# The lace expansion and the enumeration of self-avoiding walks

Gordon Slade University of British Columbia

Montreal: February 19, 2007

#### Abstract

The lace expansion is a recursion relation for the number of self-avoiding walks. We discuss an algorithmic improvement for direct enumeration, called the two-step method. We describe the lace expansion, and explain its recent application to enumerate self-avoiding walks on  $\mathbb{Z}^d$  up to n = 30 for d = 3, and up to n = 24 steps for all  $d \ge 4$ , and to extend 1/d expansions.

Joint work with Nathan Clisby (Melbourne) and Richard Liang (Berkeley).

```
Preprint soon at http://www.math.ubc.ca/~slade.
Research supported by ARC and NSERC.
```

#### Simple random walk

Start at  $0 \in \mathbb{Z}^d$ . Choose one of the 2*d* neighbours at random and step to it. Continue with independent steps to a neighbour of current position.



Let  $\omega(n)$  be the position after n steps. Let  $s_n(x)$  be the number of n-step SRWs with  $\omega(n) = x$ .

Let  $s_n$  be the number of *n*-step SRWs.

Recursion relation:  $s_n(x) = \sum_{y \in \mathbb{Z}^d} s_1(y) s_{n-1}(x-y)$ , which can easily be solved. Sum over x:  $s_n = 2ds_{n-1}$  which has solution  $s_n = (2d)^n$ .

Mean-square displacement:  $E|\omega(n)|^2 = n$ .

#### Self-avoiding walk

Let 
$$S_n(x)$$
 be the set of  $\omega : \{0, 1, \ldots, n\} \to \mathbb{Z}^d$  with:  
 $\omega(0) = 0, \, \omega(n) = x, \, |\omega(i+1) - \omega(i)| = 1, \text{ and } \omega(i) \neq \omega(j) \text{ for all } i \neq j.$   
Let  $S_n = \bigcup_{x \in \mathbb{Z}^d} S_n(x)$ 

Declare all walks in  $S_n$  to be equally likely: each has probability  $c_n^{-1}$  where  $c_n = |S_n|$ .



Interested in  $c_n$  and  $E|\omega(n)|^2 = c_n^{-1} \sum_{\omega \in \mathcal{S}_n} |\omega(n)|^2 = c_n^{-1} \sum_{x \in \mathbb{Z}^d} |x|^2 c_n(x).$ 

#### Previously known values of $c_n$

- d = 2 (Jensen 2004):  $c_{71} = 4\,190\,893\,020\,903\,935\,054\,619\,120\,005\,916$
- d = 3 (MacDonald et al 2000):  $c_{26} = 549\,493\,796\,867\,100\,942$
- d = 4 (Chen–Lin 2003):  $c_{19} = 8\,639\,846\,411\,760\,440$
- d = 5 (Chen–Lin 2003):  $c_{15} = 192\,003\,889\,675\,210$
- d = 6 (Chen–Lin 2003):  $c_{14} = 373\,292\,253\,262\,692$

#### **Critical exponents**

Connective constant  $\mu = \lim_{n \to \infty} c_n^{1/n}$  exists because  $c_{n+m} \leq c_n c_m$ . Easy:  $d \leq \mu \leq 2d - 1$ .

Conjectured asymptotic behaviour:

$$c_n \sim A\mu^n n^{\gamma-1}, \quad E|\omega(n)|^2 \sim Dn^{2\nu}$$

with universal critical exponents  $\gamma$  and  $\nu$  (and log corrections for d = 4).

For d = 2:  $\gamma = \frac{43}{32}$  and  $\nu = \frac{3}{4}$  will follow if scaling limit is  $SLE_{8/3}$  (Lawler-Schramm-Werner). For d = 3: no rigorous results. For d = 4:  $\gamma = 1$  and  $\nu = \frac{1}{2}$  with  $(\log n)^{1/4}$  corrections for hierarchical lattice (Brydges-Imbrie 2003). For  $d \ge 5$ :  $\gamma = 1$  and  $\nu = \frac{1}{2}$  (Hara-Slade 1992).

