Osculating Paths and Oscillating Tableaux

Roger Behrend
School of Mathematics
Cardiff University
Talk at Combinatorial Problems Raised by Statistical Mechanics
Montréal 19-23 February 2007

Full details and further results in math.CO/0701755

Main Result

- There are bijections between certain tuples of osculating paths and certain generalized oscillating tableaux.

Motivation

- Generalize well-known bijections between certain tuples of nonintersecting paths and semistandard Young tableaux.
- Improve understanding of combinatorics of alternating sign matrices, e.g.,
- explain combinatorially the appearance of determinants in enumeration formulae derivations
- possibly find correspondences with certain plane partitions.
- Possibly improve understanding of osculating walkers.

Osculating Paths

Consider

- an a by b rectangle of lattice points with
- rows labeled 1 to a from top to bottom
- columns labeled 1 to b from left to right
- the point in row i and column j labeled (i, j)
- r points on the lower boundary $\left(a, \beta_{1}\right), \ldots,\left(a, \beta_{r}\right)$
- r points on the right boundary $\left(\alpha_{1}, b\right), \ldots,\left(\alpha_{r}, b\right)$

Denote $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ and $\beta=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$.

Now let $\operatorname{OP}(a, b, \alpha, \beta)$ be the set of all r-tuples of paths in which

- The k-th path of a tuple starts at $\left(a, \beta_{k}\right)$ and ends at $\left(\alpha_{k}, b\right)$
- Each path of a tuple can take only unit steps upwards or rightwards
- Different paths within a tuple are allowed to share lattice points, but not to cross or share lattice edges, i.e., the paths are osculating.

Example of an element of $\operatorname{OP}(4,6,\{1,2,3\},\{1,4,5\})$:

Alternating Sign Matrices

Define
$\operatorname{ASM}(a, b, \alpha, \beta):=\{A \mid \bullet A$ is an $a \times b$ matrix with all entries in $\{-1,0,1\}$

- along each row and column of A the nonzero entries, if there are any, alternate in sign starting with a 1
- $\sum_{j=1}^{b} A_{i j}=\delta_{i \in \alpha}, \quad i=1, \ldots, a$
- $\left.\sum_{i=1}^{a} A_{i j}=\delta_{j \in \beta}, \quad j=1, \ldots, b\right\}$

Therefore $\operatorname{ASM}(n, n,\{1, \ldots, n\},\{1, \ldots, n\})=\{$ standard $n \times n$ ASMs $\}$.

ASM - Osculating Path Correspondence

gives a bijection between $\operatorname{OP}(a, b, \alpha, \beta)$ and $\operatorname{ASM}(a, b, \alpha, \beta)$

Example:

Known Enumeration Formulae

- Standard ASMs: $|\operatorname{OP}(n, n,[n],[n])|=\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}$ (Zeilberger 1996, Kuperberg 1996)
- Refined ASM: $|\operatorname{OP}(n, n+1,[n],[n+1] \backslash\{n+1-m\})|=\frac{(2 n-m)!(n+m)!}{n!m!(n-m)!} \prod_{i=1}^{n} \frac{(3 i-2)!}{(n+i)!}$ (Zeilberger 1996, Fischer 2007)
- Related case: $|\mathrm{OP}(n, n+m,[n],[n-1] \cup\{n+m\})|=$

$$
\frac{1}{(n-1)!m!} \prod_{i=0}^{n-2} \frac{(3 i+1)!}{(n+i)!} \sum_{i=0}^{n-1} \frac{(2 n-2-i)!(n-1+i)!(m+i)!}{i!2(n-1-i)!}
$$

(Fischer 2007)

- Vertically Symmetric ASMs: $|\mathrm{OP}(n, 2 n-1,[n],\{1,3, \ldots, 2 n-1\})|=\prod_{i=1}^{n} \frac{(6 i-2)!}{(2 n+2 i)!}$ (Kuperberg 2002)
- Horizontally and Vertically Symmetric ASMs:

$$
\left|\mathrm{OP}\left(n, n,\left\{1,3, \ldots, 2\left\lceil\frac{n}{2}\right\rceil-1\right\},\left\{1,3, \ldots, 2\left\lceil\frac{n}{2}\right\rceil-1\right\}\right)\right|=\frac{\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)!}{3 \frac{n}{2} \frac{1}{2}(2 n+1)!\left\lfloor\frac{n}{2}\right\rfloor!} \prod_{i=1}^{n} \frac{(3 i)!}{(n+i)!}
$$

(Okada 2006)

Partitions

For the a by b rectangle with boundary conditions α and β, define the partition

$$
\lambda_{a, b, \alpha, \beta}:=[a] \times[b] \backslash\left(b-\beta_{1}, \ldots, b-\beta_{r} \mid a-\alpha_{1}, \ldots, a-\alpha_{r}\right)
$$

using complement and Frobenius notation.

