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Abstract
The lace expansion is a recursion relation for the number of self-avoiding walks.

We discuss an algorithmic improvement for direct enumeration, called the two-

step method. We describe the lace expansion, and explain its recent application to

enumerate self-avoiding walks on Zd up to n = 30 for d = 3, and up to n = 24

steps for all d ≥ 4, and to extend 1/d expansions.
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Simple random walk

Start at 0 ∈ Zd. Choose one of the 2d neighbours at random and step to it. Continue

with independent steps to a neighbour of current position.

Let ω(n) be the position after n steps. Let sn(x) be the number of n-step SRWs with

ω(n) = x.

Let sn be the number of n-step SRWs.

Recursion relation: sn(x) =
P

y∈Zd s1(y)sn−1(x− y), which can easily be solved.

Sum over x: sn = 2dsn−1 which has solution sn = (2d)n.

Mean-square displacement: E|ω(n)|2 = n.

quad1



Self-avoiding walk

Let Sn(x) be the set of ω : {0, 1, . . . , n} → Zd with:

ω(0) = 0, ω(n) = x, |ω(i + 1)− ω(i)| = 1, and ω(i) 6= ω(j) for all i 6= j.

Let Sn = ∪x∈ZdSn(x)

Declare all walks in Sn to be equally likely: each has probability c−1
n where cn = |Sn|.

Interested in cn and E|ω(n)|2 = c−1
n

P
ω∈Sn

|ω(n)|2 = c−1
n

P
x∈Zd |x|2cn(x).

quad2



Previously known values of cn

d = 2 (Jensen 2004): c71 = 4 190 893 020 903 935 054 619 120 005 916

d = 3 (MacDonald et al 2000): c26 = 549 493 796 867 100 942

d = 4 (Chen–Lin 2003): c19 = 8 639 846 411 760 440

d = 5 (Chen–Lin 2003): c15 = 192 003 889 675 210

d = 6 (Chen–Lin 2003): c14 = 373 292 253 262 692

quad3



Critical exponents

Connective constant µ = limn→∞ c1/n
n exists because cn+m ≤ cncm.

Easy: d ≤ µ ≤ 2d− 1.

Conjectured asymptotic behaviour:

cn ∼ Aµ
n
n

γ−1
, E|ω(n)|2 ∼ Dn

2ν

with universal critical exponents γ and ν (and log corrections for d = 4).

For d = 2: γ = 43
32 and ν = 3

4 will follow if scaling limit is SLE8/3 (Lawler–Schramm–

Werner).

For d = 3: no rigorous results.

For d = 4: γ = 1 and ν = 1
2 with (log n)1/4 corrections for hierarchical lattice

(Brydges–Imbrie 2003).

For d ≥ 5: γ = 1 and ν = 1
2 (Hara–Slade 1992).

How bad is it for d = 2, 3, 4? Best bound is µn ≤ cn ≤ µneCn2/(d+2) log n.

Not proved that cn ≤ E|ω(n)|2 ≤ Cn2−ε.

quad4



The two-step method

This is an exponentially improved method for direct enumeration of SAWs.

A 2-step walk Ω is a SAW which takes steps ±ei ± ej.

The weight W (Ω) is the number of 2n-step SAWs whose restriction to every second

vertex is Ω.

Then c2n is the sum of W (Ω) over all Ω that take n steps.

In practice we find for d = 3 that the number of two-step walks taking n steps grows like

≈ (4.0)2n, yielding an exponential improvement over µ2n ≈ (4.68)2n.

The weight W (Ω) can be calculated in time O(n):

quad5



The two-step method: Allocation graph

W (Ω) is computed using the allocation graph GΩ: W (Ω) = IΩ2|CΩ|
Q

T∈TΩ NT
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where |CΩ| is the number of unicyclic components, TΩ is the set of tree components, NT

is the number of vertices of a tree T , and

IΩ =


1 if no component has two or more loops and/or cycles

0 otherwise.

Proof. Count the number of admissible orientations of the allocation graph.

quad6



The lace expansion

Invented by Brydges–Spencer (1985) to analyse weakly SAW for d > 4.

Subsequently extended by several people to analyse:

lattice trees and lattice animals for d > 8,

percolation for d > 6,

oriented percolation, contact process, Ising model for d > 4,

SAW for d ≥ 5.

Reference: G. Slade, The Lace Expansion and its Applications, Springer LNM 1879, (2006).

quad7



The lace expansion: Recursion relation

Identifies a function πm(x) such that for n ≥ 1,

cn(x) =
X

y∈Zd

c1(y)cn−1(x− y) +

nX
m=2

X

y∈Zd

πm(y)cn−m(x− y).

Let πm =
P

y∈Zd πm(y) and sum over x ∈ Zd to get:

cn = 2dcn−1 +

nX
m=2

πmcn−m.

