Defects of fixed points of some substitutions

L’. Balková, P. Ambrož, E. Pelantová
Czech Technical University

Outline of the talk

Outline of the talk

1. Definition of defect
2. Basic facts about substitution

Outline of the talk

1. Definition of defect
2. Basic facts about substitution
3. Words u_{β} associated with β-integers

Outline of the talk

1. Definition of defect
2. Basic facts about substitution
3. Words u_{β} associated with β-integers
4. Palindromes and defects of u_{β}

Outline of the talk

1. Definition of defect
2. Basic facts about substitution
3. Words u_{β} associated with β-integers
4. Palindromes and defects of u_{β}
5. Defects of fixed points of some other substitutions
6. Importance of relation between palindromes and their images by substitution

Outline of the talk

1. Definition of defect
2. Basic facts about substitution
3. Words u_{β} associated with β-integers
4. Palindromes and defects of u_{β}
5. Defects of fixed points of some other substitutions
6. Importance of relation between palindromes and their images by substitution
7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff ...
8. Open problem: Is this word full or not?

Outline of the talk

1. Definition of defect
2. Basic facts about substitution
3. Words u_{β} associated with β-integers
4. Palindromes and defects of u_{β}
5. Defects of fixed points of some other substitutions
6. Importance of relation between palindromes and their images by substitution
7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff . . .
8. Open problem: Is this word full or not?

Definition of defect

- Defect of a finite word w equals
$|w|+1$ - the number of different palindromes in w.
- ε is considered as a palindrome.
- $n+1$ is the maximal possible number of palindromes in any word of length n.

Basic facts about substitution

- Substitution is a non-erasing morphism $\varphi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ such that there exists $d \in \mathcal{A}$ satisfying $\varphi(d)=d w$ for some non-empty word $w \in \mathcal{A}^{*}$

Basic facts about substitution

- Substitution is a non-erasing morphism $\varphi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ such that there exists $d \in \mathcal{A}$ satisfying $\varphi(d)=d w$ for some non-empty word $w \in \mathcal{A}^{*}$
- If $\varphi(u)=u$, then u is called fixed point of φ

Basic facts about substitution

- Substitution is a non-erasing morphism $\varphi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ such that there exists $d \in \mathcal{A}$ satisfying $\varphi(d)=d w$ for some non-empty word $w \in \mathcal{A}^{*}$
- If $\varphi(u)=u$, then u is called fixed point of φ
- It is obvious that a substitution φ has at least one fixed point, namely $\lim _{n \rightarrow \infty} \varphi^{n}(d)$.

Basic facts about substitution

- Substitution is a non-erasing morphism $\varphi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ such that there exists $d \in \mathcal{A}$ satisfying $\varphi(d)=d w$ for some non-empty word $w \in \mathcal{A}^{*}$
- If $\varphi(u)=u$, then u is called fixed point of φ
- It is obvious that a substitution φ has at least one fixed point, namely $\lim _{n \rightarrow \infty} \varphi^{n}(d)$.
- A substitution φ over the alphabet \mathcal{A} is called primitive if there exists $k \in \mathbb{N}$ such that for any $d \in \mathcal{A}$ the word $\varphi^{k}(d)$ contains all the letters of \mathcal{A}.

Basic facts about substitution

- Substitution is a non-erasing morphism $\varphi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ such that there exists $d \in \mathcal{A}$ satisfying $\varphi(d)=d w$ for some non-empty word $w \in \mathcal{A}^{*}$
- If $\varphi(u)=u$, then u is called fixed point of φ
- It is obvious that a substitution φ has at least one fixed point, namely $\lim _{n \rightarrow \infty} \varphi^{n}(d)$.
- A substitution φ over the alphabet \mathcal{A} is called primitive if there exists $k \in \mathbb{N}$ such that for any $d \in \mathcal{A}$ the word $\varphi^{k}(d)$ contains all the letters of \mathcal{A}.
- An infinite word u is uniformly recurrent, if for every $n \in \mathbb{N}$, there exists $R(n)>0$ such that any factor of u of length $\geq R(n)$ contains all the factors of u of length n.

Outline of the talk

1. Definition of defect
2. Basic facts about substitution
3. Words u_{β} associated with β-integers
4. Palindromes and defects of u_{β}
5. Defects of fixed points of some other substitutions
6. Importance of relation between palindromes and their images by substitution
7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff . . .
8. Open problem: Is this word full or not?
β-expansion and β-integers

β-expansion and β-integers

- Let $\beta>1$ and $x \geq 0$, any convergent series of the form $x=\sum_{i=-\infty}^{k} x_{i} \beta^{i}$, where $x_{i} \in \mathbb{N}$, is called a β-representation of x and denoted $x_{k} x_{k-1} \ldots x_{0} \bullet x_{-1} \ldots$.

β-expansion and β-integers

- Let $\beta>1$ and $x \geq 0$, any convergent series of the form $x=\sum_{i=-\infty}^{k} x_{i} \beta^{i}$, where $x_{i} \in \mathbb{N}$, is called a β-representation of x and denoted $x_{k} x_{k-1} \ldots x_{0} \bullet x_{-1} \ldots$.
- β-expansion of x is the lexicographically largest among representations of x.

