Negative correlations for trees, forests, and Potts model

David G Wagner
dgwagner@math.uwaterloo.ca
Department of Combinatorics $\& \mathcal{O}$ Optimization
University of Waterloo
Waterloo, Ontario N2L 3G1
CANADA

Abstract

The Rayleigh monotonicity property of linear resistive electrical networks can be regarded as a set of inequalities applied to the generating polynomial for spanning trees of a graph. This can can be generalized in several directions, by considering more general matroids, or more informative polynomials. Particularly interesting at the moment is a conjecture of Grimmett and Winkler that the Rayleigh condition should hold for spanning forests of any graph. I'll show how to reduce the even stronger Potts-Rayleigh condition to the case of 3 -connected graphs (or matroids), thereby showing that all series-parallel graphs are Potts-Rayleigh (and thus forest-Rayleigh). This is conjectured to have implications for the enumeration of forests in graphs.

