Matrices of morphisms preserving 3-interval exchange transformation words

Petr Ambrož
petr.ambroz@fjfi.cvut.cz
Department of Mathematics
Czech Technical University
KM FJFI CVUT, Trojanova 13
12000 Praha 2
CZECH REPUBLIC

Abstract

We study matrices of morphisms preserving the family of words coding 3-interval exchange transformations. It is well known (Berstel, Mignosi and Séébold) that matrices of morphisms preserving sturmian words (i.e. words coding 2-interval exchange transforations with the maximal possible subword complexity) form the monoid

$$
\left\{\boldsymbol{M} \in \mathbb{N}^{2 \times 2} \mid \operatorname{det} \boldsymbol{M}= \pm 1\right\}=\left\{\boldsymbol{M} \in \mathbb{N}^{2 \times 2} \mid \boldsymbol{M} \boldsymbol{E} \boldsymbol{M}^{T}= \pm \boldsymbol{E}\right\}
$$

where $\boldsymbol{E}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
We prove that in the case of 3-interval exchange transformations the matrices preserving words coding these transformations and having the maximal possible subword complexity belong to the monoid

$$
\left\{\boldsymbol{M} \in \mathbb{N}^{3 \times 3} \mid \boldsymbol{M} \boldsymbol{E} \boldsymbol{M}^{T}= \pm \boldsymbol{E} \text { and } \operatorname{det} \boldsymbol{M}= \pm 1\right\}
$$

where $\boldsymbol{E}=\left(\begin{array}{ccc}0 & 1 & 1 \\ -1 & 0 & 1 \\ -1 & -1 & 0\end{array}\right)$.
This is joint work with Z. Masáková and E. Pelantová.