How bad is it for d = 2, 3, 4? Best bound is  $\mu^n \leq c_n \leq \mu^n e^{Cn^{2/(d+2)} \log n}$ . Not proved that  $cn \leq E |\omega(n)|^2 \leq Cn^{2-\epsilon}$ .

#### The two-step method

This is an exponentially improved method for direct enumeration of SAWs.

A 2-step walk  $\Omega$  is a SAW which takes steps  $\pm e_i \pm e_j$ . The weight  $W(\Omega)$  is the number of 2*n*-step SAWs whose restriction to every second

vertex is  $\Omega$ .

Then  $c_{2n}$  is the sum of  $W(\Omega)$  over all  $\Omega$  that take n steps.

In practice we find for d = 3 that the number of two-step walks taking n steps grows like  $\approx (4.0)^{2n}$ , yielding an exponential improvement over  $\mu^{2n} \approx (4.68)^{2n}$ .

The weight  $W(\Omega)$  can be calculated in time O(n):

#### The two-step method: Allocation graph

 $W(\Omega)$  is computed using the allocation graph  $\mathcal{G}_{\Omega}$ :  $W(\Omega) = I_{\Omega} 2^{|\mathcal{C}_{\Omega}|} \prod_{T \in \mathcal{T}_{\Omega}} N_{T}$ 



where  $|C_{\Omega}|$  is the number of unicyclic components,  $T_{\Omega}$  is the set of tree components,  $N_T$  is the number of vertices of a tree T, and

$$I_{\Omega} = \begin{cases} 1 & \text{if no component has two or more loops and/or cycles} \\ 0 & \text{otherwise.} \end{cases}$$

**Proof.** Count the number of *admissible* orientations of the allocation graph.

#### The lace expansion

Invented by Brydges–Spencer (1985) to analyse weakly SAW for d > 4.

Subsequently extended by several people to analyse:

lattice trees and lattice animals for d > 8,

```
percolation for d > 6,
```

oriented percolation, contact process, Ising model for d > 4,

SAW for  $d \geq 5$ .

Reference: G. Slade, The Lace Expansion and its Applications, Springer LNM 1879, (2006).

#### The lace expansion: Recursion relation

Identifies a function  $\pi_m(x)$  such that for  $n \geq 1$ ,

$$c_n(x) = \sum_{y \in \mathbb{Z}^d} c_1(y) c_{n-1}(x-y) + \sum_{m=2}^n \sum_{y \in \mathbb{Z}^d} \pi_m(y) c_{n-m}(x-y).$$

Let  $\pi_m = \sum_{y \in \mathbb{Z}^d} \pi_m(y)$  and sum over  $x \in \mathbb{Z}^d$  to get:

$$c_n = 2dc_{n-1} + \sum_{m=2}^n \pi_m c_{n-m}.$$

Knowledge of  $(\pi_m)_{2 \le m \le n}$  is equivalent to knowledge of  $(c_m)_{0 \le m \le n}$ .

#### The lace expansion: smaller enumeration task

We enumerate  $\pi_m$  by counting *lace graphs*, which are self-avoiding returns and their generalisations.

In practice, we find that the ratio of SAWs to lace graphs is approximately

$$d = 2, n = 30: 36$$
$$d = 3, n = 30: 525$$
$$d = 4, n = 24: 1700$$
$$d = 5, n = 24: 6200$$
$$d = 6, n = 24: 20000$$

Determination of  $(\pi_m)_{m \leq M}$  in dimensions  $d \leq \frac{M}{2}$  gives  $(\pi_m)_{m \leq M}$  in all dimensions d. Thus  $(\pi_m)_{m \leq 24}$  in dimensions  $d \leq 12$  gives  $(c_n)_{n \leq 24}$  in all dimensions d.

#### The lace expansion: graphs

Given  $\omega \in \mathcal{W}_m(x) = \text{set of } m$ -step simple random walks that start at the origin and end at x, let

$$U_{st}(\omega) = \begin{cases} -1 & \text{if } \omega(s) = \omega(t) \\ 0 & \text{if } \omega(s) \neq \omega(t). \end{cases}$$

For  $0 \leq a < b$ , let

$$K[a, b] = K_{\omega}[a, b] = \prod_{a \le s < t \le b} (1 + U_{st}).$$

Then

$$c_n(x) = \sum_{\omega \in \mathcal{W}_n(x)} K_{\omega}[0, n].$$

A graph is a set of pairs st with s < t. Let  $\mathcal{B}_{[a,b]}$  denote the set of all graphs on [a, b].

