The lace expansion and the enumeration of self-avoiding walks

Gordon Slade
University of British Columbia
Montreal: February 19, 2007

Abstract

The lace expansion is a recursion relation for the number of self-avoiding walks. We discuss an algorithmic improvement for direct enumeration, called the twostep method. We describe the lace expansion, and explain its recent application to enumerate self-avoiding walks on \mathbb{Z}^{d} up to $n=30$ for $d=3$, and up to $n=24$ steps for all $d \geq 4$, and to extend $1 / d$ expansions.

Joint work with Nathan Clisby (Melbourne) and Richard Liang (Berkeley).
Preprint soon at http://www.math.ubc.ca/~slade.
Research supported by ARC and NSERC.

Simple random walk

Start at $0 \in \mathbb{Z}^{d}$. Choose one of the $2 d$ neighbours at random and step to it. Continue with independent steps to a neighbour of current position.

Let $\omega(n)$ be the position after n steps. Let $s_{n}(x)$ be the number of n-step SRWs with $\omega(n)=x$.
Let s_{n} be the number of n-step SRWs.
Recursion relation: $s_{n}(x)=\sum_{y \in \mathbb{Z}^{d}} s_{1}(y) s_{n-1}(x-y)$, which can easily be solved. Sum over $x: s_{n}=2 d s_{n-1}$ which has solution $s_{n}=(2 d)^{n}$.

Mean-square displacement: $E|\omega(n)|^{2}=n$.

Self-avoiding walk

Let $\mathcal{S}_{n}(x)$ be the set of $\omega:\{0,1, \ldots, n\} \rightarrow \mathbb{Z}^{d}$ with:
$\omega(0)=0, \omega(n)=x,|\omega(i+1)-\omega(i)|=1$, and $\omega(i) \neq \omega(j)$ for all $i \neq j$.
Let $\mathcal{S}_{n}=\cup_{x \in \mathbb{Z}}{ }^{d} \mathcal{S}_{n}(x)$
Declare all walks in \mathcal{S}_{n} to be equally likely: each has probability c_{n}^{-1} where $c_{n}=\left|\mathcal{S}_{n}\right|$.

Interested in c_{n} and $E|\omega(n)|^{2}=c_{n}^{-1} \sum_{\omega \in \mathcal{S}_{n}}|\omega(n)|^{2}=c_{n}^{-1} \sum_{x \in \mathbb{Z}^{d}}|x|^{2} c_{n}(x)$.

Previously known values of c_{n}

$$
\begin{aligned}
& d=2 \text { (Jensen 2004): } c_{71}=4190893020903935054619120005916 \\
& d=3 \text { (MacDonald et al 2000): } c_{26}=549493796867100942 \\
& d=4 \text { (Chen-Lin 2003): } c_{19}=8639846411760440 \\
& d=5 \text { (Chen-Lin 2003): } c_{15}=192003889675210 \\
& d=6 \text { (Chen-Lin 2003): } c_{14}=373292253262692
\end{aligned}
$$

Critical exponents

Connective constant $\mu=\lim _{n \rightarrow \infty} c_{n}^{1 / n}$ exists because $c_{n+m} \leq c_{n} c_{m}$.
Easy: $d \leq \mu \leq 2 d-1$.
Conjectured asymptotic behaviour:

$$
c_{n} \sim A \mu^{n} n^{\gamma-1}, \quad E|\omega(n)|^{2} \sim D n^{2 \nu}
$$

with universal critical exponents γ and ν (and \log corrections for $d=4$).
For $d=2: \gamma=\frac{43}{32}$ and $\nu=\frac{3}{4}$ will follow if scaling limit is $\mathrm{SLE}_{8 / 3}$ (Lawler-SchrammWerner).
For $d=3$: no rigorous results.
For $d=4: \quad \gamma=1$ and $\nu=\frac{1}{2}$ with $(\log n)^{1 / 4}$ corrections for hierarchical lattice (Brydges-Imbrie 2003).
For $d \geq 5: \gamma=1$ and $\nu=\frac{1}{2}$ (Hara-Slade 1992).
How bad is it for $d=2,3,4$? Best bound is $\mu^{n} \leq c_{n} \leq \mu^{n} e^{C n^{2 /(d+2)} \log n}$.
Not proved that $c n \leq E|\omega(n)|^{2} \leq C n^{2-\epsilon}$.

The two-step method

This is an exponentially improved method for direct enumeration of SAWs.
A 2-step walk Ω is a SAW which takes steps $\pm e_{i} \pm e_{j}$.
The weight $W(\Omega)$ is the number of $2 n$-step SAWs whose restriction to every second vertex is Ω.