Knowledge of (πm)2≤m≤n is equivalent to knowledge of (cm)0≤m≤n.

quad8



The lace expansion: smaller enumeration task

We enumerate πm by counting lace graphs, which are self-avoiding returns and their

generalisations.

In practice, we find that the ratio of SAWs to lace graphs is approximately

d = 2, n = 30 : 36

d = 3, n = 30 : 525

d = 4, n = 24 : 1700

d = 5, n = 24 : 6200

d = 6, n = 24 : 20000

Determination of (πm)m≤M in dimensions d ≤ M
2 gives (πm)m≤M in all dimensions d.

Thus (πm)m≤24 in dimensions d ≤ 12 gives (cn)n≤24 in all dimensions d.

quad9



The lace expansion: graphs

Given ω ∈ Wm(x) = set of m-step simple random walks that start at the origin and end

at x, let

Ust(ω) =

 −1 if ω(s) = ω(t)

0 if ω(s) 6= ω(t).

For 0 ≤ a < b, let

K[a, b] = Kω[a, b] =
Y

a≤s<t≤b

(1 + Ust).

Then

cn(x) =
X

ω∈Wn(x)

Kω[0, n].

A graph is a set of pairs st with s < t. Let B[a,b] denote the set of all graphs on [a, b].

quad10



The lace expansion: connected graphs

Then

K[0, n] =
Y

0≤s<t≤n

(1 + Ust) =
X

Γ∈B[0,n]

Y

st∈Γ

Ust.

We say Γ is connected on [a, b] if, as intervals of real numbers, ∪st∈Γ(s, t) = (a, b).

The set of all connected graphs on [a, b] is denoted G[a,b]. Let

J[0, n] =
X

Γ∈G[0,n]

Y

st∈Γ

Ust.

Then

K[0, n] = K[1, n] +
nX

m=2

J[0, m]K[m, n].

Insert in

cn(x) =
X

ω∈Wn(x)

Kω[0, n].

First term gives X

ω∈Wn(x)

Kω[1, n] =
X

y∈Zd

c1(y)cn−1(x− y).

quad11



The lace expansion: factorisation

Second term is

nX
m=2

X

ω∈Wn(x)

Jω[0, m]Kω[m, n] =
X

y

nX
m=2

X

ω1∈Wm(y)

Jω1
[0, m]

X

ω2∈Wn−m(x−y)

Kω2
[0, n−m].

This is X
y

nX
m=2

πm(y)cn−m(x− y)

with

πm(y) =
X

ω∈Wm(y)

Jω[0, m].

Altogether,

cn(x) =
X

y

c1(y)cn−1(x− y) +
X

y

nX
m=2

πm(y)cn−m(x− y).

quad12



The lace expansion: laces

Given Γ ∈ G[0,n], choose a ‘minimal’ connected L ⊂ Γ,

and let C(L) denote the edges which are compatible with L in the sense that L remains

the minimal choice for Γ = L ∪ {st}.
Examples of laces L with N = 1, 2, 3, 4 edges:

s1 t1

s1 s2 t1 t2

s1 s2 t1 s3 t2 t3

s1 s2 t1 s3 t2 s4t3t4

quad13



The lace expansion: resummation

Then

J[0, m] =
X

L∈L[0,m]

Y

st∈L

Ust

X

Γ∈G[0,m](L)

Y

s′t′∈Γ\L
Us′t′

=
X

L∈L[0,m]

Y

st∈L

Ust

Y

s′t′∈C(L)

(1 + Us′t′)

=

∞X

N=1

(−1)
N

X

L∈L(N)
[0,m]

Y

st∈L

[−Ust]
Y

s′t′∈C(L)

(1 + Us′t′),

so

πm(x) =

∞X

N=1

(−1)
N

π
(N)
m (x)

where

π
(N)
m (x) =

X

ω∈Wm(x)

X

L∈L(N)
[0,m]

Y

st∈L

[−Ust(ω)]
Y

s′t′∈C(L)

(1 + Us′t′(ω)).

quad14



The lace expansion: lace graphs

π
(N)
m (x) =

X

ω∈Wm(x)

X

L∈L(N)
[0,m]

Y

st∈L

[−Ust(ω)]
Y

s′t′∈C(L)

(1 + Us′t′(ω)).

The lace graphs are the walks that give nonzero products in the above sum, and this is

what we enumerate.