#### The lace expansion: connected graphs

Then

$$K[0,n] = \prod_{0 \le s < t \le n} (1+U_{st}) = \sum_{\Gamma \in \mathcal{B}_{[0,n]}} \prod_{st \in \Gamma} U_{st}.$$

We say  $\Gamma$  is *connected* on [a, b] if, as intervals of real numbers,  $\cup_{st\in\Gamma}(s, t) = (a, b)$ . The set of all connected graphs on [a, b] is denoted  $\mathcal{G}_{[a,b]}$ . Let

$$J[0,n] = \sum_{\Gamma \in \mathcal{G}_{[0,n]}} \prod_{st \in \Gamma} U_{st}.$$

Then

$$K[0,n] = K[1,n] + \sum_{m=2}^{n} J[0,m]K[m,n].$$

Insert in

$$c_n(x) = \sum_{\omega \in \mathcal{W}_n(x)} K_\omega[0, n].$$

First term gives

$$\sum_{\omega\in\mathcal{W}_n(x)}K_\omega[1,n]=\sum_{y\in\mathbb{Z}^d}c_1(y)c_{n-1}(x-y).$$

# The lace expansion: factorisation

Second term is

$$\sum_{m=2}^{n} \sum_{\omega \in \mathcal{W}_{n}(x)} J_{\omega}[0,m] K_{\omega}[m,n] = \sum_{y} \sum_{m=2}^{n} \sum_{\omega_{1} \in \mathcal{W}_{m}(y)} J_{\omega_{1}}[0,m] \sum_{\omega_{2} \in \mathcal{W}_{n-m}(x-y)} K_{\omega_{2}}[0,n-m].$$

This is

$$\sum_y \sum_{m=2}^n \pi_m(y) c_{n-m}(x-y)$$

with

$$\pi_m(y) = \sum_{\omega \in \mathcal{W}_m(y)} J_\omega[0,m].$$

Altogether,

$$c_n(x) = \sum_y c_1(y)c_{n-1}(x-y) + \sum_y \sum_{m=2}^n \pi_m(y)c_{n-m}(x-y).$$

#### The lace expansion: laces

Given  $\Gamma \in \mathcal{G}_{[0,n]}$ , choose a 'minimal' connected  $L \subset \Gamma$ , and let  $\mathcal{C}(L)$  denote the edges which are *compatible* with L in the sense that L remains the minimal choice for  $\Gamma = L \cup \{st\}$ .

Examples of *laces* L with N = 1, 2, 3, 4 edges:



# The lace expansion: resummation

#### Then

$$\begin{split} J[0,m] &= \sum_{L \in \mathcal{L}_{[0,m]}} \prod_{st \in L} U_{st} \sum_{\Gamma \in \mathcal{G}_{[0,m]}(L)} \prod_{s't' \in \Gamma \setminus L} U_{s't'} \\ &= \sum_{L \in \mathcal{L}_{[0,m]}} \prod_{st \in L} U_{st} \prod_{s't' \in \mathcal{C}(L)} (1 + U_{s't'}) \\ &= \sum_{N=1}^{\infty} (-1)^N \sum_{L \in \mathcal{L}_{[0,m]}^{(N)}} \prod_{st \in L} [-U_{st}] \prod_{s't' \in \mathcal{C}(L)} (1 + U_{s't'}), \end{split}$$

SO

$$\pi_m(x) = \sum_{N=1}^{\infty} (-1)^N \pi_m^{(N)}(x)$$

where

$$\pi_m^{(N)}(x) = \sum_{\omega \in \mathcal{W}_m(x)} \sum_{L \in \mathcal{L}_{[0,m]}^{(N)}} \prod_{st \in L} [-U_{st}(\omega)] \prod_{s't' \in \mathcal{C}(L)} (1 + U_{s't'}(\omega)).$$

### The lace expansion: lace graphs

$$\pi_m^{(N)}(x) = \sum_{\omega \in \mathcal{W}_m(x)} \sum_{L \in \mathcal{L}_{[0,m]}^{(N)}} \prod_{st \in L} [-U_{st}(\omega)] \prod_{s't' \in \mathcal{C}(L)} (1 + U_{s't'}(\omega)).$$

The lace graphs are the walks that give nonzero products in the above sum, and this is what we enumerate.



