Matrices of 3iet preserving morphisms

P. Ambrož
joint work with Z. Masáková and E. Pelantová
Doppler Institute and Department of Mathematics, FNSPE, Czech Technical University

Atelier sur les progrès récents en combinatoire des mots Montréal, March 2007

Outline

(1) Infinite words
(2) Interval exchange transformation

- Definition and properties
- Infinite words associated with riet
(3) Morphisms and incidence matrices
- Sturmian morphisms
- 3iet preserving morphisms

4 Results in the 3iet case

- Sketch of the proof of Theorem A
- Sketch of the proof of Theorem B
(5) Comments and open problems

Outline

(1) Infinite words
(2) Interval exchange transformation

- Definition and properties
- Infinite words associated with riet
(3) Morphisms and incidence matrices
- Sturmian morphisms
- 3iet preserving morphisms
(4) Results in the 3iet case
- Sketch of the proof of Theorem A
- Sketch of the proof of Theorem B
(5) Comments and open problems
P. Ambrož (CTU Prague)

Finite and infinite words

Notation and properties

\mathcal{A} finite alphabet, \mathcal{A}^{*} monoid of finite words, $\mathcal{A}^{\mathbb{Z}}$ set of biinfinite words

$\mathrm{d}(u, v)$ is metric, $\left(\mathcal{A}^{\mathbb{Z}}, \mathrm{d}\right)$ is compact metric space.
The density of a letter $a \in \mathcal{A}$ in $u \in \mathcal{A}^{\mathbb{Z}}$ is

if the limit exists.

Finite and infinite words

Notation and properties

\mathcal{A} finite alphabet, \mathcal{A}^{*} monoid of finite words, $\mathcal{A}^{\mathbb{Z}}$ set of biinfinite words
Let $u=\left(u_{n}\right), v=\left(v_{n}\right) \in \mathcal{A}^{\mathbb{Z}}$. The distance between u and v is

$$
\mathrm{d}(u, v):=\frac{1}{1+\min \left\{j \in \mathbb{N} \mid u_{j} \neq v_{j} \text { or } u_{-j} \neq v_{-j}\right\}} .
$$

$\mathrm{d}(u, v)$ is metric, $\left(\mathcal{A}^{\mathbb{Z}}, \mathrm{d}\right)$ is compact metric space.
The density of a letter $a \in \mathcal{A}$ in $u \in \mathcal{A}^{\mathbb{Z}}$ is

Finite and infinite words

Notation and properties

\mathcal{A} finite alphabet, \mathcal{A}^{*} monoid of finite words, $\mathcal{A}^{\mathbb{Z}}$ set of biinfinite words
Let $u=\left(u_{n}\right), v=\left(v_{n}\right) \in \mathcal{A}^{\mathbb{Z}}$. The distance between u and v is

$$
\mathrm{d}(u, v):=\frac{1}{1+\min \left\{j \in \mathbb{N} \mid u_{j} \neq v_{j} \text { or } u_{-j} \neq v_{-j}\right\}} .
$$

$\mathrm{d}(u, v)$ is metric, $\left(\mathcal{A}^{\mathbb{Z}}, \mathrm{d}\right)$ is compact metric space.
The density of a letter $a \in \mathcal{A}$ in $u \in \mathcal{A}^{\mathbb{Z}}$ is

$$
\rho(a):=\lim _{n \rightarrow \infty} \frac{\#\left\{i \mid-n \leq i \leq n, u_{i}=a\right\}}{2 n+1},
$$

if the limit exists.

Finite and infinite words

Notation and properties

A biinfinite word u is called sturmian if $C_{u}(n)=n+1$ for all $n \in \mathbb{N}$ and the densities of letters are irrational.

Example. The word $\cdots 111 \mid 000 \cdots$ has the complexity $\mathcal{C}(n)=n+1$ for all $n \in \mathbb{N}$.

Finite and infinite words

Notation and properties

A biinfinite word u is called sturmian if $C_{u}(n)=n+1$ for all $n \in \mathbb{N}$ and the densities of letters are irrational.

Example. The word $\cdots 111 \mid 000 \cdots$ has the complexity $\mathcal{C}(n)=n+1$ for all $n \in \mathbb{N}$.

Lemma

Let $u \in\{0,1\}^{\mathbb{Z}}$ be a limit of a sequence of sturmian words $\left(u^{(m)}\right)$. Then u is either sturmian or the densities of letters are rational.

Finite and infinite words

Notation and properties

A biinfinite word u is called sturmian if $C_{u}(n)=n+1$ for all $n \in \mathbb{N}$ and the densities of letters are irrational.

Example. The word $\cdots 111 \mid 000 \cdots$ has the complexity $\mathcal{C}(n)=n+1$ for all $n \in \mathbb{N}$.

Lemma

Let $u \in\{0,1\}^{\mathbb{Z}}$ be a limit of a sequence of sturmian words $\left(u^{(m)}\right)$.
Then u is either sturmian or the densities of letters are rational.

Proof.

Let w, \widehat{w} be factors of the same length in u. Since $u=\lim _{m \rightarrow \infty} u^{(m)}$ $\exists m_{0} \in \mathbb{N}$ such that w, \widehat{w} are factors of $u^{\left(m_{0}\right)}$, which is sturmian.
Therefore $\left||w|_{0}-|\widehat{w}|_{0}\right| \leq 1$ and u is balanced.
If, moreover, the densities are irrational, then u is sturmian.

Outline

(1) Infinite words
(2) Interval exchange transformation

- Definition and properties
- Infinite words associated with riet
(3) Morphisms and incidence matrices
- Sturmian morphisms
- 3iet preserving morphisms

4 Results in the 3iet case

- Sketch of the proof of Theorem A
- Sketch of the proof of Theorem B
(5) Comments and open problems

Interval exchange transformation

Definition
r interval exchange transformation T
[Katok, Stepin, Keane]

$\pi:\{1, \ldots, r\} \rightarrow\{1, \ldots, r\}$ a permutation of $\{1, \ldots, r\}$
$T: I \rightarrow I$ is the bijection given by

Interval exchange transformation

Definition
r interval exchange transformation T [Katok, Stepin, Keane]
Let I_{1}, \ldots, I_{r} be intervals, $I:=I_{1} \cup \cdots \cup I_{r}$
$\pi:\{1, \ldots, r\} \rightarrow\{1, \ldots, r\}$ a permutation of $\{1, \ldots, r\}$

Interval exchange transformation

Definition

r interval exchange transformation T
[Katok, Stepin, Keane]
Let I_{1}, \ldots, I_{r} be intervals, $I:=I_{1} \cup \cdots \cup I_{r}$
$\pi:\{1, \ldots, r\} \rightarrow\{1, \ldots, r\}$ a permutation of $\{1, \ldots, r\}$
$T: I \rightarrow I$ is the bijection given by

Interval exchange transformation

Orbits

Let T be a r interval exchange transformation, I its domain, $x_{0} \in I$. When is the orbit $\left\{T^{n}\left(x_{0}\right) \mid n \in \mathbb{Z}\right\}$ dense in I ?