β-expansion and β-integers

- Let $\beta>1$ and $x \geq 0$, any convergent series of the form $x=\sum_{i=-\infty}^{k} x_{i} \beta^{i}$, where $x_{i} \in \mathbb{N}$, is called a β-representation of x and denoted $x_{k} x_{k-1} \ldots x_{0} \bullet x_{-1} \ldots$.
- β-expansion of x is the lexicographically largest among representations of x.
- Nonnegative β-integers

$$
\mathbb{Z}_{\beta}^{+}:=\left\{x \geq 0 \mid\langle x\rangle_{\beta}=x_{k} x_{k-1} \ldots x_{0} \bullet\right\} .
$$

β-expansion and β-integers

- Let $\beta>1$ and $x \geq 0$, any convergent series of the form $x=\sum_{i=-\infty}^{k} x_{i} \beta^{i}$, where $x_{i} \in \mathbb{N}$, is called a β-representation of x and denoted $x_{k} x_{k-1} \ldots x_{0} \bullet x_{-1} \ldots$.
- β-expansion of x is the lexicographically largest among representations of x.
- Nonnegative β-integers
$\mathbb{Z}_{\beta}^{+}:=\left\{x \geq 0 \mid\langle x\rangle_{\beta}=x_{k} x_{k-1} \ldots x_{0} \bullet\right\}$.
- models of quasicrystals
- in non-standard numeration- analogy of \mathbb{N} in \mathbb{R}

Rényi expansion of unity

Rényi expansion of unity

- Rényi expansion of unity is the lexicographically largest sequence $t_{1} t_{2} t_{3} \ldots$, where $t_{i} \in \mathbb{N}$ and such that $1=\sum_{i \geq 1} t_{i} \beta^{-i}$.

Rényi expansion of unity

- Rényi expansion of unity is the lexicographically largest sequence $t_{1} t_{2} t_{3} \ldots$, where $t_{i} \in \mathbb{N}$ and such that $1=\sum_{i \geq 1} t_{i} \beta^{-i}$.
- Parry condition

Rényi expansion of unity

- Rényi expansion of unity is the lexicographically largest sequence $t_{1} t_{2} t_{3} \ldots$, where $t_{i} \in \mathbb{N}$ and such that $1=\sum_{i \geq 1} t_{i} \beta^{-i}$.
- Parry condition
- Let $d_{\beta}(1)$ be an infinite Rényi expansion of unity. $x_{k} x_{k-1} \ldots x_{0} \bullet x_{-1} \ldots$ is a β-expansion if and only if $x_{i} x_{i-1} \cdots \prec d_{\beta}(1)$ for all $i \leq k$.

Rényi expansion of unity

- Rényi expansion of unity is the lexicographically largest sequence $t_{1} t_{2} t_{3} \ldots$, where $t_{i} \in \mathbb{N}$ and such that $1=\sum_{i \geq 1} t_{i} \beta^{-i}$.
- Parry condition
- Let $d_{\beta}(1)$ be an infinite Rényi expansion of unity. $x_{k} x_{k-1} \ldots x_{0} \bullet x_{-1} \ldots$ is a β-expansion if and only if $x_{i} x_{i-1} \cdots \prec d_{\beta}(1)$ for all $i \leq k$.
- Let $d_{\beta}(1)$ be a finite Rényi expansion of unity, i.e., $d_{\beta}(1)=t_{1} t_{2} \ldots t_{m}$. We define $d_{\beta}(1)^{*}:=\left(t_{1} t_{2} \ldots t_{m-1}\left(t_{m}-1\right)\right)^{\omega}$. Then $x_{k} x_{k-1} \ldots x_{0} \bullet x_{-1} \ldots$ is a β-expansion if and only if $x_{i} x_{i-1} \cdots \prec d_{\beta}(1)^{*}$ for all $i \leq k$.

Parry numbers

Parry numbers

- Thurston: Distances in \mathbb{Z}_{β}^{+}form the set $\left\{\Delta_{k} \mid k \in \mathbb{N}\right\}$, where

$$
\Delta_{k}:=\sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^{i}}
$$

Parry numbers

- Thurston: Distances in \mathbb{Z}_{β}^{+}form the set $\left\{\Delta_{k} \mid k \in \mathbb{N}\right\}$, where

$$
\Delta_{k}:=\sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^{i}} .
$$

- $\left\{\Delta_{k} \mid k \in \mathbb{N}\right\}$ is finite if and only if $d_{\beta}(1)$ is eventually periodic.

Parry numbers

- Thurston: Distances in \mathbb{Z}_{β}^{+}form the set $\left\{\Delta_{k} \mid k \in \mathbb{N}\right\}$, where

$$
\Delta_{k}:=\sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^{i}} .
$$

- $\left\{\Delta_{k} \mid k \in \mathbb{N}\right\}$ is finite if and only if $d_{\beta}(1)$ is eventually periodic.
- If $d_{\beta}(1)$ is eventually periodic, β is called a Parry number.

