Multiple partitions, paths and conformal field theories

Pierre Mathieu
pmathieu@phy.ulaval.ca
Département de Physique
Université Laval
Pavillon Alexandre-Vachon, local 2634
Sainte-Foy, Qubec G1K 7P4
CANADA

Abstract

The Burge-Bressoud correspondence relates partitions with conditions $f_{j}+f_{j+1} \leq k-1$, where f_{j} is the frequency of the part j in the partition, to lattice paths of height $\leq k-1$. Here such paths are put in correspondence with sets of $k-1$ ordered partitions $\left(n^{(1)}, n^{(2)}, \cdots, n^{(k-1)}\right)$, such that $n_{\ell}^{(j)} \geq n_{\ell+1}^{(j)}+2 j$ together with a simple bound on $n_{m_{j}}^{(j)}$, where m_{j} is the number of parts in $n^{(j)}$. This bijection entails an elementary and constructive proof of the Andrews multiple-sum enumerating partitions with frequency conditions. Analogous results pertaining to jagged partitions are presented. Problems of statistical mechanics associated to the corresponding paths are identified