For general r, partial answers by Keane:

1. necessary condition

2a.
sufficient condition
$\left|I_{1}\right|,\left|I_{2}\right|, \ldots,\left|I_{r}\right| \quad$ are linearly independent over \mathbb{Q}
2b. sufficient cond'tion (weaker), the so-called i.d.o.c. condition orbits of all discontinuity points of T are disjoint

Interval exchange transformation

Orbits

Let T be a r interval exchange transformation, I its domain, $x_{0} \in I$. When is the orbit $\left\{T^{n}\left(x_{0}\right) \mid n \in \mathbb{Z}\right\}$ dense in I ?

For general r, partial answers by Keane:

1. necessary condition

$$
\pi\{1,2, \ldots, k\} \neq\{1,2, \ldots, k\} \quad \text { for all } k=1,2, \ldots, r-1
$$

\square
2b. sufficient condition (weaker), the so-called i.d.o.c. condition

$$
\text { orbits of all discontinuity points of } T \text { are disjoint }
$$

Interval exchange transformation

Orbits

Let T be a r interval exchange transformation, I its domain, $x_{0} \in I$. When is the orbit $\left\{T^{n}\left(x_{0}\right) \mid n \in \mathbb{Z}\right\}$ dense in I ?

For general r, partial answers by Keane:

1. necessary condition

$$
\pi\{1,2, \ldots, k\} \neq\{1,2, \ldots, k\} \quad \text { for all } k=1,2, \ldots, r-1
$$

2a. sufficient condition

$$
\left|I_{1}\right|,\left|I_{2}\right|, \ldots,\left|I_{r}\right| \quad \text { are linearly independent over } \mathbb{Q}
$$

2b. sufficient condition (weaker), the so-called i.d.o.c. condition

$$
\text { orbits of all discontinuity points of } T \text { are disjoint }
$$

Interval exchange transformation

Orbits

Let T be a r interval exchange transformation, I its domain, $x_{0} \in I$. When is the orbit $\left\{T^{n}\left(x_{0}\right) \mid n \in \mathbb{Z}\right\}$ dense in I ?

For general r, partial answers by Keane:

1. necessary condition

$$
\pi\{1,2, \ldots, k\} \neq\{1,2, \ldots, k\} \quad \text { for all } k=1,2, \ldots, r-1
$$

2a. sufficient condition

$$
\left|I_{1}\right|,\left|I_{2}\right|, \ldots,\left|I_{r}\right| \quad \text { are linearly independent over } \mathbb{Q}
$$

2b. sufficient condition (weaker), the so-called i.d.o.c. condition
orbits of all discontinuity points of T are disjoint

Interval exchange transformation

Example - 2 interval exchange transformation

Only one permutation fulfilling the necessary condition $\pi\{1,2\}=\{2,1\}$

The sufficient condition: $\frac{\left|l_{1}\right|}{\left|l_{2}\right|}$ is irrational In this case it is also necessary

Interval exchange transformation

Example - 3 interval exchange transformation

Three possible permutations

$$
\pi\{1,2,3\}=\{2,3,1\} \quad \pi\{1,2,3\}=\{3,1,2\} \quad \pi\{1,2,3\}=\{3,2,1\}
$$

Interval exchange transformation

Example - 3 interval exchange transformation

Three possible permutations

$$
\pi\{1,2,3\}=\{2,3,1\} \quad \pi\{1,2,3\}=\{3,1,2\} \quad \pi\{1,2,3\}=\{3,2,1\}
$$

Interval exchange transformation

Example - 3 interval exchange transformation

Three possible permutations

$$
\pi\{1,2,3\}=\{2,3,1\} \quad \pi\{1,2,3\}=\{3,1,2\} \quad \pi\{1,2,3\}=\{3,2,1\}
$$

The necessary and sufficient condition: $\frac{\left|I_{1}\right|+\left|I_{2}\right|}{\left|I_{2}\right|+\left|/_{3}\right|}$ is irrational Note that this does not mean i.d.o.c.

Infinite words associated with riet

Definition

Let T be a r interval exchange transformation, $I=U I_{X}$ its domain and $x_{0} \in I$. Biinfinite word $u_{T}\left(x_{0}\right)=\left(u_{n}\right)_{n \in \mathbb{Z}}=\cdots u_{-2} u_{-1} \mid u_{0} u_{1} \cdots$ associated with T is defined by

$$
\begin{equation*}
u_{n}:=X \quad \text { if } T^{n}\left(x_{0}\right) \in I_{X} \tag{1}
\end{equation*}
$$

Infinite words associated with riet

Definition

Let T be a r interval exchange transformation, $I=U I_{X}$ its domain and $x_{0} \in I$. Biinfinite word $u_{T}\left(x_{0}\right)=\left(u_{n}\right)_{n \in \mathbb{Z}}=\cdots u_{-2} u_{-1} \mid u_{0} u_{1} \cdots$ associated with T is defined by

$$
\begin{equation*}
u_{n}:=X \quad \text { if } T^{n}\left(x_{0}\right) \in I_{X} \tag{1}
\end{equation*}
$$

Specially for $r=3: I=I_{A} \cup I_{B} \cup I_{C}$ and $\left(u_{n}\right) \in\{A, B, C\}^{\mathbb{Z}}$ is given by

$$
u_{n}= \begin{cases}A & \text { if } T^{n}\left(x_{0}\right) \in I_{A} \\ B & \text { if } T^{n}\left(x_{0}\right) \in I_{B} \\ C & \text { if } T^{n}\left(x_{0}\right) \in I_{C}\end{cases}
$$

Infinite words associated with riet

Definition

Let T be a r interval exchange transformation, $I=U I_{X}$ its domain and $x_{0} \in I$. Biinfinite word $u_{T}\left(x_{0}\right)=\left(u_{n}\right)_{n \in \mathbb{Z}}=\cdots u_{-2} u_{-1} \mid u_{0} u_{1} \cdots$ associated with T is defined by

$$
\begin{equation*}
u_{n}:=X \quad \text { if } T^{n}\left(x_{0}\right) \in I_{X} \tag{1}
\end{equation*}
$$

Definition

An aperiodic word $u_{T}\left(x_{0}\right)=\left(u_{n}\right)_{n \in \mathbb{Z}}$ given by (1) is called riet word.

Infinite words associated with riet

 Properties- In the case $r=2$, 2iet words are Sturmian words
- Keane: complexity is $\mathcal{C}(n) \leq(r-1) n+1$
- A riet word with $\mathcal{C}(n)=(r-1) n+1$ for all n is called non-degenerated, otherwise it is degenerated
- The infinite word $u_{T}\left(x_{n}\right)$ is aperiodic if and only if

- If the word $u_{T}\left(x_{0}\right)$ is aperiodic then it is degenerated if and only if

Infinite words associated with riet

Properties

- In the case $r=2$, 2iet words are Sturmian words
- Keane: complexity is $\mathcal{C}(n) \leq(r-1) n+1$
- A riet word with $\mathcal{C}(n)=(r-1) n+1$ for all n is called
non-degenerated, otherwise it is degenerated
- The infinite word $u_{T}\left(x_{0}\right)$ is aperiodic if and only if

$$
\alpha+\beta \text { and } \beta+\gamma \text { are linearly independent over } \mathbb{Q} \text {. }
$$

- If the word $u_{T}\left(x_{0}\right)$ is aperiodic then it is degenerated if and only if

Infinite words associated with riet

Properties

- In the case $r=2$, 2iet words are Sturmian words
- Keane: complexity is $\mathcal{C}(n) \leq(r-1) n+1$
- A riet word with $\mathcal{C}(n)=(r-1) n+1$ for all n is called non-degenerated, otherwise it is degenerated

The infinite word $u_{T}\left(x_{0}\right)$ is aperiodic if and only if

$$
\alpha+\beta \text { and } \beta+\gamma \text { are linearly independent over } \mathbb{Q} \text {. }
$$

- If the word $u_{T}\left(x_{0}\right)$ is aperiodic then it is degenerated if and only if

Infinite words associated with riet
 Properties

- In the case $r=2$, 2iet words are Sturmian words
- Keane: complexity is $\mathcal{C}(n) \leq(r-1) n+1$
- A riet word with $\mathcal{C}(n)=(r-1) n+1$ for all n is called non-degenerated, otherwise it is degenerated

Proposition

Let T be a 3iet transformation with $\left|I_{A}\right|=\alpha,\left|I_{B}\right|=\beta$ and $\left|I_{C}\right|=\gamma$.

