PD}

- Definition: The period-doubling word u_{PD} is the fixed point of the substitution φ defined by $\varphi(0) = 01$, $\varphi(1) = 00$.
- Lemma: A factor p of u_{PD} is a palindrome if and only if $\varphi(p)0$ is a palindrome. Moreover, for every palindrome p containing at least one 1, there is a palindrome q shorter than p such that p occurs always as a central factor of the palindrome $\varphi(q)0$.

Defects of the period-doubling word u_{PD}

- Definition: The period-doubling word u_{PD} is the fixed point of the substitution φ defined by $\varphi(0) = 01$, $\varphi(1) = 00$.
- Lemma: A factor p of u_{PD} is a palindrome if and only if $\varphi(p)0$ is a palindrome. Moreover, for every palindrome p containing at least one 1, there is a palindrome q shorter than p such that p occurs always as a central factor of the palindrome $\varphi(q)0$.
- Theorem: u_{PD} is full.

• The word u_R is one the fixed point starting with 0 of the non-primitive substitution φ defined by $\varphi(0) = 001, \ \varphi(1) = 111.$

- The word u_R is one the fixed point starting with 0 of the non-primitive substitution φ defined by $\varphi(0) = 001, \ \varphi(1) = 111.$
- We denote it u_R in order to recall Rote who has proved that the complexity of u_R is equal to 2n for every $n \in \mathbb{N}$.

- The word u_R is one the fixed point starting with 0 of the non-primitive substitution φ defined by $\varphi(0) = 001, \ \varphi(1) = 111.$
- We denote it u_R in order to recall Rote who has proved that the complexity of u_R is equal to 2n for every $n \in \mathbb{N}$.
- Lemma: A factor p of u_R is a palindrome if and only if $1\varphi(p)$ is a palindrome. Moreover, for every palindrome p containing at least one 1, there exists a palindrome q shorter than p such that p is always a central factor of the palindrome $1\varphi(q)$.

- The word u_R is one the fixed point starting with 0 of the non-primitive substitution φ defined by $\varphi(0) = 001, \ \varphi(1) = 111.$
- We denote it u_R in order to recall Rote who has proved that the complexity of u_R is equal to 2n for every $n \in \mathbb{N}$.
- Lemma: A factor p of u_R is a palindrome if and only if $1\varphi(p)$ is a palindrome. Moreover, for every palindrome p containing at least one 1, there exists a palindrome q shorter than p such that p is always a central factor of the palindrome $1\varphi(q)$.
- Theorem: u_R is full.

Outline of the talk

- 1. Definition of defect
- 2. Basic facts about substitution
- 3. Words u_{β} associated with β -integers
- 4. Palindromes and defects of u_{β}
- 5. Defects of fixed points of some other substitutions
- 6. Importance of relation between palindromes and their images by substitution
- 7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff ...
- 8. Open problem: Is this word full or not?

Conjecture

Definition: Substitution φ on A is of class P if there exists a palindrome p, and for every a ∈ A, a palindrome q_a such that φ(a) = pq_a for all a ∈ A (or, φ(a) = q_ap for all a ∈ A.)

Conjecture

- Definition: Substitution φ on A is of class P if there exists a palindrome p, and for every a ∈ A, a palindrome q_a such that φ(a) = pq_a for all a ∈ A (or, φ(a) = q_ap for all a ∈ A.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Definition: Substitution φ on A is of class P if there exists a palindrome p, and for every a ∈ A, a palindrome q_a such that φ(a) = pq_a for all a ∈ A (or, φ(a) = q_ap for all a ∈ A.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik

- Definition: Substitution φ on A is of class P if there exists a palindrome p, and for every a ∈ A, a palindrome q_a such that φ(a) = pq_a for all a ∈ A (or, φ(a) = q_ap for all a ∈ A.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik
- Brlek, Hamel, Nivat, Reutenauer: Periodic sequences