Parry numbers

- Thurston: Distances in \mathbb{Z}_{β}^{+}form the set $\left\{\Delta_{k} \mid k \in \mathbb{N}\right\}$, where

$$
\Delta_{k}:=\sum_{i=1}^{\infty} \frac{t_{i+k}}{\beta^{i}}
$$

- $\left\{\Delta_{k} \mid k \in \mathbb{N}\right\}$ is finite if and only if $d_{\beta}(1)$ is eventually periodic.
- If $d_{\beta}(1)$ is eventually periodic, β is called a Parry number. If $d_{\beta}(1)$ is finite, β is called a simple Parry number.

Infinite words associated with β-integers

- Let β be a simple Parry number, $d_{\beta}(1)=t_{1} \ldots t_{m}$. If we associate to each Δ_{k} the letter k, where $k \in\{0, \ldots, m-1\}$, we obtain $u_{\beta}=\lim _{n \rightarrow \infty} \varphi^{n}(0)$, where the substitution φ is given by

$$
\begin{aligned}
& \varphi(0)=0^{t_{1}} 1 \\
& \varphi(1)=0^{t_{2}} 2 \\
& \ldots \\
& \varphi(m+p-2)=0^{t_{m-1}}(m-1) \\
& \varphi(m+p-1)=0^{t_{m}} .
\end{aligned}
$$

Infinite words associated with β-integers

- Let β be a non-simple Parry number, in particular, let $m \in \mathbb{N}$ and $p \in \mathbb{N}$ be minimal such that $d_{\beta}(1)=t_{1} \ldots t_{m}\left(t_{m+1} \ldots t_{m+p}\right)^{\omega}$. If we associate to each Δ_{k} the letter k, where $k \in\{0, \ldots, m+p-1\}$, we obtain $u_{\beta}=\lim _{n \rightarrow \infty} \varphi^{n}(0)$, where the substitution φ is given by

$$
\begin{aligned}
& \varphi(0)=0^{t_{1}} 1 \\
& \varphi(1)=0^{t_{2}} 2 \\
& \ldots \\
& \varphi(m+p-2)=0^{t_{m+p-1}}(m+p-1) \\
& \varphi(m+p-1)=0^{t_{m+p}} m .
\end{aligned}
$$

Combinatorial and arithmetical properties of u_{β}

Combinatorial and arithmetical properties of u_{β}

- Studied problems for both simple and non-simple Parry numbers:

Combinatorial and arithmetical properties of u_{β}

- Studied problems for both simple and non-simple Parry numbers:
- factor and palindromic complexity,

Combinatorial and arithmetical properties of u_{β}

- Studied problems for both simple and non-simple Parry numbers:
- factor and palindromic complexity,
- return words,

Combinatorial and arithmetical properties of u_{β}

- Studied problems for both simple and non-simple Parry numbers:
- factor and palindromic complexity,
- return words,
- recurrence function and balances (only for quadratic case),

Combinatorial and arithmetical properties of u_{β}

- Studied problems for both simple and non-simple Parry numbers:
- factor and palindromic complexity,
- return words,
- recurrence function and balances (only for quadratic case),
- the upper bound on the fractional part length resulting from addition of two β-integers.

Outline of the talk

1. Definition of defect
2. Basic facts about substitution
3. Words u_{β} associated with β-integers
4. Palindromes and defects of u_{β}
5. Defects of fixed points of some other substitutions
6. Importance of relation between palindromes and their images by substitution
7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff . . .
8. Open problem: Is this word full or not?

Languages closed under reversal

Languages closed under reversal

- The language $\mathcal{L}(u)$ of a word u is closed under reversal if it contains with every factor $w_{1} w_{2} \ldots w_{k}$ also its reversal $w_{k} \ldots w_{2} w_{1}$.

Languages closed under reversal

- The language $\mathcal{L}(u)$ of a word u is closed under reversal if it contains with every factor $w_{1} w_{2} \ldots w_{k}$ also its reversal $w_{k} \ldots w_{2} w_{1}$.
- If a uniformly recurrent word u contains for every length n a palindrome of length $>n$, then $\mathcal{L}(u)$ is closed under reversal.

Languages closed under reversal

- The language $\mathcal{L}(u)$ of a word u is closed under reversal if it contains with every factor $w_{1} w_{2} \ldots w_{k}$ also its reversal $w_{k} \ldots w_{2} w_{1}$.
- If a uniformly recurrent word u contains for every length n a palindrome of length $>n$, then $\mathcal{L}(u)$ is closed under reversal.
- The language $\mathcal{L}\left(u_{\beta}\right)$
- for β simple Parry is closed under reversal if and only if $t_{1}=\cdots=t_{m-1}$,

Infinite words associated with β-integers

- Let β be a simple Parry number, $d_{\beta}(1)=t_{1} \ldots t_{m}$. If we associate to each Δ_{k} the letter k, where $k \in\{0, \ldots, m-1\}$, we obtain $u_{\beta}=\lim _{n \rightarrow \infty} \varphi^{n}(0)$, where the substitution φ is given by

$$
\begin{aligned}
& \varphi(0)=0^{t_{1}} 1 \\
& \varphi(1)=0^{t_{2}} 2 \\
& \ldots \\
& \varphi(m+p-2)=0^{t_{m-1}}(m-1) \\
& \varphi(m+p-1)=0^{t_{m}} .
\end{aligned}
$$