Lace graphs for N = 1, 2, 3, 4, 11.

quad15



Values of πm,δ:

m δ = 2 δ = 3 δ = 4 δ = 5 δ = 6
4 -1 0 0 0 0
5 3 0 0 0 0
6 -8 -4 0 0 0
7 19 15 0 0 0
8 -50 -86 -27 0 0
9 121 300 106 0 0

10 - 305 -1 511 -1 340 - 248 0
11 736 5 297 5 333 966 0
12 -1 853 -25 566 -52 252 -25 020 -2 830
13 4 531 91 234 211 403 100 988 10 755
14 -11 444 - 435 330 -1 907 566 -1 850 364 - 515 509
15 28 294 1 586 306 7 854 601 7 635 822 2 029 500
16 -71 803 -7 568 792 -68 777 498 - 123 248 980 -64 816 437
17 179 006 28 105 857 288 074 727 517 006 517 260 695 401
18 - 455 588 - 134 512 520 -2 498 227 824 -7 899 351 270 -7 074 329 136
19 1 142 357 507 675 751 10 626 960 167 33 569 520 427 28 860 719 280
20 -2 914 236 -2 438 375 322 -92 047 793 514 - 500 752 577 733 - 724 291 034 691
21 7 341 457 9 330 924 963 396 919 882 288 2 150 581 793 271 2 984 307 507 943
22 -18 768 621 -44 965 008 206 -3 445 692 397 195 -31 789 616 257 271 -72 005 867 458 629
23 47 466 002 174 103 216 625 15 035 569 992 917 137 713 940 393 321 298 797 296 949 195
24 - 121 579 349 - 841 380 441 626 - 130 974 140 581 412 -2 032 548 406 479 564 -7 072 798 632 884 530
25 308 478 355 3 290 830 791 268
26 - 791 455 148 -15 941 476 401 251
27 2 013 666 265 62 897 919 980 935
28 -5 174 044 897 - 305 298 415 550 796
29 13 195 280 922 1 213 812 491 872 081
30 -33 949 508 883 -5 901 490 794 431 276

quad16



Results of enumerations

For d = 3:

c26 = 549 493 796 867 100 942

c30 = 270 569 905 525 454 674 614

c30/c26 = 492.3 . . .

For d = 4:

c19 = 8 639 846 411 760 440

c24 = 124 852 857 467 211 187 784

c24/c19 = 14450.8 . . .

For d = 5:

c15 = 192 003 889 675 210

c24 = 63 742 525 570 299 581 210 090

c24/c15 = 3.3× 108

For d = 6:

c14 = 373 292 253 262 692

c24 = 8 689 265 092 167 904 101 731 532

c24/c14 = 2.3× 1010

quad17



Results of enumerations: CPU time

Self-avoiding polygons π(1)
m :

d = 3, m = 30 took 450 CPU hours;

d = 3, m = 32 took 5000 CPU hours;

d = 4, m = 26 took 180 CPU hours;

d ≥ 2, m = 24 took a total of 980 CPU hours.

Lace graph enumerations πm:

d = 3, m = 30 took 14400 CPU hours;

d ≥ 2, m = 24 took 3400 CPU hours.

Self-avoiding walks cn:

d = 3, n = 30 took 15000 hours;

d ≥ 2, n = 24 took 4400 hours.

quad18



1/d expansions

Recall the recursion relation

cn = 2dcn−1 +

nX
m=2

πmcn−m.

Define the generating functions

χ(z) =
∞X

n=0

cnz
n
, Π(z) =

∞X
m=2

πmz
m

.

The recursion relation gives

χ(z) =
1

1− 2dz − Π(z)
.

The radius of convergence of χ(z) is zc = µ−1, and χ(zc) = ∞, so

1− 2dzc − Π(zc) = 0.

quad19



1/d expansions: truncation

The critical point is given implicitly by

zc =
1

2d
[1− Π(zc)] =

1

2d

"
1−

∞X
m=2

∞X

M=1

(−1)
M

π
(M)
m z

m
c

#
.

Hara–Slade used this to prove that there exist ai ∈ Z such that

zc ∼
∞X

i=1

ai

(2d)i
as d →∞.

An old estimate gives (in high d)

∞X
m=2

∞X

M=N

mπ
(M)
m z

m
c ≤ CNd

−N

and we prove (in high d)

∞X

m=j

mπ
(M)
m z

m
c ≤ CM,jd

−j/2
.

quad20



1/d expansions: results

Upshot: Knowledge of π(M)
m for m ≤ 2N and M ≤ N permits the recursive calculation

of ai for i = 1, . . . , N + 1.

Using π(M)
m for m ≤ 24 and M ≤ 12 gives

µ = 2d− 1− 1

2d
− 3

(2d)2
− 16

(2d)3
− 102

(2d)4
− 729

(2d)5
− 5533

(2d)6
− 42229

(2d)7

−288761

(2d)8
− 1026328

(2d)9
+

21070667

(2d)10
+

780280468

(2d)11
+ O

„
1

(2d)12

«
.

Presumably the full asymptotic series is divergent. Note sign change at order (2d)−10.

Similar expansions result for the amplitudes A and D, using e.g.,

1

A
= 2dzc +

∞X
m=2

mπmz
m
c

quad21



Future work

• Complete series analysis: µ, γ, ν.

• Attempt to extend the two-step method to the k-step method, to extend series for

d = 3.

• We find that πm is alternating in sign whenever its values are known (m ≤ 71 for

d = 2). Can this be proved? Relate to antiferromagnetic singularity of χ(z).

quad22