- The infinite word $u_{T}\left(x_{0}\right)$ is aperiodic if and only if

$$
\alpha+\beta \text { and } \beta+\gamma \text { are linearly independent over } \mathbb{Q} .
$$

- If the word $u_{T}\left(x_{0}\right)$ is aperiodic then it is degenerated if and only if

$$
\alpha+\beta+\gamma \in(\alpha+\beta) \mathbb{Z}+(\beta+\gamma) \mathbb{Z}
$$

Outline

(1) Infinite words
(2) Interval exchange transformation

- Definition and properties
- Infinite words associated with riet
(3) Morphisms and incidence matrices
- Sturmian morphisms
- 3iet preserving morphisms

4 Results in the 3iet case

- Sketch of the proof of Theorem A
- Sketch of the proof of Theorem B
(5) Comments and open problems

Morphisms and incidence matrices

Definitions

A mapping $\varphi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ is said to be a morphism over \mathcal{A} if

$$
\varphi(w \widehat{w})=\varphi(w) \varphi(\widehat{w}) \quad \text { for } \forall w, \widehat{w} \in \mathcal{A}^{*}
$$

The action of a morphism φ can be naturally extended to biinfinite words

The mapping $\varphi: u \mapsto \varphi(u)$ is continuous on $\mathcal{A}^{\mathbb{Z}}$
Incidence matrix of a morphism over a k-letter alphabet $\left\{a_{1}, \ldots, a_{k}\right\}$ is

$$
\left(\mathbf{M}_{\varphi}\right)_{i j}=\text { number of letters } a_{j} \text { in the word } \varphi\left(a_{i}\right)
$$

Morphisms and incidence matrices

Definitions

A mapping $\varphi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ is said to be a morphism over \mathcal{A} if

$$
\varphi(w \widehat{w})=\varphi(w) \varphi(\widehat{w}) \quad \text { for } \forall w, \widehat{w} \in \mathcal{A}^{*}
$$

The action of a morphism φ can be naturally extended to biinfinite words

$$
\varphi(u)=\varphi\left(\cdots u_{-2} u_{-1} \mid u_{0} u_{1} \cdots\right):=\cdots \varphi\left(u_{-2}\right) \varphi\left(u_{-1}\right) \mid \varphi\left(u_{0}\right) \varphi\left(u_{1}\right) \cdots .
$$

The mapping $\varphi: u \mapsto \varphi(u)$ is continuous on $\mathcal{A}^{\mathbb{Z}}$

Morphisms and incidence matrices

Definitions

A mapping $\varphi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ is said to be a morphism over \mathcal{A} if

$$
\varphi(w \widehat{w})=\varphi(w) \varphi(\widehat{w}) \quad \text { for } \forall w, \widehat{w} \in \mathcal{A}^{*}
$$

The action of a morphism φ can be naturally extended to biinfinite words

$$
\varphi(u)=\varphi\left(\cdots u_{-2} u_{-1} \mid u_{0} u_{1} \cdots\right):=\cdots \varphi\left(u_{-2}\right) \varphi\left(u_{-1}\right) \mid \varphi\left(u_{0}\right) \varphi\left(u_{1}\right) \cdots .
$$

The mapping $\varphi: u \mapsto \varphi(u)$ is continuous on $\mathcal{A}^{\mathbb{Z}}$
Incidence matrix of a morphism over a k-letter alphabet $\left\{a_{1}, \ldots, a_{k}\right\}$ is $\mathbf{M}_{\varphi} \in \mathbb{N}^{k \times k}$

$$
\left(\mathbf{M}_{\varphi}\right)_{i j}=\text { number of letters } a_{j} \text { in the word } \varphi\left(a_{i}\right)
$$

Morphisms and incidence matrices
 Properties

Let φ and ψ be morphisms over \mathcal{A}, the matrix of their composition, that is, of the morphism $u \mapsto(\varphi \circ \psi)(u)=\varphi(\psi(u))$ is obtained by

$$
\mathbf{M}_{\varphi \circ \psi}=\mathbf{M}_{\psi} \mathbf{M}_{\varphi}
$$

Let $u \in \mathcal{A}^{\mathbb{Z}}$ has well defined densities of letters

$$
\vec{\rho}_{u}=\left(\rho\left(a_{1}\right), \ldots, \rho\left(a_{k}\right)\right)
$$

Then for the infinite word $\varphi(u)$

Morphisms and incidence matrices
 Properties

Let φ and ψ be morphisms over \mathcal{A}, the matrix of their composition, that is, of the morphism $u \mapsto(\varphi \circ \psi)(u)=\varphi(\psi(u))$ is obtained by

$$
\mathbf{M}_{\varphi \circ \psi}=\mathbf{M}_{\psi} \mathbf{M}_{\varphi}
$$

Let $u \in \mathcal{A}^{\mathbb{Z}}$ has well defined densities of letters

$$
\vec{\rho}_{u}=\left(\rho\left(a_{1}\right), \ldots, \rho\left(a_{k}\right)\right) .
$$

Then for the infinite word $\varphi(u)$

$$
\vec{\rho}_{\varphi(u)}=\frac{\vec{\rho}_{u} \mathbf{M}_{\varphi}}{\vec{\rho}_{u} \mathbf{M}_{\varphi}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}
$$

Morphisms and incidence matrices
 Properties

Let φ and ψ be morphisms over \mathcal{A}, the matrix of their composition, that is, of the morphism $u \mapsto(\varphi \circ \psi)(u)=\varphi(\psi(u))$ is obtained by

$$
\mathbf{M}_{\varphi \circ \psi}=\mathbf{M}_{\psi} \mathbf{M}_{\varphi}
$$

Let $u \in \mathcal{A}^{\mathbb{Z}}$ has well defined densities of letters

$$
\vec{\rho}_{u}=\left(\rho\left(a_{1}\right), \ldots, \rho\left(a_{k}\right)\right) .
$$

Then for the infinite word $\varphi(u)$

$$
\vec{\rho}_{\varphi(u)}=\frac{\vec{\rho}_{u} \mathbf{M}_{\varphi}}{\vec{\rho}_{u} \mathbf{M}_{\varphi}\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)}
$$

If u is a fixed point of φ then $\vec{\rho}_{u} \mathbf{M}_{\varphi}=\Lambda \vec{\rho}_{u}$.