Language of u_{β} closed under reversal

- The language $\mathcal{L}\left(u_{\beta}\right)$ for β simple Parry is closed under reversal if and only if $t_{1}=\cdots=t_{m-1}$,i.e., $d_{\beta}(1)=t \ldots t s$, where $t \geq s \geq 1$. The infinite word u_{β} is the fixed point of the substitution φ given by

$$
\begin{aligned}
& \varphi(0)=0^{t} 1 \\
& \varphi(1)=0^{t} 2 \\
& \ldots \\
& \varphi(m+p-2)=0^{t}(m-1) \\
& \varphi(m+p-1)=0^{s} .
\end{aligned}
$$

Languages closed under reversal

- The language $\mathcal{L}(u)$ of a word u is closed under reversal if it contains with every factor $w_{1} w_{2} \ldots w_{k}$ also its reversal $w_{k} \ldots w_{2} w_{1}$.
- If a uniformly recurrent word u contains for every length n a palindrome of length $>n$, then $\mathcal{L}(u)$ is closed under reversal.
- The language $\mathcal{L}\left(u_{\beta}\right)$
- for β simple Parry is closed under reversal if and only if $t_{1}=\cdots=t_{m-1}$,
- for β non-simple Parry is closed under reversal if and only if $m=p=1$.

Infinite words associated with β-integers

- Let β be a non-simple Parry number, in particular, let $m \in \mathbb{N}$ and $p \in \mathbb{N}$ be minimal such that $d_{\beta}(1)=t_{1} \ldots t_{m}\left(t_{m+1} \ldots t_{m+p}\right)^{\omega}$. If we associate to each Δ_{k} the letter k, where $k \in\{0, \ldots, m+p-1\}$, we obtain $u_{\beta}=\lim _{n \rightarrow \infty} \varphi^{n}(0)$, where the substitution φ is given by

$$
\begin{aligned}
& \varphi(0)=0^{t_{1}} 1 \\
& \varphi(1)=0^{t_{2}} 2 \\
& \ldots \\
& \varphi(m+p-2)=0^{t_{m+p-1}}(m+p-1) \\
& \varphi(m+p-1)=0^{t_{m+p}} m .
\end{aligned}
$$

Language of u_{β} closed under reversal

- The language $\mathcal{L}\left(u_{\beta}\right)$ for β non-simple Parry is closed under reversal if and only if $m=p=1$, i.e., $d_{\beta}(1)=t_{1}\left(t_{2}\right)^{\omega}=a b^{\omega}$, $a>b \geq 1$. The infinite word u_{β} is the fixed point of the substitution φ given by

$$
\begin{aligned}
\varphi(0) & =0^{a} 1 \\
\varphi(1) & =0^{b} 1 .
\end{aligned}
$$

Palindromes in u_{β}

Palindromes in u_{β}

- If β is a Parry number and u_{β} is closed under reversal, then there exists infinitely many palindromes:

Palindromes in u_{β}

- If β is a Parry number and u_{β} is closed under reversal, then there exists infinitely many palindromes:
- simple Parry: p is a palindrome if and only if $\varphi(p) 0^{t}$ is a palindrome,

Palindromes in u_{β}

- If β is a Parry number and u_{β} is closed under reversal, then there exists infinitely many palindromes:
- simple Parry: p is a palindrome if and only if $\varphi(p) 0^{t}$ is a palindrome,
- non-simple Parry: p is a palindrome if and only if $1 \varphi(p)$ is a palindrome.

Palindromes in u_{β}

- If β is a Parry number and u_{β} is closed under reversal, then there exists infinitely many palindromes:
- simple Parry: p is a palindrome if and only if $\varphi(p) 0^{t}$ is a palindrome,
- non-simple Parry: p is a palindrome if and only if $1 \varphi(p)$ is a palindrome.
- The relation between complexity and palindromic complexity:

$$
P(n)+P(n+1)=C(n+1)-C(n)+2 \quad \text { for all } n \in \mathbb{N}
$$

Palindromes in u_{β}

- If β is a Parry number and u_{β} is closed under reversal, then there exists infinitely many palindromes:
- simple Parry: p is a palindrome if and only if $\varphi(p) 0^{t}$ is a palindrome,
- non-simple Parry: p is a palindrome if and only if $1 \varphi(p)$ is a palindrome.
- The relation between complexity and palindromic complexity:

$$
P(n)+P(n+1)=C(n+1)-C(n)+2 \quad \text { for all } n \in \mathbb{N}
$$

- In general, for uniformly recurrent words with language closed under reversal, we have $P(n)+P(n+1) \leq C(n+1)-C(n)+2$.

Outline of the talk

1. Definition of defect
2. Basic facts about substitution
3. Words u_{β} associated with β-integers
4. Palindromes and defects of u_{β}
5. Defects of fixed points of some other substitutions
6. Importance of relation between palindromes and their images by substitution
7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff . . .
8. Open problem: Is this word full or not?

Inspiration for study of defects

Inspiration for study of defects

- X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001), 539-553.

Inspiration for study of defects

- X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001), 539-553.
- Defect of a finite word w equals
$|w|+1$ - the number of different palindromes in w.

Defects and fullness of (in)finite words

Defects and fullness of (in)finite words

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.

Defects and fullness of (in)finite words

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.

Defects and fullness of (in)finite words

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.

