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Definition of defect

• Defect of a finite word w equals

|w| + 1 − the number of different palindromes in w.

• ε is considered as a palindrome.
• n + 1 is the maximal possible number of palindromes in any

word of length n.
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that there exists d ∈ A satisfying ϕ(d) = dw for some
non-empty word w ∈ A∗

• If ϕ(u) = u, then u is called fixed point of ϕ

• It is obvious that a substitution ϕ has at least one fixed
point, namely limn→∞ ϕn(d).

• A substitution ϕ over the alphabet A is called primitive if
there exists k ∈ N such that for any d ∈ A the word ϕk(d)
contains all the letters of A.

• An infinite word u is uniformly recurrent, if for every n ∈ N,
there exists R(n) > 0 such that any factor of u of length
≥ R(n) contains all the factors of u of length n.
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β-expansion and β-integers

• Let β > 1 and x ≥ 0, any convergent series of the form
x =

∑k
i=−∞ xiβ

i, where xi ∈ N, is called a β-representation
of x and denoted xkxk−1...x0 • x−1....
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i=−∞ xiβ

i, where xi ∈ N, is called a β-representation
of x and denoted xkxk−1...x0 • x−1....

• β-expansion of x is the lexicographically largest among
representations of x.

• Nonnegative β-integers
Z

+

β := {x ≥ 0
∣
∣ 〈x〉β = xkxk−1... x0•}.

◦ models of quasicrystals
◦ in non-standard numeration- analogy of N in R
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• Parry condition
◦ Let dβ(1) be an infinite Rényi expansion of unity.

xkxk−1 . . . x0 • x−1 . . . is a β-expansion if and only if
xixi−1 · · · ≺ dβ(1) for all i ≤ k.

◦ Let dβ(1) be a finite Rényi expansion of unity, i.e.,
dβ(1) = t1t2...tm. We define
dβ(1)∗ := (t1t2...tm−1(tm − 1))ω. Then
xkxk−1 . . . x0 • x−1 . . . is a β-expansion if and only if
xixi−1 · · · ≺ dβ(1)∗ for all i ≤ k.
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Parry numbers

• Thurston: Distances in Z
+

β form the set {∆k

∣
∣ k ∈ N}, where

∆k :=
∞∑

i=1

ti+k

βi
.

Combinatorics on Words, Montréal 2007 – p.9
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• Thurston: Distances in Z
+

β form the set {∆k

∣
∣ k ∈ N}, where

∆k :=
∞∑

i=1

ti+k

βi
.

• {∆k

∣
∣ k ∈ N} is finite if and only if dβ(1) is eventually

periodic.
• If dβ(1) is eventually periodic, β is called a Parry number.

If dβ(1) is finite, β is called a simple Parry number.
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Infinite words associated with β-integers

• Let β be a simple Parry number, dβ(1) = t1...tm. If we
associate to each ∆k the letter k, where k ∈ {0, . . . , m − 1},
we obtain uβ = limn→∞ ϕn(0), where the substitution ϕ is
given by

ϕ(0) = 0t11

ϕ(1) = 0t22
...

ϕ(m + p − 2) = 0tm−1(m − 1)

ϕ(m + p − 1) = 0tm .
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Infinite words associated with β-integers

• Let β be a non-simple Parry number, in particular, let m ∈ N

and p ∈ N be minimal such that
dβ(1) = t1...tm(tm+1...tm+p)

ω. If we associate to each ∆k
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Combinatorial and arithmetical properties of uβ

• Studied problems for both simple and non-simple Parry
numbers:
◦ factor and palindromic complexity,

Combinatorics on Words, Montréal 2007 – p.12
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Combinatorial and arithmetical properties of uβ

• Studied problems for both simple and non-simple Parry
numbers:
◦ factor and palindromic complexity,
◦ return words,
◦ recurrence function and balances (only for quadratic

case),
◦ the upper bound on the fractional part length resulting

from addition of two β-integers.
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contains with every factor w1w2 . . . wk also its reversal
wk . . . w2w1.
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Language of uβ closed under reversal

• The language L(uβ) for β simple Parry is closed under
reversal if and only if t1 = · · · = tm−1,i.e., dβ(1) = t...ts,
where t ≥ s ≥ 1. The infinite word uβ is the fixed point of the
substitution ϕ given by

ϕ(0) = 0t1

ϕ(1) = 0t2
...