Morphisms preserving sturmian words
 Definitions

Two ways to define

- A morphism φ over the binary alphabet $\{0,1\}$ is said to be locally sturmian if there is a sturmian word u such that $\varphi(u)$ is also sturmian.
- A morphism φ over the binary alphabet $\{0,1\}$ is said to be sturmian if $\varphi(u)$ is sturmian for all sturmian words u.

Monoid of Sturm, denoted St, finitely generated monoid of morphisms

with generators

Morphisms preserving sturmian words
 Definitions

Two ways to define

- A morphism φ over the binary alphabet $\{0,1\}$ is said to be locally sturmian if there is a sturmian word u such that $\varphi(u)$ is also sturmian.
- A morphism φ over the binary alphabet $\{0,1\}$ is said to be sturmian if $\varphi(u)$ is sturmian for all sturmian words u.

Monoid of Sturm, denoted St, finitely generated monoid of morphisms with generators

$$
\psi_{1}: \begin{aligned}
& 0 \mapsto 01 \\
& 1 \mapsto 1
\end{aligned}, \quad \psi_{2}: \begin{aligned}
& 0 \mapsto 10 \\
& 1 \mapsto 1
\end{aligned}, \quad \psi_{3}: \begin{aligned}
& 0 \mapsto 1 \\
& 1 \mapsto 0
\end{aligned} .
$$

Morphisms preserving sturmian words Properties

Theorem (Berstel, Mignosi and Séébold)

Let φ be a morphism, the following three conditions are equivalent
(i) $\varphi \in S t$
(ii) φ is sturmian
(iii) φ is locally sturmian

Corollary

- A matrix $\mathbf{M} \in \mathbb{N}^{2 \times 2}$ is the incidence matrix of a sturmian morphism if and only if $\operatorname{det} \mathbf{M}= \pm 1$
- A matrix $\mathrm{M} \in \mathbb{N}^{2 \times 2}$ is the incidence matrix of a sturmian morphism if and only if

Morphisms preserving sturmian words Properties

Theorem (Berstel, Mignosi and Séébold)

Let φ be a morphism, the following three conditions are equivalent
(i) $\varphi \in S t$
(ii) φ is sturmian
(iii) φ is locally sturmian

Corollary

- A matrix $\mathbf{M} \in \mathbb{N}^{2 \times 2}$ is the incidence matrix of a sturmian morphism if and only if $\operatorname{det} \mathbf{M}= \pm 1$

Morphisms preserving sturmian words Properties

Theorem (Berstel, Mignosi and Séébold)

Let φ be a morphism, the following three conditions are equivalent
(i) $\varphi \in S t$
(ii) φ is sturmian
(iii) φ is locally sturmian

Corollary

- A matrix $\mathbf{M} \in \mathbb{N}^{2 \times 2}$ is the incidence matrix of a sturmian morphism if and only if $\operatorname{det} \mathbf{M}= \pm 1$
- A matrix $\mathbf{M} \in \mathbb{N}^{2 \times 2}$ is the incidence matrix of a sturmian morphism if and only if

$$
\mathbf{M E M}^{T}= \pm \mathbf{E}, \text { where } \mathbf{E}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Results in the 3iet case

A morphism φ over $\{A, B, C\}$ is 3iet preserving if $\varphi(u)$ is a 3iet word for every 3iet word u.

- $\operatorname{det} \mathrm{M}= \pm 1$ and $\varphi(u)$ is non-degenerated for every non-degenerated 3iet word u,
- $\operatorname{det} \mathbf{M}=0$ and $\varphi(u)$ is degenerated for every 3iet word u.

Results in the 3iet case

A morphism φ over $\{A, B, C\}$ is 3iet preserving if $\varphi(u)$ is a 3iet word for every 3iet word u.

Theorem A
Let φ be a 3iet preserving morphism and let \mathbf{M} be its incidence matrix. Then

$$
\mathbf{M E M}^{T}= \pm \mathbf{E} \text {, where } \mathbf{E}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 1 \\
-1 & 1 \\
-1 & -1
\end{array}\right) .
$$

\square

- $\operatorname{det} \mathbf{M}= \pm 1$ and $\varphi(u)$ is non-degenerated for every non-degenerated 3iet word u,
- $\operatorname{det} \mathrm{M}=0$ and $\varphi(u)$ is degenerated for every 3iet word u.

Results in the 3iet case

A morphism φ over $\{A, B, C\}$ is 3iet preserving if $\varphi(u)$ is a 3iet word for every 3iet word u.

Theorem A

Let φ be a 3iet preserving morphism and let \mathbf{M} be its incidence matrix. Then

$$
\mathbf{M E M}^{T}= \pm \mathbf{E} \text {, where } \mathbf{E}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
-1 & 0 & 1 \\
-1 & -1 & 0
\end{array}\right) \text {. }
$$

Theorem B

Let φ be a 3iet preserving morphism and let \mathbf{M} be its incidence matrix.
Then one of the following holds

- $\operatorname{det} \mathbf{M}= \pm 1$ and $\varphi(u)$ is non-degenerated for every non-degenerated 3iet word u,
- $\operatorname{det} \mathbf{M}=0$ and $\varphi(u)$ is degenerated for every 3iet word u.

Outline

(1) Infinite words
(2) Interval exchange transformation

- Definition and properties
- Infinite words associated with riet
(3) Morphisms and incidence matrices
- Sturmian morphisms
- 3iet preserving morphisms

4. Results in the 3iet case

- Sketch of the proof of Theorem A
- Sketch of the proof of Theorem B

5 Comments and open problems

Theorem A - Ideas behind the proof

Lemma

Let $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ be a 3iet word, $\sigma:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism given by

$$
A \mapsto 0, \quad B \mapsto 01, \quad C \mapsto 1 .
$$

Then $\sigma(u)$ is sturmian.

Theorem A - Ideas behind the proof

Lemma

Let $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ be a 3iet word, $\sigma:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism given by

$$
A \mapsto 0, \quad B \mapsto 01, \quad C \mapsto 1 .
$$

Then $\sigma(u)$ is sturmian.
Proof.

Theorem A - Ideas behind the proof

Lemma

Let $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ be a 3iet word, $\sigma:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism given by

$$
A \mapsto 0, \quad B \mapsto 01, \quad C \mapsto 1 .
$$

Then $\sigma(u)$ is sturmian.
Proof.

Theorem A - Ideas behind the proof

Lemma

Let $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ be a 3iet word, $\sigma:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism given by

$$
A \mapsto 0, \quad B \mapsto 01, \quad C \mapsto 1 .
$$

Then $\sigma(u)$ is sturmian.
Proof.

Theorem A - Ideas behind the proof

Lemma

Let $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ be a 3iet word, $\sigma:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism given by

$$
A \mapsto 0, \quad B \mapsto 01, \quad C \mapsto 1 .
$$

Then $\sigma(u)$ is sturmian.
Proof.

Theorem A - Ideas behind the proof

Lemma

Let $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ be a 3iet word, $\sigma:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism given by

$$
A \mapsto 0, \quad B \mapsto 01, \quad C \mapsto 1 .
$$

Then $\sigma(u)$ is sturmian.
Proof.

