On the Number of Vertices With a Given Degree in a Galton-Watson Tree

Nariyuki Minami

minami@sakura.cc.tsukuba.ac.jp Institute of Mathematics University of Tsukuba Tsukuba Ibaraki 305-8571 Japan

Abstract

Let $\{\omega\}$ be the realization of the Galton-Watson tree with offspring distribution $\Pi = \{p_n\}_{n=0}^{\infty}$, for which we shall assume $p_0 > 0$ and $p_0 + p_1 < 1$. Namely $\{\omega\}$ is a random tree obtained as the trajectory of a Galton-Watson branching process. We denote by $Z(\omega)$ the total number of vertices, the total progeny, of the tree ω , by $Y_k(\omega)$ the total number of vertices in ω which have exactly k children $(k \ge 0)$, and by $\mathcal{Y}_k(\omega)$ the number of vertices with at most k children. We shall first show that \mathcal{Y}_k can be viewed as the total progeny of another Galton-Watson tree which is hidden in ω . We shall then proceed to discuss the asymptotic behavior, as $n \to \infty$, of the joint probability distribution $P(Z = n; \{Y_k\}_k \in \bullet)$, and show some related limit theorems.