Then $c_{2 n}$ is the sum of $W(\Omega)$ over all Ω that take n steps.
In practice we find for $d=3$ that the number of two-step walks taking n steps grows like $\approx(4.0)^{2 n}$, yielding an exponential improvement over $\mu^{2 n} \approx(4.68)^{2 n}$.

The weight $W(\Omega)$ can be calculated in time $O(n)$:

The two-step method: Allocation graph

$W(\Omega)$ is computed using the allocation graph $\mathcal{G}_{\Omega}: W(\Omega)=I_{\Omega} 2^{\left|\mathcal{C}_{\Omega}\right|} \prod_{T \in \mathcal{I}_{\Omega}} N_{T}$

where $\left|\mathcal{C}_{\Omega}\right|$ is the number of unicyclic components, \mathcal{T}_{Ω} is the set of tree components, N_{T} is the number of vertices of a tree T, and

$$
I_{\Omega}= \begin{cases}1 & \text { if no component has two or more loops and/or cycles } \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. Count the number of admissible orientations of the allocation graph.

The lace expansion

Invented by Brydges-Spencer (1985) to analyse weakly SAW for $d>4$.
Subsequently extended by several people to analyse:
lattice trees and lattice animals for $d>8$,
percolation for $d>6$,
oriented percolation, contact process, Ising model for $d>4$,
SAW for $d \geq 5$.
Reference: G. Slade, The Lace Expansion and its Applications, Springer LNM 1879, (2006).

The lace expansion: Recursion relation

Identifies a function $\pi_{m}(x)$ such that for $n \geq 1$,

$$
c_{n}(x)=\sum_{y \in \mathbb{Z}^{d}} c_{1}(y) c_{n-1}(x-y)+\sum_{m=2}^{n} \sum_{y \in \mathbb{Z}^{d}} \pi_{m}(y) c_{n-m}(x-y) .
$$

Let $\pi_{m}=\sum_{y \in \mathbb{Z}^{d}} \pi_{m}(y)$ and sum over $x \in \mathbb{Z}^{d}$ to get:

$$
c_{n}=2 d c_{n-1}+\sum_{m=2}^{n} \pi_{m} c_{n-m} .
$$

Knowledge of $\left(\pi_{m}\right)_{2 \leq m \leq n}$ is equivalent to knowledge of $\left(c_{m}\right)_{0 \leq m \leq n}$.

The lace expansion: smaller enumeration task

We enumerate π_{m} by counting lace graphs, which are self-avoiding returns and their generalisations.

In practice, we find that the ratio of SAWs to lace graphs is approximately

$$
\begin{aligned}
d & =2, n=30: & & 36 \\
d & =3, n=30: & & 525 \\
d & =4, n=24: & & 1700 \\
d & =5, n=24: & & 6200 \\
d & =6, n=24: & & 20000
\end{aligned}
$$

Determination of $\left(\pi_{m}\right)_{m \leq M}$ in dimensions $d \leq \frac{M}{2}$ gives $\left(\pi_{m}\right)_{m \leq M}$ in all dimensions d. Thus $\left(\pi_{m}\right)_{m \leq 24}$ in dimensions $d \leq 12$ gives $\left(c_{n}\right)_{n \leq 24}$ in all dimensions d.

The lace expansion: graphs

Given $\omega \in \mathcal{W}_{m}(x)=$ set of m-step simple random walks that start at the origin and end at x, let

$$
U_{s t}(\omega)=\left\{\begin{aligned}
-1 & \text { if } \omega(s)=\omega(t) \\
0 & \text { if } \omega(s) \neq \omega(t) .
\end{aligned}\right.
$$

For $0 \leq a<b$, let

$$
K[a, b]=K_{\omega}[a, b]=\prod_{a \leq s<t \leq b}\left(1+U_{s t}\right) .
$$

Then

$$
c_{n}(x)=\sum_{\omega \in \mathcal{W}_{n}(x)} K_{\omega}[0, n] .
$$

A graph is a set of pairs $s t$ with $s<t$. Let $\mathcal{B}_{[a, b]}$ denote the set of all graphs on $[a, b]$.