Theorem A - Ideas behind the proof

Lemma

Let $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ be a 3iet word, $\sigma:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism given by

$$
A \mapsto 0, \quad B \mapsto 01, \quad C \mapsto 1 .
$$

Then $\sigma(u)$ is sturmian.
Proof.

Theorem A - Ideas behind the proof

Lemma

Let $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ be a 3iet word, $\sigma:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism given by

$$
A \mapsto 0, \quad B \mapsto 01, \quad C \mapsto 1 .
$$

Then $\sigma(u)$ is sturmian.
Proof.

Theorem A - Ideas behind the proof

Lemma

Let $u=\left(u_{n}\right)_{n \in \mathbb{Z}}$ be a 3iet word, $\sigma:\{A, B, C\}^{*} \rightarrow\{0,1\}^{*}$ be a morphism given by

$$
A \mapsto 0, \quad B \mapsto 01, \quad C \mapsto 1 .
$$

Then $\sigma(u)$ is sturmian.
Proof.

Theorem A - Ideas behind the proof

- For any sturmian word u, there exist a sequence $\left(u^{(m)}\right)$ of 3iet words such that

$$
u=\lim _{m \rightarrow \infty} u^{(m)}
$$

- Let φ be a 3iet preserving morphism, hence $\varphi\left(u^{(m)}\right)$ 3iet words
- Any morphism on $\{A, B, C\}^{\mathbb{Z}}$ is continuous, thus $(\sigma \circ \varphi)\left(u^{(m)}\right) \rightarrow(\sigma \circ \varphi)(u)$
- By previous Lemma, $(\sigma \circ \varphi)\left(u^{(m)}\right)$ are sturmian and so their limit $(\sigma \circ \varphi)(u)$ is sturmian (or has rational densities of letters)
- To derive Theorem A, we we use known properties of the matrix of sturmian morphism $\sigma \circ \varphi$

Theorem A - Ideas behind the proof

- For any sturmian word u, there exist a sequence $\left(u^{(m)}\right)$ of 3iet words such that

$$
u=\lim _{m \rightarrow \infty} u^{(m)}
$$

- Let φ be a 3iet preserving morphism, hence $\varphi\left(u^{(m)}\right)$ 3iet words
- Any morphism on $\{A, B, C\}^{\mathbb{Z}}$ is continuous, thus

- By previous Lemma, $(\sigma \circ \varphi)\left(u^{(m)}\right)$ are sturmian and so their limit $(\sigma \circ \varphi)(u)$ is sturmian (or has rational densities of letters)
- To derive Theorem A, we we use known properties of the matrix of sturmian morphism $\sigma \circ \varphi$
- For any sturmian word u, there exist a sequence $\left(u^{(m)}\right)$ of 3iet words such that

$$
u=\lim _{m \rightarrow \infty} u^{(m)}
$$

- Let φ be a 3iet preserving morphism, hence $\varphi\left(u^{(m)}\right)$ 3iet words
- Any morphism on $\{A, B, C\}^{\mathbb{Z}}$ is continuous, thus

$$
(\sigma \circ \varphi)\left(u^{(m)}\right) \rightarrow(\sigma \circ \varphi)(u)
$$

Theorem A - Ideas behind the proof

- For any sturmian word u, there exist a sequence $\left(u^{(m)}\right)$ of 3iet words such that

$$
u=\lim _{m \rightarrow \infty} u^{(m)}
$$

- Let φ be a 3iet preserving morphism, hence $\varphi\left(u^{(m)}\right)$ 3iet words
- Any morphism on $\{A, B, C\}^{\mathbb{Z}}$ is continuous, thus

$$
(\sigma \circ \varphi)\left(u^{(m)}\right) \rightarrow(\sigma \circ \varphi)(u)
$$

- By previous Lemma, $(\sigma \circ \varphi)\left(u^{(m)}\right)$ are sturmian and so their limit $(\sigma \circ \varphi)(u)$ is sturmian (or has rational densities of letters).

Theorem A - Ideas behind the proof

- For any sturmian word u, there exist a sequence $\left(u^{(m)}\right)$ of 3iet words such that

$$
u=\lim _{m \rightarrow \infty} u^{(m)}
$$

- Let φ be a 3iet preserving morphism, hence $\varphi\left(u^{(m)}\right)$ 3iet words
- Any morphism on $\{A, B, C\}^{\mathbb{Z}}$ is continuous, thus

$$
(\sigma \circ \varphi)\left(u^{(m)}\right) \rightarrow(\sigma \circ \varphi)(u)
$$

- By previous Lemma, $(\sigma \circ \varphi)\left(u^{(m)}\right)$ are sturmian and so their limit $(\sigma \circ \varphi)(u)$ is sturmian (or has rational densities of letters).
- To derive Theorem A, we we use known properties of the matrix of sturmian morphism $\sigma \circ \varphi$.

Theorem A - corollaries

Abstract

Corollary Let φ be a 3iet preserving, \mathbf{M} its matrix. Then the vector $(1,-1,1)$ is a left eigenvector of \mathbf{M}, associated with the eigenvalue $\operatorname{det} \mathbf{M}$ or $-\operatorname{det} \mathbf{M}$.

The other eigenvalues λ_{1} and λ_{2} of the matrix \mathbf{M} are either quadratic mutually conjugate algebraic units, or $\lambda_{1}, \lambda_{2} \in\{1,-1\}$.

The sum of the first and the third row of \mathbf{M} differs from the sum of its second row by $\pm \operatorname{det} \mathbf{M}$. Formally,

Theorem A - corollaries

Corollary

Let φ be a 3iet preserving, \mathbf{M} its matrix. Then the vector $(1,-1,1)$ is a left eigenvector of \mathbf{M}, associated with the eigenvalue $\operatorname{det} \mathbf{M}$ or $-\operatorname{det} \mathbf{M}$.

The other eigenvalues λ_{1} and λ_{2} of the matrix \mathbf{M} are either quadratic mutually conjugate algebraic units, or $\lambda_{1}, \lambda_{2} \in\{1,-1\}$.

Corollary

The sum of the first and the third row of \mathbf{M} differs from the sum of its second row by $\pm \operatorname{det} \mathbf{M}$. Formally,

$$
(1,0,1) \mathbf{M}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-(0,1,0) \mathbf{M}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)= \pm \operatorname{det} \mathbf{M} .
$$

Theorem B - Ideas behind the proof

Geometric representation of a fixed point of φ

Let φ be a morphism over $\left\{a_{1}, \ldots, a_{k}\right\}$, u its fixed point. Let \mathbf{M}_{φ} have a positive right eigenvector $\vec{x}=\left(x_{1}, \ldots, x_{k}\right)$. Let \wedge be the eigenvalue corresponding to $\vec{x}, M_{\varphi} \vec{x}=\Lambda \vec{x}$. - Λ is the spectral radius of \mathbf{M}_{φ} - Since \mathbf{M}_{φ} is integral matrix one has $\Lambda \geq 1$

Theorem B - Ideas behind the proof

Geometric representation of a fixed point of φ

Let φ be a morphism over $\left\{a_{1}, \ldots, a_{k}\right\}$, u its fixed point.
Let \mathbf{M}_{φ} have a positive right eigenvector $\vec{x}=\left(x_{1}, \ldots, x_{k}\right)$.
Let Λ be the eigenvalue corresponding to $\vec{x}, M_{\varphi} \vec{x}=\Lambda \vec{x}$.