Lace graphs for N = 1, 2, 3, 4, 11.

#### Values of $\pi_{m,\delta}$ :

26

27

28

29

30

- 791 455 148

2 013 666 265

-5 174 044 897

13 195 280 922

-33 949 508 883

-15 941 476 401 251

62 897 919 980 935

- 305 298 415 550 796

1 213 812 491 872 081

-5 901 490 794 431 276

| m  | $\delta = 2$  | $\delta = 3$      | $\delta = 4$          | $\delta = 5$           | $\delta = 6$           |
|----|---------------|-------------------|-----------------------|------------------------|------------------------|
| 4  | -1            | 0                 | 0                     | 0                      | 0                      |
| 5  | 3             | 0                 | 0                     | 0                      | 0                      |
| 6  | -8            | -4                | 0                     | 0                      | 0                      |
| 7  | 19            | 15                | 0                     | 0                      | 0                      |
| 8  | -50           | -86               | -27                   | 0                      | 0                      |
| 9  | 121           | 300               | 106                   | 0                      | 0                      |
| 10 | - 305         | -1511             | -1 340                | - 248                  | 0                      |
| 11 | 736           | 5 297             | 5 333                 | 966                    | 0                      |
| 12 | -1 853        | -25 566           | -52 252               | -25 020                | -2 830                 |
| 13 | 4 531         | 91 234            | 211 403               | 100 988                | 10 755                 |
| 14 | -11 444       | - 435 330         | -1 907 566            | -1 850 364             | - 515 509              |
| 15 | 28 294        | 1 586 306         | 7 854 601             | 7 635 822              | 2 029 500              |
| 16 | -71 803       | -7 568 792        | -68 777 498           | - 123 248 980          | -64 816 437            |
| 17 | 179 006       | 28 105 857        | 288 074 727           | 517 006 517            | 260 695 401            |
| 18 | - 455 588     | - 134 512 520     | -2 498 227 824        | -7 899 351 270         | -7 074 329 136         |
| 19 | 1 142 357     | 507 675 751       | 10 626 960 167        | 33 569 520 427         | 28 860 719 280         |
| 20 | -2914236      | -2 438 375 322    | -92 047 793 514       | - 500 752 577 733      | - 724 291 034 691      |
| 21 | 7 341 457     | 9 330 924 963     | 396 919 882 288       | 2150581793271          | 2 984 307 507 943      |
| 22 | -18768621     | -44 965 008 206   | -3 445 692 397 195    | -31 789 616 257 271    | -72 005 867 458 629    |
| 23 | 47 466 002    | 174 103 216 625   | 15035569992917        | 137 713 940 393 321    | 298 797 296 949 195    |
| 24 | - 121 579 349 | - 841 380 441 626 | - 130 974 140 581 412 | -2 032 548 406 479 564 | -7 072 798 632 884 530 |
| 25 | 308 478 355   | 3 290 830 791 268 |                       |                        |                        |

#### **Results of enumerations**

For d = 3:  $c_{26} = 549\,493\,796\,867\,100\,942$   $c_{30} = 270\,569\,905\,525\,454\,674\,614$  $c_{30}/c_{26} = 492.3\dots$ 

For d = 4:  $c_{19} = 8\,639\,846\,411\,760\,440$   $c_{24} = 124\,852\,857\,467\,211\,187\,784$  $c_{24}/c_{19} = 14450.8\dots$ 

For d = 5:  $c_{15} = 192\,003\,889\,675\,210$   $c_{24} = 63\,742\,525\,570\,299\,581\,210\,090$  $c_{24}/c_{15} = 3.3 \times 10^8$ 

For d = 6:  $c_{14} = 373\,292\,253\,262\,692$   $c_{24} = 8\,689\,265\,092\,167\,904\,101\,731\,532$  $c_{24}/c_{14} = 2.3 \times 10^{10}$ 

#### **Results of enumerations: CPU time**

Self-avoiding polygons  $\pi_m^{(1)}$ : d = 3, m = 30 took 450 CPU hours; d = 3, m = 32 took 5000 CPU hours; d = 4, m = 26 took 180 CPU hours;  $d \ge 2, m = 24$  took a total of 980 CPU hours.