The lace expansion: connected graphs

Then

$$
K[0, n]=\prod_{0 \leq s<t \leq n}\left(1+U_{s t}\right)=\sum_{\Gamma \in \mathcal{B}_{[0, n]}} \prod_{s t \in \Gamma} U_{s t} .
$$

We say Γ is connected on $[a, b]$ if, as intervals of real numbers, $\cup_{s t \in \Gamma}(s, t)=(a, b)$. The set of all connected graphs on $[a, b]$ is denoted $\mathcal{G}_{[a, b]}$. Let

$$
J[0, n]=\sum_{\Gamma \in \mathcal{G}_{[0, n]}} \prod_{s t \in \Gamma} U_{s t} .
$$

Then

$$
K[0, n]=K[1, n]+\sum_{m=2}^{n} J[0, m] K[m, n] .
$$

Insert in

$$
c_{n}(x)=\sum_{\omega \in \mathcal{W}_{n}(x)} K_{\omega}[0, n] .
$$

First term gives

$$
\sum_{\omega \in \mathcal{W}_{n}(x)} K_{\omega}[1, n]=\sum_{y \in \mathbb{Z}^{d}} c_{1}(y) c_{n-1}(x-y)
$$

The lace expansion: factorisation

Second term is
$\sum_{m=2}^{n} \sum_{\omega \in \mathcal{W}_{n}(x)} J_{\omega}[0, m] K_{\omega}[m, n]=\sum_{y} \sum_{m=2}^{n} \sum_{\omega_{1} \in \mathcal{W}_{m}(y)} J_{\omega_{1}}[0, m] \sum_{\omega_{2} \in \mathcal{W}_{n-m}(x-y)} K_{\omega_{2}}[0, n-m]$.
This is

$$
\sum_{y} \sum_{m=2}^{n} \pi_{m}(y) c_{n-m}(x-y)
$$

with

$$
\pi_{m}(y)=\sum_{\omega \in \mathcal{W}_{m}(y)} J_{\omega}[0, m]
$$

Altogether,

$$
c_{n}(x)=\sum_{y} c_{1}(y) c_{n-1}(x-y)+\sum_{y} \sum_{m=2}^{n} \pi_{m}(y) c_{n-m}(x-y)
$$

The lace expansion: laces

Given $\Gamma \in \mathcal{G}_{[0, n]}$, choose a 'minimal' connected $L \subset \Gamma$, and let $\mathcal{C}(L)$ denote the edges which are compatible with L in the sense that L remains the minimal choice for $\Gamma=L \cup\{s t\}$.
Examples of laces L with $N=1,2,3,4$ edges:

The lace expansion: resummation

Then

$$
\begin{aligned}
J[0, m] & =\sum_{L \in \mathcal{L}_{[0, m]}} \prod_{s t \in L} U_{s t} \sum_{\Gamma \in \mathcal{G}_{[0, m]}(L)} \prod_{s^{\prime} t^{\prime} \in \Gamma \backslash L} U_{s^{\prime} t^{\prime}} \\
& =\sum_{L \in \mathcal{L}_{[0, m]}} \prod_{s t \in L} U_{s t} \prod_{s^{\prime} t^{\prime} \in \mathcal{C}(L)}\left(1+U_{s^{\prime} t^{\prime}}\right) \\
& =\sum_{N=1}^{\infty}(-1)^{N} \sum_{L \in \mathcal{L}_{[0, m]}^{(N)}} \prod_{s t \in L}\left[-U_{s t}\right] \prod_{s^{\prime} t^{\prime} \in \mathcal{C}(L)}\left(1+U_{s^{\prime} t^{\prime}}\right)
\end{aligned}
$$

so

$$
\pi_{m}(x)=\sum_{N=1}^{\infty}(-1)^{N} \pi_{m}^{(N)}(x)
$$

where

$$
\pi_{m}^{(N)}(x)=\sum_{\omega \in \mathcal{W}_{m}(x)} \sum_{L \in \mathcal{L}_{[0, m]}^{(N)}} \prod_{s t \in L}\left[-U_{s t}(\omega)\right] \prod_{s^{\prime} t^{\prime} \in \mathcal{C}(L)}\left(1+U_{s^{\prime} t^{\prime}}(\omega)\right)
$$

The lace expansion: lace graphs

$$
\pi_{m}^{(N)}(x)=\sum_{\omega \in \mathcal{W}_{m}(x)} \sum_{L \in \mathcal{L}_{[0, m]}^{(N)}} \prod_{s t \in L}\left[-U_{s t}(\omega)\right] \prod_{s^{\prime} t^{\prime} \in \mathcal{C}(L)}\left(1+U_{s^{\prime} t^{\prime}}(\omega)\right)
$$

The lace graphs are the walks that give nonzero products in the above sum, and this is what we enumerate.

Lace graphs for $N=1,2,3,4,11$.