- Λ is the spectral radius of \mathbf{M}_{φ}
- Since \mathbf{M}_{φ} is integral matrix one has $\Lambda \geq 1$.
φ a morphism over $\left\{a_{1}, \ldots, a_{k}\right\}, u=\cdots u_{-2} u_{-1} \mid u_{0} u_{1} \cdots$ its fixed point.

The set \sum can be equivalently defined as

$\Sigma=\left\{t_{n} \mid n \in \mathbb{Z}\right\}$, where $t_{0}=0$ and $t_{n+1}-t_{n}=x_{i} \Leftrightarrow u_{n}=a_{i}$
Properties

- Since u is fixed point of φ, we have $\wedge \Sigma \subset \Sigma$ (self-similar set)
- if $u_{n}=a_{i}$ then $\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma\right)=\left|\varphi\left(a_{i}\right)\right|$

Theorem B - Ideas behind the proof

Geometric representation of a fixed point of φ
φ a morphism over $\left\{a_{1}, \ldots, a_{k}\right\}, u=\cdots u_{-2} u_{-1} \mid u_{0} u_{1} \cdots$ its fixed point.
$\Sigma:=\left\{\sum_{i=1}^{k}|w|_{a_{i}} x_{i} \mid w\right.$ is an arbitrary prefix of $\left.u_{0} u_{1} u_{2} \cdots\right\}$
$\cup\left\{-\sum_{i=1}^{k}|w|{ }_{a_{i}} x_{i} \mid w\right.$ is an arbitrary suffix of $\left.\cdots u_{-3} u_{-2} u_{-1}\right\}$
The set Σ can be equivalently defined as
$\Sigma=\left\{t_{n} \mid n \in \mathbb{Z}\right\}, \quad$ where $\quad t_{0}=0$ and $t_{n+1}-t_{n}=x_{i} \Leftrightarrow u_{n}=a_{i}$
Properties

- Since u is fixed point of φ, we have $\wedge \Sigma \subset \Sigma$ (self-similar set)
- if $u_{n}=a_{i}$ then $\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma\right)=\left|\varphi\left(a_{i}\right)\right|$
$24 / 30$

Theorem B - Ideas behind the proof

Geometric representation of a fixed point of φ
φ a morphism over $\left\{a_{1}, \ldots, a_{k}\right\}, u=\cdots u_{-2} u_{-1} \mid u_{0} u_{1} \cdots$ its fixed point.

$$
\begin{aligned}
\Sigma:=\{ & \left.\sum_{i=1}^{k}|w|_{a_{i}} x_{i} \mid w \text { is an arbitrary prefix of } u_{0} u_{1} u_{2} \cdots\right\} \\
& \cup\left\{-\sum_{i=1}^{k}|w|_{a_{i}} x_{i} \mid w \text { is an arbitrary suffix of } \cdots u_{-3} u_{-2} u_{-1}\right\}
\end{aligned}
$$

The set Σ can be equivalently defined as

$$
\Sigma=\left\{t_{n} \mid n \in \mathbb{Z}\right\}, \quad \text { where } \quad t_{0}=0 \text { and } t_{n+1}-t_{n}=x_{i} \Leftrightarrow u_{n}=a_{i}
$$

Theorem B - Ideas behind the proof

Geometric representation of a fixed point of φ
φ a morphism over $\left\{a_{1}, \ldots, a_{k}\right\}, u=\cdots u_{-2} u_{-1} \mid u_{0} u_{1} \cdots$ its fixed point.

$$
\begin{aligned}
\Sigma:=\{ & \left.\sum_{i=1}^{k}|w|_{a_{i}} x_{i} \mid w \text { is an arbitrary prefix of } u_{0} u_{1} u_{2} \cdots\right\} \\
& \cup\left\{-\sum_{i=1}^{k}|w|_{a_{i}} x_{i} \mid w \text { is an arbitrary suffix of } \cdots u_{-3} u_{-2} u_{-1}\right\}
\end{aligned}
$$

The set Σ can be equivalently defined as

$$
\Sigma=\left\{t_{n} \mid n \in \mathbb{Z}\right\}, \quad \text { where } \quad t_{0}=0 \text { and } t_{n+1}-t_{n}=x_{i} \Leftrightarrow u_{n}=a_{i}
$$

Properties

- Since u is fixed point of φ, we have $\Lambda \Sigma \subset \Sigma$ (self-similar set)

Theorem B - Ideas behind the proof

Geometric representation of a fixed point of φ
φ a morphism over $\left\{a_{1}, \ldots, a_{k}\right\}, u=\cdots u_{-2} u_{-1} \mid u_{0} u_{1} \cdots$ its fixed point.

$$
\begin{aligned}
\Sigma:=\{ & \left.\sum_{i=1}^{k}|w|_{a_{i}} x_{i} \mid w \text { is an arbitrary prefix of } u_{0} u_{1} u_{2} \cdots\right\} \\
& \cup\left\{-\sum_{i=1}^{k}|w|_{a_{i}} x_{i} \mid w \text { is an arbitrary suffix of } \cdots u_{-3} u_{-2} u_{-1}\right\}
\end{aligned}
$$

The set Σ can be equivalently defined as

$$
\Sigma=\left\{t_{n} \mid n \in \mathbb{Z}\right\}, \quad \text { where } \quad t_{0}=0 \text { and } t_{n+1}-t_{n}=x_{i} \Leftrightarrow u_{n}=a_{i}
$$

Properties

- Since u is fixed point of φ, we have $\Lambda \Sigma \subset \Sigma$ (self-similar set)
- if $u_{n}=a_{i}$ then $\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma\right)=\left|\varphi\left(a_{i}\right)\right|$

Morphism $\varphi: 0 \mapsto 10,1 \mapsto 110$, fixed point $u=\lim _{n \rightarrow \infty} \varphi^{n}(0) \mid \varphi^{n}(1)$ $\mathbf{M}=\left(\frac{1}{1} \frac{1}{2}\right), \wedge=\tau^{2}$, where $\tau=\frac{1+\sqrt{5}}{2}$ is the golden ratio. The corresponding right eigenvector of M is $\binom{1}{\tau}$ Hence the lengths 1 are $\ell(0)=1$ and $\ell(1)=\tau$.

Morphism $\varphi: 0 \mapsto 10,1 \mapsto 110$, fixed point $u=\lim _{n \rightarrow \infty} \varphi^{n}(0) \mid \varphi^{n}(1)$ $\mathbf{M}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), \Lambda=\tau^{2}$, where $\tau=\frac{1+\sqrt{5}}{2}$ is the golden ratio.
The corresponding right eigenvector of M is $\binom{1}{\tau}$ Hence the lengths 1 are $\ell(0)=1$ and $\ell(1)=\tau$.

Morphism $\varphi: 0 \mapsto 10,1 \mapsto 110$, fixed point $u=\lim _{n \rightarrow \infty} \varphi^{n}(0) \mid \varphi^{n}(1)$
$\mathbf{M}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), \Lambda=\tau^{2}$, where $\tau=\frac{1+\sqrt{5}}{2}$ is the golden ratio.
The corresponding right eigenvector of M is $\binom{1}{\tau}$. Hence the lengths 1 are $\ell(0)=1$ and $\ell(1)=\tau$.

