Asymptotics of the Poincaré Functions

Gregory Derfel
derfel@cs.bgu.ac.il
Department of Mathematics
Ben Gurion University
Be'er Sheva 84105
Israël

Abstract
In 1890 H . Poincaré has studied the equation

$$
\begin{equation*}
f(\lambda z)=R(f(z)), \quad z \in \mathbf{C} \tag{1}
\end{equation*}
$$

where $R(z)$ is a rational function and $\lambda \in \mathbf{C}$. He proved that, if $R(0)=0$, $R^{\prime}(0)=\lambda$ and $|\lambda|>1$, then there exists a meromorphic or entire solution of (1). After Poincaré, solutions of (1) are called the Poincaré functions, satisfying the multiplication theorem. Later on, Valiron elaborated the case, where $R(z)=P(z)$ is a polynomial, i.e.

$$
\begin{equation*}
f(\lambda z)=P(f(z)), \quad z \in \mathbf{C} \tag{2}
\end{equation*}
$$

and obtained conditions for the existence of an entire solution $f(z)$. Furthermore, he derived for $M(r)=\max _{|z| \leq r}|f(z)|$ the following asymptotic formula:

$$
\begin{equation*}
\ln M(r) \sim r^{\rho} Q\left(\frac{\ln r}{\ln |\lambda|}\right), \quad r \rightarrow \infty \tag{3}
\end{equation*}
$$

Here $Q(z)$ is a 1-periodic function bounded between two positive constants, $\rho=\frac{\ln m}{\ln |\lambda|}$ and $m=\operatorname{deg} P(z)$.

An interesting example of such equations, which stems from the description of Brownian motion on Sierpinski's gasket, has been studied by Barlow \& Perkins, Grabner \& Woess and others. This is the functional equation

$$
\begin{equation*}
f(5 z)=4 f^{2}(z)-3 f(z) \tag{4}
\end{equation*}
$$

Similar equations arise also in the theory of brancing processes.
In our talk we develope the above results further. Namely, in addition to (3) we obtain asymptotics of entire solutions $f(z)$ on various rays re ${ }^{i \vartheta}$ of the complex plane. It turns out that this heavily depends on the arithmetic nature of λ.

Further refinements are possible when $\lambda>1$ is real and $P(z)$ is a polynomial with real positive coefficients.

Joint work with Fritz Vogl.