Values of $\pi_{m, \delta}$:

m	$\delta=2$	$\delta=3$	$\delta=4$	$\delta=5$	$\delta=6$
4	-1	0	0	0	0
5	3	-8	0	0	0
6	19	-45	0	0	0
7	-50	-86	-27	0	0
8	-305	736	-1511	5297	-25566

Results of enumerations

$$
\begin{aligned}
& \text { For } d=3 \\
& \quad c_{26}=549493796867100942 \\
& c_{30}=270569905525454674614 \\
& c_{30} / c_{26}=492.3 \ldots
\end{aligned}
$$

For $d=4$:
$c_{19}=8639846411760440$
$c_{24}=124852857467211187784$
$c_{24} / c_{19}=14450.8 \ldots$

For $d=5$:
$c_{15}=192003889675210$
$c_{24}=63742525570299581210090$
$c_{24} / c_{15}=3.3 \times 10^{8}$
For $d=6$:
$c_{14}=373292253262692$
$c_{24}=8689265092167904101731532$
$c_{24} / c_{14}=2.3 \times 10^{10}$

Results of enumerations: CPU time

Self-avoiding polygons $\pi_{m}^{(1)}$:
$d=3, m=30$ took 450 CPU hours;
$d=3, m=32$ took 5000 CPU hours;
$d=4, m=26$ took 180 CPU hours;
$d \geq 2, m=24$ took a total of 980 CPU hours.
Lace graph enumerations π_{m} :
$d=3, m=30$ took 14400 CPU hours;
$d \geq 2, m=24$ took 3400 CPU hours.

Self-avoiding walks c_{n} :
$d=3, n=30$ took 15000 hours;
$d \geq 2, n=24$ took 4400 hours.

$1 / d$ expansions

Recall the recursion relation

$$
c_{n}=2 d c_{n-1}+\sum_{m=2}^{n} \pi_{m} c_{n-m}
$$

Define the generating functions

$$
\chi(z)=\sum_{n=0}^{\infty} c_{n} z^{n}, \quad \Pi(z)=\sum_{m=2}^{\infty} \pi_{m} z^{m}
$$

The recursion relation gives

$$
\chi(z)=\frac{1}{1-2 d z-\Pi(z)}
$$

The radius of convergence of $\chi(z)$ is $z_{c}=\mu^{-1}$, and $\chi\left(z_{c}\right)=\infty$, so

$$
1-2 d z_{c}-\Pi\left(z_{c}\right)=0
$$

$1 / d$ expansions: truncation

The critical point is given implicitly by

$$
z_{c}=\frac{1}{2 d}\left[1-\Pi\left(z_{c}\right)\right]=\frac{1}{2 d}\left[1-\sum_{m=2}^{\infty} \sum_{M=1}^{\infty}(-1)^{M} \pi_{m}^{(M)} z_{c}^{m}\right] .
$$

Hara-Slade used this to prove that there exist $a_{i} \in \mathbb{Z}$ such that

$$
z_{c} \sim \sum_{i=1}^{\infty} \frac{a_{i}}{(2 d)^{i}} \quad \text { as } d \rightarrow \infty
$$

An old estimate gives (in high d)

$$
\sum_{m=2}^{\infty} \sum_{M=N}^{\infty} m \pi_{m}^{(M)} z_{c}^{m} \leq C_{N} d^{-N}
$$

and we prove (in high d)

$$
\sum_{m=j}^{\infty} m \pi_{m}^{(M)} z_{c}^{m} \leq C_{M, j} d^{-j / 2}
$$

$1 / d$ expansions: results

Upshot: Knowledge of $\pi_{m}^{(M)}$ for $m \leq 2 N$ and $M \leq N$ permits the recursive calculation of a_{i} for $i=1, \ldots, N+1$.

Using $\pi_{m}^{(M)}$ for $m \leq 24$ and $M \leq 12$ gives

$$
\begin{aligned}
\mu= & 2 d-1-\frac{1}{2 d}-\frac{3}{(2 d)^{2}}-\frac{16}{(2 d)^{3}}-\frac{102}{(2 d)^{4}}-\frac{729}{(2 d)^{5}}-\frac{5533}{(2 d)^{6}}-\frac{42229}{(2 d)^{7}} \\
& -\frac{288761}{(2 d)^{8}}-\frac{1026328}{(2 d)^{9}}+\frac{21070667}{(2 d)^{10}}+\frac{780280468}{(2 d)^{11}}+O\left(\frac{1}{(2 d)^{12}}\right) .
\end{aligned}
$$

Presumably the full asymptotic series is divergent. Note sign change at order $(2 d)^{-10}$.
Similar expansions result for the amplitudes A and D, using e.g.,

$$
\frac{1}{A}=2 d z_{c}+\sum_{m=2}^{\infty} m \pi_{m} z_{c}^{m}
$$

Future work

- Complete series analysis: μ, γ, ν.
- Attempt to extend the two-step method to the k-step method, to extend series for $d=3$.
- We find that π_{m} is alternating in sign whenever its values are known ($m \leq 71$ for $d=2$). Can this be proved? Relate to antiferromagnetic singularity of $\chi(z)$.