Morphism $\varphi: 0 \mapsto 10,1 \mapsto 110$, fixed point $u=\lim _{n \rightarrow \infty} \varphi^{n}(0) \mid \varphi^{n}(1)$ $\mathbf{M}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right), \Lambda=\tau^{2}$, where $\tau=\frac{1+\sqrt{5}}{2}$ is the golden ratio.
The corresponding right eigenvector of M is $\binom{1}{\tau}$. Hence the lengths 1 are $\ell(0)=1$ and $\ell(1)=\tau$.

Theorem B - Ideas behind the proof

Two discrete sets associated with infinite words

- Fixed point of a morphism \mapsto self-similar set Σ
- 3iet word $\mapsto C \& P$ set Σ_{C}

depending on $t_{n+1}-t_{n}$

Fixed point of a morphism is also fixed point of its arbitrary power, hence $\exists k, m \in \mathbb{N}$ such that

Theorem B - Ideas behind the proof

Two discrete sets associated with infinite words

- Fixed point of a morphism \mapsto self-similar set Σ
- 3iet word $\mapsto C \& P$ set Σ_{C}

For a 3iet word being a fixed point of $\varphi: \Sigma$ and Σ_{C} coincide.

depending on $t_{n+1}-t_{n}$
Fixed noint of a mornhisn is also fixed point of its arbitrary power, hence $\exists k, m \in \mathbb{N}$ such that

Theorem B - Ideas behind the proof

Two discrete sets associated with infinite words

- Fixed point of a morphism \mapsto self-similar set Σ
- 3iet word $\mapsto C \& P$ set Σ_{C}

For a 3iet word being a fixed point of $\varphi: \Sigma$ and Σ_{C} coincide.
Then

$$
\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma_{C}\right)=\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma\right)=\left\{\begin{array}{l}
|\varphi(A)| \\
|\varphi(B)| \\
|\varphi(C)|
\end{array}\right.
$$

depending on $t_{n+1}-t_{n}$.
Fixed point of a morphism is also fixed point of its arbitrary power, hence

Theorem B - Ideas behind the proof

Two discrete sets associated with infinite words

- Fixed point of a morphism \mapsto self-similar set Σ
- 3iet word $\mapsto C \& P$ set Σ_{C}

For a 3iet word being a fixed point of $\varphi: \Sigma$ and Σ_{C} coincide.
Then

$$
\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma_{C}\right)=\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma\right)=\left\{\begin{array}{l}
|\varphi(A)| \\
|\varphi(B)| \\
|\varphi(C)|
\end{array}\right.
$$

depending on $t_{n+1}-t_{n}$.
Fixed point of a morphism is also fixed point of its arbitrary power, hence $\exists k, m \in \mathbb{N}$ such that

$$
\begin{aligned}
\left|\varphi^{n}(A C)\right| & =\#\left(\left(\wedge t_{k}, \Lambda t_{k+2}\right] \cap \Sigma_{C}\right) \\
\left|\varphi^{n}(B)\right| & =\#\left(\left(\wedge t_{m}, \Lambda t_{n+1}\right] \cap \Sigma_{C}\right)
\end{aligned}
$$

Theorem B - Ideas behind the proof

Two discrete sets associated with infinite words

- Fixed point of a morphism \mapsto self-similar set Σ
- 3iet word $\mapsto C \& P$ set Σ_{C}

For a 3iet word being a fixed point of $\varphi: \Sigma$ and Σ_{C} coincide.
Then

$$
\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma_{C}\right)=\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma\right)=\left\{\begin{array}{l}
|\varphi(A)| \\
|\varphi(B)| \\
|\varphi(C)|
\end{array}\right.
$$

depending on $t_{n+1}-t_{n}$.
Fixed point of a morphism is also fixed point of its arbitrary power, hence $\exists k, m \in \mathbb{N}$ such that

$$
\begin{aligned}
\left|\varphi^{n}(A C)\right| & =\#\left(\left(\wedge t_{k}, \Lambda t_{k+2}\right] \cap \Sigma_{C}\right) \\
\left|\varphi^{n}(B)\right| & =\#\left(\left(\wedge t_{m}, \wedge t_{n+1}\right] \cap \Sigma_{C}\right)
\end{aligned}
$$

difference: $\quad \pm(\operatorname{det} \mathbf{M})^{n}$

Theorem B - Ideas behind the proof

Two discrete sets associated with infinite words

- Fixed point of a morphism \mapsto self-similar set Σ
- 3iet word $\mapsto C \& P$ set Σ_{C}

For a 3iet word being a fixed point of $\varphi: \Sigma$ and Σ_{C} coincide.
Then

$$
\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma_{C}\right)=\#\left(\left(\wedge t_{n}, \wedge t_{n+1}\right] \cap \Sigma\right)=\left\{\begin{array}{l}
|\varphi(A)| \\
|\varphi(B)| \\
|\varphi(C)|
\end{array}\right.
$$

depending on $t_{n+1}-t_{n}$.
Fixed point of a morphism is also fixed point of its arbitrary power, hence $\exists k, m \in \mathbb{N}$ such that

$$
\begin{aligned}
\left|\varphi^{n}(A C)\right| & =\#\left(\left(\wedge t_{k}, \wedge t_{k+2}\right] \cap \Sigma_{C}\right) \\
\left|\varphi^{n}(B)\right| & =\#\left(\left(\wedge t_{m}, \wedge t_{n+1}\right] \cap \Sigma_{C}\right) \\
\text { difference }: \quad \pm(\operatorname{det} \mathbf{M})^{n} & \leq R
\end{aligned}
$$

Theorem B - Ideas behind the proof

Theorem is proved provided that the 3iet word u is a fixed point of a morphism φ.
\square
Let φ be a primitive 3iet preserving morphism. Then there exists $p \in \mathbb{N}$, $p \geq 1$, such that φ^{p} has a fixed point, and this fixed point is a 3iet word Let φ_{0} be a primitive 3iet preserving morphism, \mathbf{M}_{0} a positive power of its matrix
Let φ be a non-primitive 3iet preserving morphism, M its matrix Hence $\mathbf{M M}_{0}$ is positive, thus the matrix of a primitive 3iet preserving morphism

Theorem B - Ideas behind the proof

Theorem is proved provided that the 3iet word u is a fixed point of a morphism φ.

Proposition

Let φ be a primitive 3iet preserving morphism. Then there exists $p \in \mathbb{N}$, $p \geq 1$, such that φ^{p} has a fixed point, and this fixed point is a 3iet word.

Let φ_{0} be a primitive 3iet preserving morphism, \mathbf{M}_{0} a positive power of its

 matrixLet φ be a non-primitive 3iet preserving morphism, M its matrix Hence $\mathbf{M M}_{0}$ is positive, thus the matrix of a primitive 3iet preserving morphism

Theorem B - Ideas behind the proof

Theorem is proved provided that the 3iet word u is a fixed point of a morphism φ.

Proposition

Let φ be a primitive 3iet preserving morphism. Then there exists $p \in \mathbb{N}$, $p \geq 1$, such that φ^{p} has a fixed point, and this fixed point is a 3iet word.