ϕ(m + p − 2) = 0t(m − 1)
ϕ(m + p − 1) = 0s.
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Languages closed under reversal

• The language L(u) of a word u is closed under reversal if it
contains with every factor w1w2 . . . wk also its reversal
wk . . . w2w1.

• If a uniformly recurrent word u contains for every length n

a palindrome of length > n, then L(u) is closed under
reversal.

• The language L(uβ)

◦ for β simple Parry is closed under reversal if and only if
t1 = · · · = tm−1,

◦ for β non-simple Parry is closed under reversal if and
only if m = p = 1.
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Infinite words associated with β-integers

• Let β be a non-simple Parry number, in particular, let m ∈ N

and p ∈ N be minimal such that
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ω. If we associate to each ∆k
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Language of uβ closed under reversal

• The language L(uβ) for β non-simple Parry is closed under
reversal if and only if m = p = 1, i.e., dβ(1) = t1(t2)

ω = abω,
a > b ≥ 1. The infinite word uβ is the fixed point of the
substitution ϕ given by

ϕ(0) = 0a1

ϕ(1) = 0b1.
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there exists infinitely many palindromes:
◦ simple Parry: p is a palindrome if and only if ϕ(p)0t is

a palindrome,
◦ non-simple Parry: p is a palindrome if and only if 1ϕ(p) is

a palindrome.
• The relation between complexity and palindromic

complexity:

P (n) + P (n + 1) = C(n + 1) − C(n) + 2 for all n ∈ N.

• In general, for uniformly recurrent words with language
closed under reversal, we have
P (n) + P (n + 1) ≤ C(n + 1) − C(n) + 2.
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Inspiration for study of defects

• X. Droubay, J. Justin, G. Pirillo, Episturmian words and
some constructions of de Luca and Rauzy, Theoret.
Comput. Sci. 255 (2001), 539-553.
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• X. Droubay, J. Justin, G. Pirillo, Episturmian words and
some constructions of de Luca and Rauzy, Theoret.
Comput. Sci. 255 (2001), 539-553.

• Defect of a finite word w equals

|w| + 1 − the number of different palindromes in w.
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Defects and fullness of (in)finite words

• A finite word v has the property Ju if its longest palindromic
suffix occurs exactly once in v.

Combinatorics on Words, Montréal 2007 – p.24
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Defects and fullness of (in)finite words

• A finite word v has the property Ju if its longest palindromic
suffix occurs exactly once in v.

• The number of different palindromes in a finite word w

equals to the number of prefixes of w satisfying Ju.
• w = abbabbaabababbbabbab, the set of palindromes is
{a, b, aa, bb, aba, bab, bbb, abba, baab, . . . }

• w = abbabbaab
︸ ︷︷ ︸

ubaab

ababbbabbab
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Defects and fullness of (in)finite words

• A finite word v has the property Ju if its longest palindromic
suffix occurs exactly once in v.

• The number of different palindromes in a finite word w

equals to the number of prefixes of w satisfying Ju.
• Every finite word w contains at most |w| + 1 different

palindromes (the empty word being considered as
a palindrome, too).
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Defects and fullness of (in)finite words

• A finite word v has the property Ju if its longest palindromic
suffix occurs exactly once in v.

• The number of different palindromes in a finite word w

equals to the number of prefixes of w satisfying Ju.
• Every finite word w contains at most |w| + 1 different

palindromes (the empty word being considered as
a palindrome, too).

• We call a finite word w containing the maximal possible
number |w| + 1 of palindromes full. An infinite word is full if
all of its prefixes are full.
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Example ϕ(0) = 01, ϕ(1) = 0

• uF = 0100101001001 . . .
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Example ϕ(0) = 01, ϕ(1) = 0

• uF = 0100101001001 . . .

• uF = 0|100101001001 . . .

• uF = 01|00101001001 . . .

Combinatorics on Words, Montréal 2007 – p.31
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Example ϕ(0) = 01, ϕ(1) = 0

• uF = 0100101001001 . . .

• uF = 0|100101001001 . . .

• uF = 01|00101001001 . . .

• uF = 010|0101001001 . . .

• uF = 0100|101001001 . . .

• uF = 01001|01001001 . . .

• uF = 010010|1001001 . . .
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Known and new results on defects

• Obviously, an infinite word can be full only if its language
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Known and new results on defects

• Obviously, an infinite word can be full only if its language
contains infinitely many palindromes.