Defects and fullness of (in)finite words

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.
- $w=a b b a b b a a b a b a b b b a b b a b$, the set of palindromes is
$\{a, b, a a, b b, a b a, b a b, b b b, a b b a, b a a b, \ldots\}$

Defects and fullness of (in)finite words

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.
- $w=a b b a b b a a b a b a b b b a b b a b$, the set of palindromes is
$\{a, b, a a, b b, a b a, b a b, b b b, a b b a, b a a b, \ldots\}$

Defects and fullness of (in)finite words

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.
- $w=a b b a b b a a b a b a b b b a b b a b$, the set of palindromes is
$\{a, b, a a, b b, a b a, b a b, b b b, a b b a, b a a b, \ldots\}$
- $w=\underbrace{a b b a b b a a b}_{u_{\text {baab }}} a b a b b b a b b a b$

Defects and fullness of (in)finite words

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.
- Every finite word w contains at most $|w|+1$ different palindromes (the empty word being considered as a palindrome, too).

Defects and fullness of (in)finite words

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.
- Every finite word w contains at most $|w|+1$ different palindromes (the empty word being considered as a palindrome, too).

Defects and fullness of (in)finite words

- A finite word v has the property Ju if its longest palindromic suffix occurs exactly once in v.
- The number of different palindromes in a finite word w equals to the number of prefixes of w satisfying Ju.
- Every finite word w contains at most $|w|+1$ different palindromes (the empty word being considered as a palindrome, too).
- We call a finite word w containing the maximal possible number $|w|+1$ of palindromes full. An infinite word is full if all of its prefixes are full.

Example $\varphi(0)=01, \quad \varphi(1)=0$

- $u_{F}=0100101001001 \ldots$

Example $\varphi(0)=01, \quad \varphi(1)=0$

- $u_{F}=0100101001001 \ldots$
- $u_{F}=0 \mid 100101001001 \ldots$

Example $\varphi(0)=01, \quad \varphi(1)=0$

- $u_{F}=0100101001001 \ldots$
- $u_{F}=0 \mid 100101001001 \ldots$
- $u_{F}=01 \mid 00101001001 \ldots$

Example $\varphi(0)=01, \quad \varphi(1)=0$

- $u_{F}=0100101001001 \ldots$
- $u_{F}=0 \mid 100101001001 \ldots$
- $u_{F}=01 \mid 00101001001 \ldots$
- $u_{F}=010 \mid 0101001001 \ldots$

Example $\varphi(0)=01, \quad \varphi(1)=0$

- $u_{F}=0100101001001 \ldots$
- $u_{F}=0 \mid 100101001001 \ldots$
- $u_{F}=01 \mid 00101001001 \ldots$
- $u_{F}=010 \mid 0101001001 \ldots$
- $u_{F}=0100 \mid 101001001 \ldots$

Example $\varphi(0)=01, \quad \varphi(1)=0$

- $u_{F}=0100101001001 \ldots$
- $u_{F}=0 \mid 100101001001 \ldots$
- $u_{F}=01 \mid 00101001001 \ldots$
- $u_{F}=010 \mid 0101001001 \ldots$
- $u_{F}=0100 \mid 101001001 \ldots$
- $u_{F}=01001 \mid 01001001 \ldots$

Example $\varphi(0)=01, \quad \varphi(1)=0$

- $u_{F}=0100101001001 \ldots$
- $u_{F}=0 \mid 100101001001 \ldots$
- $u_{F}=01 \mid 00101001001 \ldots$
- $u_{F}=010 \mid 0101001001 \ldots$
- $u_{F}=0100 \mid 101001001 \ldots$
- $u_{F}=01001 \mid 01001001 \ldots$
- $u_{F}=010010 \mid 1001001 \ldots$

Known and new results on defects

Known and new results on defects

- Obviously, an infinite word can be full only if its language contains infinitely many palindromes.

Known and new results on defects

- Obviously, an infinite word can be full only if its language contains infinitely many palindromes.
- Droubay, Justin, Pirillo have proved that Sturmian and episturmian words are full.

Known and new results on defects

- Obviously, an infinite word can be full only if its language contains infinitely many palindromes.
- Droubay, Justin, Pirillo have proved that Sturmian and episturmian words are full.
- We will show for fixed points of some well-known substitutions whether they are or are not full.

Outline of the talk

1. Definition of defect
2. Basic facts about substitution
3. Words u_{β} associated with β-integers
4. Palindromes and defects of u_{β}
5. Defects of fixed points of some other substitutions
6. Importance of relation between palindromes and their images by substitution
7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff . . .
8. Open problem: Is this word full or not?

Defects of u_{β} for β being a non-simple Parry number

- u_{β} is the fixed point of φ defined by

$$
\varphi(0)=0^{a} 1, \quad \varphi(1)=0^{b} 1, \quad 1 \leq b \leq a-1 .
$$

Defects of u_{β} for β being a non-simple Parry number

- u_{β} is the fixed point of φ defined by

$$
\varphi(0)=0^{a} 1, \quad \varphi(1)=0^{b} 1, \quad 1 \leq b \leq a-1 .
$$

- Sturmian case for $b=a-1$.