Let φ_{0} be a primitive 3iet preserving morphism, \mathbf{M}_{0} a positive power of its matrix
Let φ be a non-primitive 3iet preserving morphism, \mathbf{M} its matrix Hence MM_{0} is positive, thus the matrix of a primitive 3iet preserving morphism

Theorem B - Ideas behind the proof

Theorem is proved provided that the 3iet word u is a fixed point of a morphism φ.

Proposition

Let φ be a primitive 3iet preserving morphism. Then there exists $p \in \mathbb{N}$, $p \geq 1$, such that φ^{p} has a fixed point, and this fixed point is a 3iet word.

Let φ_{0} be a primitive 3iet preserving morphism, \mathbf{M}_{0} a positive power of its matrix
Let φ be a non-primitive 3iet preserving morphism, \mathbf{M} its matrix Hence $\mathbf{M M}_{0}$ is positive, thus the matrix of a primitive 3iet preserving morphism.

Theorem B - Ideas behind the proof

Theorem is proved provided that the 3iet word u is a fixed point of a morphism φ.

Proposition

Let φ be a primitive 3iet preserving morphism. Then there exists $p \in \mathbb{N}$, $p \geq 1$, such that φ^{p} has a fixed point, and this fixed point is a 3iet word.

Let φ_{0} be a primitive 3iet preserving morphism, \mathbf{M}_{0} a positive power of its matrix
Let φ be a non-primitive 3iet preserving morphism, \mathbf{M} its matrix Hence $\mathbf{M M}_{0}$ is positive, thus the matrix of a primitive 3iet preserving morphism.

$$
1 \geq\left|\operatorname{det}\left(\mathbf{M} \mathbf{M}_{0}\right)\right|=|\operatorname{det} \mathbf{M}| \underbrace{\left|\operatorname{det} \mathbf{M}_{0}\right|}_{=1}=|\operatorname{det} \mathbf{M}|
$$

Outline

(1) Infinite words
(2) Interval exchange transformation

- Definition and properties
- Infinite words associated with riet
(3) Morphisms and incidence matrices
- Sturmian morphisms
- 3iet preserving morphisms
(4) Results in the 3iet case
- Sketch of the proof of Theorem A
- Sketch of the proof of Theorem B
(5) Comments and open problems

Comments and open problems

Incompleteness of the result

Matrices of 3iet preserving morphisms belong to
$\mathrm{E}(3, \mathbb{N}):=\left\{\mathbf{M} \in \mathbb{N}^{3 \times 3} \mid \mathbf{M E M}^{T}= \pm \mathbf{E}\right.$ and $\left.\operatorname{det} \mathbf{M}= \pm 1\right\}$, where $\mathbf{E}=\left(\begin{array}{ccc}0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0\end{array}\right)$.

In contrast to the sturmian case the opposite is not true. $\mathrm{E}(3, \mathbb{N})$ contains matrices associated with morphisms, which are not 3iet preserving.

Hence $C C$ is a factor of $\varphi(C)$ and $\varphi(A)=B C B$.

Comments and open problems

Incompleteness of the result

Matrices of 3iet preserving morphisms belong to
$\mathrm{E}(3, \mathbb{N}):=\left\{\mathbf{M} \in \mathbb{N}^{3 \times 3} \mid \mathbf{M E M}^{T}= \pm \mathbf{E}\right.$ and $\left.\operatorname{det} \mathbf{M}= \pm 1\right\}$, where
$\mathbf{E}=\left(\begin{array}{ccc}0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0\end{array}\right)$.
In contrast to the sturmian case the opposite is not true. $\mathrm{E}(3, \mathbb{N})$ contains matrices associated with morphisms, which are not 3iet preserving.

Example. Consider $\mathbf{M}=\left(\begin{array}{lll}0 & 2 & 1 \\ 2 & 3 & 5 \\ 3 & 0 & 5\end{array}\right)$. Up to permutation of letters we have

$$
\varphi(A)=B^{2} C, \quad \varphi(B)=A^{2} B^{3} C^{5}, \quad \varphi(C)=A^{3} C^{5} .
$$

Hence $C C$ is a factor of $\varphi(C)$ and $\varphi(A)=B C B$.

Comments and open problems

Incompleteness of the result

Matrices of 3iet preserving morphisms belong to
$\mathrm{E}(3, \mathbb{N}):=\left\{\mathbf{M} \in \mathbb{N}^{3 \times 3} \mid \mathbf{M E M}^{T}= \pm \mathbf{E}\right.$ and $\left.\operatorname{det} \mathbf{M}= \pm 1\right\}$, where
$\mathbf{E}=\left(\begin{array}{ccc}0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0\end{array}\right)$.
In contrast to the sturmian case the opposite is not true. $\mathrm{E}(3, \mathbb{N})$ contains matrices associated with morphisms, which are not 3iet preserving.

Example. Consider $\mathbf{M}=\left(\begin{array}{lll}0 & 2 & 1 \\ 2 & 3 & 5 \\ 3 & 0 & 5\end{array}\right)$. Up to permutation of letters we have

$$
\varphi(A)=B^{2} C, \quad \varphi(B)=A^{2} B^{3} C^{5}, \quad \varphi(C)=A^{3} C^{5} .
$$

Hence $C C$ is a factor of $\varphi(C)$ and $\varphi(A)=B C B$.
Take a 3iet word u containing $A A$. As $\varphi(A A)=B C B B C B$, u contains both $B B$ and $C C$.

Comments and open problems

The number of morphisms

The mapping $\varphi \rightarrow \mathbf{M}_{\varphi}$, where φ is a morphism and \mathbf{M}_{φ} is its incidence matrix is not one-to-one.

In sturmian case for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{N}^{2 \times 2}$ with $a d-b c= \pm 1$ there exist $a+b+c+d-1$ different sturmian morphisms.

The same question for matrices of 3iet preserving morphisms is not solved.
The number of generators
The monoid of sturmian morphisms is finitely generated and so is the monoid of their matrix representations.

Let $\Phi_{\text {3iet }}$ be the monoid of 3iet preserving morphisms, and $\mathcal{R}\left(\Phi_{3 i e t}\right)$ the monoid of their matrix representations. None of $\Phi_{\text {3iet }}, \mathcal{R}\left(\Phi_{\text {3iet }}\right)$ or $\mathrm{E}(3, \mathbb{N})$ is finitely generated

Comments and open problems

The number of morphisms

The mapping $\varphi \rightarrow \mathbf{M}_{\varphi}$, where φ is a morphism and \mathbf{M}_{φ} is its incidence matrix is not one-to-one.

In sturmian case for $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathbb{N}^{2 \times 2}$ with $a d-b c= \pm 1$ there exist $a+b+c+d-1$ different sturmian morphisms.

The same question for matrices of 3iet preserving morphisms is not solved.

The number of generators

The monoid of sturmian morphisms is finitely generated and so is the monoid of their matrix representations.

Let $\Phi_{3 i e t}$ be the monoid of 3iet preserving morphisms, and $\mathcal{R}\left(\Phi_{3 i e t}\right)$ the monoid of their matrix representations. None of $\Phi_{\text {3iet }}, \mathcal{R}\left(\Phi_{3 \text { iet }}\right)$ or $\mathrm{E}(3, \mathbb{N})$ is finitely generated.