• Droubay, Justin, Pirillo have proved that Sturmian and
episturmian words are full.

• We will show for fixed points of some well-known
substitutions whether they are or are not full.

Combinatorics on Words, Montréal 2007 – p.32



Outline of the talk

1. Definition of defect

2. Basic facts about substitution

3. Words uβ associated with β-integers

4. Palindromes and defects of uβ

5. Defects of fixed points of some other substitutions

6. Importance of relation between palindromes and their
images by substitution

7. Conjecture: Fixed points of substitutions contain infinitely
many palindromes iff . . .

8. Open problem: Is this word full or not?
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Defects of uβ for β being a non-simple Parry number

• uβ is the fixed point of ϕ defined by

ϕ(0) = 0a1, ϕ(1) = 0b1, 1 ≤ b ≤ a − 1.
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• uβ is the fixed point of ϕ defined by

ϕ(0) = 0a1, ϕ(1) = 0b1, 1 ≤ b ≤ a − 1.

• Sturmian case for b = a − 1.
• Lemma: A factor p of uβ is a palindrome if and only if

T (p) = 1ϕ(p) is a palindrome. Moreover, for every
palindrome p containing at least one letter 1, we find
a palindrome q shorter than p such that p occurs only as
a central factor of the palindrome 1ϕ(q).
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• Sturmian case for b = a − 1.
• Lemma: A factor p of uβ is a palindrome if and only if

T (p) = 1ϕ(p) is a palindrome. Moreover, for every
palindrome p containing at least one letter 1, we find
a palindrome q shorter than p such that p occurs only as
a central factor of the palindrome 1ϕ(q).

• Theorem: uβ is full.
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Proof

• Suppose v is the shortest prefix of uβ not satisfying Ju, i.e.,
its longest palindromic suffix occurs at least twice in v.
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• uβ = v · · · = upwp . . .
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• p contains 1 since a block 0r, r ≤ a, cannot be the longest
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Proof

• Suppose v is the shortest prefix of uβ not satisfying Ju, i.e.,
its longest palindromic suffix occurs at least twice in v.

• uβ = v · · · = upwp . . .
• p contains 1 since a block 0r, r ≤ a, cannot be the longest

palindromic suffix of v

• p occurs only as a central factor of the palindrome 1ϕ(q),
|q| < |p|, q palindrome

• uβ = v · · · = ϕ(u′qw′q) . . .
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Proof

• Suppose v is the shortest prefix of uβ not satisfying Ju, i.e.,
its longest palindromic suffix occurs at least twice in v.

• uβ = v · · · = upwp . . .
• p contains 1 since a block 0r, r ≤ a, cannot be the longest

palindromic suffix of v

• p occurs only as a central factor of the palindrome 1ϕ(q),
|q| < |p|, q palindrome

• uβ = v · · · = ϕ(u′qw′q) . . .
• contradiction with the minimality of v
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Defects of uβ for β being a simple Parry number

• uβ is the fixed point of ϕ defined by
ϕ(0) = 0t1

ϕ(1) = 0t2
...

ϕ(m + p − 2) = 0t(m − 1)
ϕ(m + p − 1) = 0s

t ≥ s ≥ 1.
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Defects of the Thue-Morse word uTM

• Definition: The Thue-Morse word uTM is the fixed point
starting with 0 of ϕ defined by

ϕ(0) = 01, ϕ(1) = 10.
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Defects of the Thue-Morse word uTM

• Definition: The Thue-Morse word uTM is the fixed point
starting with 0 of ϕ defined by

ϕ(0) = 01, ϕ(1) = 10.

• Lemma: A factor p of uTM is a palindrome if and only if
ϕ2(p) is a palindrome. Every palindrome p of uTM of length
≥ 6 occurs only as a central factor ϕ2(q) for some
palindrome q shorter than p.
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• Lemma: A factor p of uTM is a palindrome if and only if
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Defects of the Thue-Morse word uTM

• Definition: The Thue-Morse word uTM is the fixed point
starting with 0 of ϕ defined by

ϕ(0) = 01, ϕ(1) = 10.

• Lemma: A factor p of uTM is a palindrome if and only if
ϕ2(p) is a palindrome. Every palindrome p of uTM of length
≥ 6 occurs only as a central factor ϕ2(q) for some
palindrome q shorter than p.