Lace graph enumerations  $\pi_m$ :

 $d=3,\ m=30$  took 14400 CPU hours;  $d\geq 2,\ m=24$  took 3400 CPU hours.

#### Self-avoiding walks $c_n$ :

 $d=3,\,n=30$  took 15000 hours;

 $d\geq 2$  , n=24 took 4400 hours.

## 1/d expansions

Recall the recursion relation

$$c_n = 2dc_{n-1} + \sum_{m=2}^n \pi_m c_{n-m}.$$

Define the generating functions

$$\chi(z)=\sum_{n=0}^\infty c_n z^n, \quad \Pi(z)=\sum_{m=2}^\infty \pi_m z^m.$$

The recursion relation gives

$$\chi(z) = \frac{1}{1 - 2dz - \Pi(z)}.$$

The radius of convergence of  $\chi(z)$  is  $z_c = \mu^{-1}$ , and  $\chi(z_c) = \infty$ , so

$$1 - 2dz_c - \Pi(z_c) = 0.$$

# 1/d expansions: truncation

The critical point is given implicitly by

$$z_{c} = \frac{1}{2d} [1 - \Pi(z_{c})] = \frac{1}{2d} \left[ 1 - \sum_{m=2}^{\infty} \sum_{M=1}^{\infty} (-1)^{M} \pi_{m}^{(M)} z_{c}^{m} \right]$$

٠

Hara–Slade used this to prove that there exist  $a_i \in \mathbb{Z}$  such that

$$z_c \sim \sum_{i=1}^\infty rac{a_i}{(2d)^i} \quad ext{as } d o \infty.$$

An old estimate gives (in high d)

$$\sum_{m=2}^{\infty}\sum_{M=N}^{\infty}m\pi_m^{(M)}z_c^m \leq C_N d^{-N}$$

and we prove (in high d)

$$\sum_{m=j}^{\infty} m\pi_m^{(M)} z_c^m \leq C_{M,j} d^{-j/2}.$$

#### 1/d expansions: results

Upshot: Knowledge of  $\pi_m^{(M)}$  for  $m \leq 2N$  and  $M \leq N$  permits the recursive calculation of  $a_i$  for  $i = 1, \ldots, N + 1$ .

Using  $\pi_m^{(M)}$  for  $m \leq 24$  and  $M \leq 12$  gives

$$\mu = 2d - 1 - \frac{1}{2d} - \frac{3}{(2d)^2} - \frac{16}{(2d)^3} - \frac{102}{(2d)^4} - \frac{729}{(2d)^5} - \frac{5533}{(2d)^6} - \frac{42229}{(2d)^7} \\ - \frac{288761}{(2d)^8} - \frac{1026328}{(2d)^9} + \frac{21070667}{(2d)^{10}} + \frac{780280468}{(2d)^{11}} + O\left(\frac{1}{(2d)^{12}}\right).$$

Presumably the full asymptotic series is divergent. Note sign change at order  $(2d)^{-10}$ .

Similar expansions result for the amplitudes A and D, using e.g.,

$$rac{1}{A} = 2dz_c + \sum_{m=2}^{\infty} m\pi_m z_c^m$$

#### **Future work**

- Complete series analysis:  $\mu, \gamma, \nu$ .
- Attempt to extend the two-step method to the k-step method, to extend series for d = 3.
- We find that  $\pi_m$  is alternating in sign whenever its values are known ( $m \leq 71$  for d = 2). Can this be proved? Relate to antiferromagnetic singularity of  $\chi(z)$ .