- Definition: Substitution φ on A is of class P if there exists a palindrome p and for every a ∈ A, a palindrome q_a such that φ(a) = pq_a for all a ∈ A (or, φ(a) = q_ap for all a ∈ A.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik
- Brlek, Hamel, Nivat, Reutenauer: Periodic sequences

• Non-simple Parry: $\varphi(0) = \mathbf{0}^{a} \mathbf{1}, \varphi(1) = \mathbf{0}^{b} \mathbf{1}$

- Definition: Substitution φ on A is of class P if there exists a palindrome p and for every a ∈ A, a palindrome q_a such that φ(a) = pq_a for all a ∈ A (or, φ(a) = q_ap for all a ∈ A.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik
- Brlek, Hamel, Nivat, Reutenauer: Periodic sequences

• Non-simple Parry: $\varphi(0) = \mathbf{0}^{a} \mathbf{1}, \varphi(1) = \mathbf{0}^{b} \mathbf{1}$

• Thue-Morse $\varphi^2(0) = 0110, \varphi^2(1) = 1001$

- Definition: Substitution φ on A is of class P if there exists a palindrome p and for every a ∈ A, a palindrome q_a such that φ(a) = pq_a for all a ∈ A (or, φ(a) = q_ap for all a ∈ A.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik
- Brlek, Hamel, Nivat, Reutenauer: Periodic sequences
 - Non-simple Parry: $\varphi(0) = \mathbf{0}^{a} \mathbf{1}, \varphi(1) = \mathbf{0}^{b} \mathbf{1}$
 - $\,\circ\,$ Thue-Morse $\varphi^2(0)={\color{black}0}{\color{black}1}{\color{black}1}{\color{black}0}{\color{black}1}{\color{black}0}{\color{black}1}{\color{black}1}{\color{black}0}{\color{black}1}{\color{black}1}{\color{black}0}{\color{black}1}{\color{black}1}{\color{black}1}{\color{black}1}{\color{black}0}{\color{black}1}{\color{blac$
 - Period doubling: $\varphi(0) = 01, \varphi(1) = 00$

- Definition: Substitution φ on A is of class P if there exists a palindrome p and for every a ∈ A, a palindrome q_a such that φ(a) = pq_a for all a ∈ A (or, φ(a) = q_ap for all a ∈ A.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik
- Brlek, Hamel, Nivat, Reutenauer: Periodic sequences
 - Non-simple Parry: $\varphi(0) = \mathbf{0}^{a} \mathbf{1}, \varphi(1) = \mathbf{0}^{b} \mathbf{1}$
 - Thue-Morse $\varphi^{2}(0) = 0110, \varphi^{2}(1) = 1001$
 - Period doubling: $\varphi(0) = 01, \varphi(1) = 00$
 - ° Rote: $\varphi(0) = 001, \varphi(1) = 111$

Open problems

 Complete description of full words which are fixed points of (primitive) substitutions.

Open problems

- Complete description of full words which are fixed points of (primitive) substitutions.
- Algorithm for checking whether a fixed point is full or not.

Open problems

- Complete description of full words which are fixed points of (primitive) substitutions.
- Algorithm for checking whether a fixed point is full or not.
- In particular, suppose that Conjecture holds, how long does the palindrome have to be in order to occur only as a central factor of image of a shorter palindrome?

References

- J.-P. Allouche, M. Baake, J. Cassaigne, D. Damanik, *Palindrome complexity*, Theoretical Computer Science, v.292 n.1 (2003), 9–31.
- P. Baláži, Z. Masáková, E. Pelantová, *Factor versus palindromic complexity of uniformly recurrent infinite words*, to appear in Theoretical Computer Science (2006), 16 pp.
- S. Brlek, S. Hamel, M. Nivat, C. Reutenauer, On the palindromic complexity of infinite words
- X. Droubay, J. Justin, G. Pirillo, *Episturmian words and some constructions of de Luca and Rauzy*, Theoret. Comput. Sci. 255 (2001), 539-553.