• Theorem: uTM is not full!
• uTM = 011010011|0010110
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Defects of the period-doubling word uPD

• Definition: The period-doubling word uPD is the fixed point
of the substitution ϕ defined by ϕ(0) = 01, ϕ(1) = 00.
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Defects of the period-doubling word uPD

• Definition: The period-doubling word uPD is the fixed point
of the substitution ϕ defined by ϕ(0) = 01, ϕ(1) = 00.

• Lemma: A factor p of uPD is a palindrome if and only if
ϕ(p)0 is a palindrome. Moreover, for every palindrome p

containing at least one 1, there is a palindrome q shorter
than p such that p occurs always as a central factor of the
palindrome ϕ(q)0.
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Defects of the period-doubling word uPD

• Definition: The period-doubling word uPD is the fixed point
of the substitution ϕ defined by ϕ(0) = 01, ϕ(1) = 00.

• Lemma: A factor p of uPD is a palindrome if and only if
ϕ(p)0 is a palindrome. Moreover, for every palindrome p

containing at least one 1, there is a palindrome q shorter
than p such that p occurs always as a central factor of the
palindrome ϕ(q)0.

• Theorem: uPD is full.
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Defects of the “Rote” word uR

• The word uR is one the fixed point starting with 0 of the
non-primitive substitution ϕ defined by
ϕ(0) = 001, ϕ(1) = 111.
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Defects of the “Rote” word uR

• The word uR is one the fixed point starting with 0 of the
non-primitive substitution ϕ defined by
ϕ(0) = 001, ϕ(1) = 111.

• We denote it uR in order to recall Rote who has proved that
the complexity of uR is equal to 2n for every n ∈ N.
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Defects of the “Rote” word uR

• The word uR is one the fixed point starting with 0 of the
non-primitive substitution ϕ defined by
ϕ(0) = 001, ϕ(1) = 111.

• We denote it uR in order to recall Rote who has proved that
the complexity of uR is equal to 2n for every n ∈ N.

• Lemma: A factor p of uR is a palindrome if and only if 1ϕ(p)
is a palindrome. Moreover, for every palindrome p

containing at least one 1, there exists a palindrome q

shorter than p such that p is always a central factor of the
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Outline of the talk

1. Definition of defect

2. Basic facts about substitution

3. Words uβ associated with β-integers

4. Palindromes and defects of uβ

5. Defects of fixed points of some other substitutions

6. Importance of relation between palindromes and their
images by substitution

7. Conjecture: Fixed points of substitutions contain infinitely
many palindromes iff . . .

8. Open problem: Is this word full or not?
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Conjecture

• Definition: Substitution ϕ on A is of class P if there exists
a palindrome p, and for every a ∈ A, a palindrome qa such
that ϕ(a) = pqa for all a ∈ A (or, ϕ(a) = qap for all a ∈ A.)
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a palindrome p, and for every a ∈ A, a palindrome qa such
that ϕ(a) = pqa for all a ∈ A (or, ϕ(a) = qap for all a ∈ A.)

• Hof, Knill, Simon: Are there uniformly recurrent sequences
containing arbitrarily long palindromes that arise from
substitutions none of which belongs to class P?
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Conjecture

• Definition: Substitution ϕ on A is of class P if there exists
a palindrome p and for every a ∈ A, a palindrome qa such
that ϕ(a) = pqa for all a ∈ A (or, ϕ(a) = qap for all a ∈ A.)

• Hof, Knill, Simon: Are there uniformly recurrent sequences
containing arbitrarily long palindromes that arise from
substitutions none of which belongs to class P?

• Allouche , Baake , Cassaigne , Damanik
• Brlek, Hamel, Nivat, Reutenauer: Periodic sequences

◦ Non-simple Parry: ϕ(0) = 0a1, ϕ(1) = 0b1

◦ Thue-Morse ϕ2(0) = 0110, ϕ2(1) = 1001
◦ Period doubling: ϕ(0) = 01, ϕ(1) = 00
◦ Rote: ϕ(0) = 001, ϕ(1) = 111
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Open problems

• Complete description of full words which are fixed points of
(primitive) substitutions.
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Open problems

• Complete description of full words which are fixed points of
(primitive) substitutions.

• Algorithm for checking whether a fixed point is full or not.
• In particular, suppose that Conjecture holds, how long does

the palindrome have to be in order to occur only as a central
factor of image of a shorter palindrome?
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