Defects of u_{β} for β being a non-simple Parry number

- u_{β} is the fixed point of φ defined by

$$
\varphi(0)=0^{a} 1, \quad \varphi(1)=0^{b} 1, \quad 1 \leq b \leq a-1 .
$$

- Sturmian case for $b=a-1$.
- Lemma: A factor p of u_{β} is a palindrome if and only if $T(p)=1 \varphi(p)$ is a palindrome. Moreover, for every palindrome p containing at least one letter 1, we find a palindrome q shorter than p such that p occurs only as a central factor of the palindrome $1 \varphi(q)$.

Defects of u_{β} for β being a non-simple Parry number

- u_{β} is the fixed point of φ defined by

$$
\varphi(0)=0^{a} 1, \quad \varphi(1)=0^{b} 1, \quad 1 \leq b \leq a-1 .
$$

- Sturmian case for $b=a-1$.
- Lemma: A factor p of u_{β} is a palindrome if and only if $T(p)=1 \varphi(p)$ is a palindrome. Moreover, for every palindrome p containing at least one letter 1, we find a palindrome q shorter than p such that p occurs only as a central factor of the palindrome $1 \varphi(q)$.
- Theorem: u_{β} is full.

Proof

- Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.

Proof

- Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.
$\cdot u_{\beta}=v \cdots=u p w p \ldots$

Proof

- Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.
- $u_{\beta}=v \cdots=$ upwp...
- p contains 1 since a block $0^{r}, r \leq a$, cannot be the longest palindromic suffix of v

Proof

- Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.
- $u_{\beta}=v \cdots=$ upwp...
- p contains 1 since a block $0^{r}, r \leq a$, cannot be the longest palindromic suffix of v
- p occurs only as a central factor of the palindrome $1 \varphi(q)$, $|q|<|p|, q$ palindrome

Proof

- Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.
- $u_{\beta}=v \cdots=$ upwp...
- p contains 1 since a block $0^{r}, r \leq a$, cannot be the longest palindromic suffix of v
- p occurs only as a central factor of the palindrome $1 \varphi(q)$, $|q|<|p|, q$ palindrome
- $u_{\beta}=v \cdots=\varphi\left(u^{\prime} q w^{\prime} q\right) \ldots$

Proof

- Suppose v is the shortest prefix of u_{β} not satisfying Ju, i.e., its longest palindromic suffix occurs at least twice in v.
- $u_{\beta}=v \cdots=$ upwp...
- p contains 1 since a block $0^{r}, r \leq a$, cannot be the longest palindromic suffix of v
- p occurs only as a central factor of the palindrome $1 \varphi(q)$, $|q|<|p|, q$ palindrome
- $u_{\beta}=v \cdots=\varphi\left(u^{\prime} q w^{\prime} q\right) \ldots$
- contradiction with the minimality of v

Defects of u_{β} for β being a simple Parry number

- u_{β} is the fixed point of φ defined by

$$
\begin{aligned}
& \varphi(0)=0^{t} 1 \\
& \varphi(1)=0^{t} 2 \\
& \ldots \\
& \varphi(m+p-2)=0^{t}(m-1) \\
& \varphi(m+p-1)=0^{s} \\
& t \geq s \geq 1 .
\end{aligned}
$$

Defects of u_{β} for β being a simple Parry number

- u_{β} is the fixed point of φ defined by
$\varphi(0)=0^{t} 1$
$\varphi(1)=0^{t} 2$
$\varphi(m+p-2)=0^{t}(m-1)$
$\varphi(m+p-1)=0^{s}$
$t \geq s \geq 1$.
- For $s=1$, the word u_{β} is episturmian.

Defects of u_{β} for β being a simple Parry number

- u_{β} is the fixed point of φ defined by

```
\(\varphi(0)=0^{t} 1\)
\(\varphi(1)=0^{t} 2\)
\(\varphi(m+p-2)=0^{t}(m-1)\)
\(\varphi(m+p-1)=0^{s}\)
\(t \geq s \geq 1\).
```

- For $s=1$, the word u_{β} is episturmian.
- Lemma: A factor p of u_{β} is a palindrome if and only if $\varphi(p) 0^{t}$ is a palindrome. Moreover, for every palindrome p that is not equal to $0^{r}, r \leq t$, there exists a palindrome q shorter than p such that p occurs only as a central factor of the palindrome $\varphi(q) 0^{t}$.

Defects of u_{β} for β being a simple Parry number

- u_{β} is the fixed point of φ defined by

```
\(\varphi(0)=0^{t} 1\)
\(\varphi(1)=0^{t} 2\)
\(\varphi(m+p-2)=0^{t}(m-1)\)
\(\varphi(m+p-1)=0^{s}\)
\(t \geq s \geq 1\).
```

- For $s=1$, the word u_{β} is episturmian.
- Lemma: A factor p of u_{β} is a palindrome if and only if $\varphi(p) 0^{t}$ is a palindrome. Moreover, for every palindrome p that is not equal to $0^{r}, r \leq t$, there exists a palindrome q shorter than p such that p occurs only as a central factor of the palindrome $\varphi(q) 0^{t}$.
- Theorem: u_{β} is full.

Defects of the Thue-Morse word $u_{T M}$

- Definition: The Thue-Morse word $u_{T M}$ is the fixed point starting with 0 of φ defined by

$$
\varphi(0)=01, \varphi(1)=10 .
$$

Defects of the Thue-Morse word $u_{T M}$

- Definition: The Thue-Morse word $u_{T M}$ is the fixed point starting with 0 of φ defined by

$$
\varphi(0)=01, \varphi(1)=10 .
$$

- Lemma: A factor p of $u_{T M}$ is a palindrome if and only if $\varphi^{2}(p)$ is a palindrome. Every palindrome p of $u_{T M}$ of length ≥ 6 occurs only as a central factor $\varphi^{2}(q)$ for some palindrome q shorter than p.

Defects of the Thue-Morse word $u_{T M}$

- Definition: The Thue-Morse word $u_{T M}$ is the fixed point starting with 0 of φ defined by

$$
\varphi(0)=01, \varphi(1)=10 .
$$

- Lemma: A factor p of $u_{T M}$ is a palindrome if and only if $\varphi^{2}(p)$ is a palindrome. Every palindrome p of $u_{T M}$ of length ≥ 6 occurs only as a central factor $\varphi^{2}(q)$ for some palindrome q shorter than p.
- Theorem: $u_{T M}$ is not full!

Defects of the Thue-Morse word $u_{T M}$

- Definition: The Thue-Morse word $u_{T M}$ is the fixed point starting with 0 of φ defined by

$$
\varphi(0)=01, \varphi(1)=10 .
$$

- Lemma: A factor p of $u_{T M}$ is a palindrome if and only if $\varphi^{2}(p)$ is a palindrome. Every palindrome p of $u_{T M}$ of length ≥ 6 occurs only as a central factor $\varphi^{2}(q)$ for some palindrome q shorter than p.
- Theorem: $u_{T M}$ is not full!
- $u_{T M}=011010011 \mid 0010110$

Defects of the period-doubling word $u_{P D}$

- Definition: The period-doubling word $u_{P D}$ is the fixed point of the substitution φ defined by $\varphi(0)=01, \varphi(1)=00$.

Defects of the period-doubling word $u_{P D}$

- Definition: The period-doubling word $u_{P D}$ is the fixed point of the substitution φ defined by $\varphi(0)=01, \varphi(1)=00$.
- Lemma: A factor p of $u_{P D}$ is a palindrome if and only if $\varphi(p) 0$ is a palindrome. Moreover, for every palindrome p containing at least one 1, there is a palindrome q shorter than p such that p occurs always as a central factor of the palindrome $\varphi(q) 0$.

Defects of the period-doubling word $u_{P D}$

- Definition: The period-doubling word $u_{P D}$ is the fixed point of the substitution φ defined by $\varphi(0)=01, \varphi(1)=00$.
- Lemma: A factor p of $u_{P D}$ is a palindrome if and only if $\varphi(p) 0$ is a palindrome. Moreover, for every palindrome p containing at least one 1, there is a palindrome q shorter than p such that p occurs always as a central factor of the palindrome $\varphi(q) 0$.
- Theorem: $u_{P D}$ is full.

Defects of the "Rote" word u_{R}

- The word u_{R} is one the fixed point starting with 0 of the non-primitive substitution φ defined by $\varphi(0)=001, \varphi(1)=111$.

Defects of the "Rote" word u_{R}

- The word u_{R} is one the fixed point starting with 0 of the non-primitive substitution φ defined by
$\varphi(0)=001, \varphi(1)=111$.
- We denote it u_{R} in order to recall Rote who has proved that the complexity of u_{R} is equal to $2 n$ for every $n \in \mathbb{N}$.

Defects of the "Rote" word u_{R}

- The word u_{R} is one the fixed point starting with 0 of the non-primitive substitution φ defined by $\varphi(0)=001, \varphi(1)=111$.
- We denote it u_{R} in order to recall Rote who has proved that the complexity of u_{R} is equal to $2 n$ for every $n \in \mathbb{N}$.
- Lemma: A factor p of u_{R} is a palindrome if and only if $1 \varphi(p)$ is a palindrome. Moreover, for every palindrome p containing at least one 1, there exists a palindrome q shorter than p such that p is always a central factor of the palindrome $1 \varphi(q)$.

Defects of the "Rote" word u_{R}

- The word u_{R} is one the fixed point starting with 0 of the non-primitive substitution φ defined by $\varphi(0)=001, \varphi(1)=111$.
- We denote it u_{R} in order to recall Rote who has proved that the complexity of u_{R} is equal to $2 n$ for every $n \in \mathbb{N}$.
- Lemma: A factor p of u_{R} is a palindrome if and only if $1 \varphi(p)$ is a palindrome. Moreover, for every palindrome p containing at least one 1, there exists a palindrome q shorter than p such that p is always a central factor of the palindrome $1 \varphi(q)$.
- Theorem: u_{R} is full.

Outline of the talk

1. Definition of defect
2. Basic facts about substitution
3. Words u_{β} associated with β-integers
4. Palindromes and defects of u_{β}
5. Defects of fixed points of some other substitutions
6. Importance of relation between palindromes and their images by substitution
7. Conjecture: Fixed points of substitutions contain infinitely many palindromes iff . . .
8. Open problem: Is this word full or not?

Conjecture

- Definition: Substitution φ on \mathcal{A} is of class P if there exists a palindrome p, and for every $a \in \mathcal{A}$, a palindrome q_{a} such that $\varphi(a)=p q_{a}$ for all $a \in \mathcal{A}$ (or, $\varphi(a)=q_{a} p$ for all $a \in \mathcal{A}$.)

Conjecture

- Definition: Substitution φ on \mathcal{A} is of class P if there exists a palindrome p, and for every $a \in \mathcal{A}$, a palindrome q_{a} such that $\varphi(a)=p q_{a}$ for all $a \in \mathcal{A}$ (or, $\varphi(a)=q_{a} p$ for all $a \in \mathcal{A}$.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?

Conjecture

- Definition: Substitution φ on \mathcal{A} is of class P if there exists a palindrome p, and for every $a \in \mathcal{A}$, a palindrome q_{a} such that $\varphi(a)=p q_{a}$ for all $a \in \mathcal{A}$ (or, $\varphi(a)=q_{a} p$ for all $a \in \mathcal{A}$.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik

Conjecture

- Definition: Substitution φ on \mathcal{A} is of class P if there exists a palindrome p, and for every $a \in \mathcal{A}$, a palindrome q_{a} such that $\varphi(a)=p q_{a}$ for all $a \in \mathcal{A}$ (or, $\varphi(a)=q_{a} p$ for all $a \in \mathcal{A}$.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik
- Brlek, Hamel, Nivat, Reutenauer: Periodic sequences

Conjecture

- Definition: Substitution φ on \mathcal{A} is of class P if there exists a palindrome p and for every $a \in \mathcal{A}$, a palindrome q_{a} such that $\varphi(a)=p q_{a}$ for all $a \in \mathcal{A}$ (or, $\varphi(a)=q_{a} p$ for all $a \in \mathcal{A}$.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik
- Brlek, Hamel, Nivat, Reutenauer: Periodic sequences
- Non-simple Parry: $\varphi(0)=0^{a} 1, \varphi(1)=0^{b} 1$

Conjecture

- Definition: Substitution φ on \mathcal{A} is of class P if there exists a palindrome p and for every $a \in \mathcal{A}$, a palindrome q_{a} such that $\varphi(a)=p q_{a}$ for all $a \in \mathcal{A}$ (or, $\varphi(a)=q_{a} p$ for all $a \in \mathcal{A}$.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik
- Brlek, Hamel, Nivat, Reutenauer: Periodic sequences
- Non-simple Parry: $\varphi(0)=0^{a} 1, \varphi(1)=0^{b} 1$
- Thue-Morse $\varphi^{2}(0)=0110, \varphi^{2}(1)=1001$

Conjecture

- Definition: Substitution φ on \mathcal{A} is of class P if there exists a palindrome p and for every $a \in \mathcal{A}$, a palindrome q_{a} such that $\varphi(a)=p q_{a}$ for all $a \in \mathcal{A}$ (or, $\varphi(a)=q_{a} p$ for all $a \in \mathcal{A}$.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik
- Brlek, Hamel, Nivat, Reutenauer: Periodic sequences
- Non-simple Parry: $\varphi(0)=0^{a} 1, \varphi(1)=0^{b} 1$
- Thue-Morse $\varphi^{2}(0)=0110, \varphi^{2}(1)=1001$
- Period doubling: $\varphi(0)=01, \varphi(1)=00$

Conjecture

- Definition: Substitution φ on \mathcal{A} is of class P if there exists a palindrome p and for every $a \in \mathcal{A}$, a palindrome q_{a} such that $\varphi(a)=p q_{a}$ for all $a \in \mathcal{A}$ (or, $\varphi(a)=q_{a} p$ for all $a \in \mathcal{A}$.)
- Hof, Knill, Simon: Are there uniformly recurrent sequences containing arbitrarily long palindromes that arise from substitutions none of which belongs to class P?
- Allouche, Baake, Cassaigne, Damanik
- Brlek, Hamel, Nivat, Reutenauer: Periodic sequences
- Non-simple Parry: $\varphi(0)=0^{a} 1, \varphi(1)=0^{b} 1$
- Thue-Morse $\varphi^{2}(0)=0110, \varphi^{2}(1)=1001$
- Period doubling: $\varphi(0)=01, \varphi(1)=00$
- Rote: $\varphi(0)=001, \varphi(1)=111$

Open problems

- Complete description of full words which are fixed points of (primitive) substitutions.

Open problems

- Complete description of full words which are fixed points of (primitive) substitutions.
- Algorithm for checking whether a fixed point is full or not.

Open problems

- Complete description of full words which are fixed points of (primitive) substitutions.
- Algorithm for checking whether a fixed point is full or not.
- In particular, suppose that Conjecture holds, how long does the palindrome have to be in order to occur only as a central factor of image of a shorter palindrome?

References

- J.-P. Allouche , M. Baake , J. Cassaigne , D. Damanik, Palindrome complexity, Theoretical Computer Science, v. 292 n. 1 (2003), 9-31.
- P. Baláži, Z. Masáková, E. Pelantová, Factor versus palindromic complexity of uniformly recurrent infinite words, to appear in Theoretical Computer Science (2006), 16 pp.
- S. Brlek, S. Hamel, M. Nivat, C. Reutenauer, On the palindromic complexity of infinite words
- X. Droubay, J. Justin, G. Pirillo, Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001), 539-553.