Examples:

a, b, α, β	$\lambda_{a, b, \alpha, \beta}$
$4,6,\{1,2,3\},\{1,4,5\}$	$(3,2,2)$
$n, n,[n],[n]$	$(m)^{t}$
$n, n+1,[n],[n+1] \backslash\{n+1-m\}$	(m)
$n, n+m,[n],[n-1] \cup\{n+m\}$	$(n-1, n-2, \ldots, 1)$
$n, 2 n-1,[n],\{1,3, \ldots, 2 n-1\}$	$(n-1, n-2, \ldots, 1)$

Vacancies and Osculations

For a path tuple $P \in \operatorname{OP}(a, b, \alpha, \beta)$ define

- vacancies: points of the rectangle through which no path of P passes
- osculations: points of the rectangle through which two paths of P pass.

Example:

vacancies: $(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(4,2),(4,3)$
osculations: $(2,5),(3,4)$

Lemmas: For each $P \in \operatorname{OP}(a, b, \alpha, \beta)$

- P is uniquely determined by its vacancies and osculations
- (number of vacancies in P) - (number of osculations in P) $=\left|\lambda_{a, b, \alpha, \beta}\right|$.

Define

$$
\begin{aligned}
\mathrm{OP}(a, b, \alpha, \beta, l):=\{P \in \mathrm{OP}(a, b, \alpha, \beta) \mid & (\text { number of vacancies in } P)+ \\
& \text { (number of osculations in } P)=l\} .
\end{aligned}
$$

Oscillating Tableaux

For a partition λ and nonnegative integer l, an oscillating tableau of shape λ and length l is a sequence of $l+1$ partitions for which

- The first partition is \emptyset.
- The last partition is λ.
- The Young diagrams of successive partitions differ by the addition or deletion of a single square.

Let $\operatorname{OT}(\lambda, l)$ denote the set of all such oscillating tableaux.

For $\eta=\left(\eta_{0}, \eta_{1}, \ldots, \eta_{l}\right) \in \mathrm{OT}(\lambda, l)$, define the profile of η as

$$
\Omega(\eta):=\left(j_{1}-i_{1}, \ldots, j_{l}-i_{l}\right)
$$

where $\left(i_{k}, j_{k}\right)$ is the position of the square by which the diagram of η_{k} differs from the diagram of η_{k-1}.

Example of an element η of $\operatorname{OT}((3,2,2), 11)$:

k	0	1	2	3	4	5	6	7	8	9	10	11
η_{k}	\emptyset	\square	\square	$\square \square$	$\square \square$	\square	\square	\square	$\square \square$	\square	$\square \square$	\square
$\Omega(\eta)_{k}$		0	1	2	-1	0	1	3	1	3	-2	-1

It follows that

- Each oscillating tableau is uniquely determined by its profile
- OT $(\lambda,|\lambda|) \longleftrightarrow$ standard Young tableaux of shape $\lambda\}$.

Theorem: $|O T(\lambda, l)|=\binom{l}{|\lambda|}(l-|\lambda|-1)!!f^{\lambda}$ (Sundaram 1986)
where $f^{\lambda}=$ number of SYT of shape λ.

Proof: Bijection between $O T(\lambda, l)$ and certain pairs of matchings and standard Young tableaux.

Generalized Oscillating Tableaux

For an integer q and positive integer n, define the set of generalized oscillating tableaux $\operatorname{GOT}(n, q, \lambda, l)$ to be the set of pairs $\left(\left(t_{1}, \ldots, t_{l}\right), \eta\right)$ in which

- t_{k} is an integer between 1 and n, for each $k=1, \ldots, l$
- η is an oscillating tableau of shape λ and length l
- $t_{k}<t_{k+1}$, or $t_{k}=t_{k+1}$ and $\Omega(\eta)_{k} \prec_{q} \Omega(\eta)_{k+1}$, for each $k=1, \ldots, l-1$, where \prec_{q} is the total strict order on the integers defined by
$z \prec_{q} z^{\prime}$ if and only if $|z-q|>\left|z^{\prime}-q\right|$ or $z-q=q-z^{\prime}<0$
i.e., $\ldots \prec_{q} q-2 \prec_{q} q+2 \prec_{q} q-1 \prec_{q} q+1 \prec_{q} q$.

Bijection

Theorem: There is a bijection between $\mathrm{OP}(a, b, \alpha, \beta, l)$ and $\operatorname{GOT}\left(\min (a, b), b-a, \lambda_{a, b, \alpha, \beta}, l\right)$.

Given a path tuple P the corresponding generalized oscillating tableau (t, η) is obtained as follows.
(1) For any lattice point (i, j), define the level $L_{i, j}:=\left\{\begin{array}{ll}\max (i, j+a-b), & a \leq b \\ \max (i-a+b, j), & a \geq b\end{array}\right.$.
(2) Order the l vacancies and osculations of P as $\left(i_{1}, j_{1}\right), \ldots,\left(i_{l}, j_{l}\right)$ with $L_{i_{k}, j_{k}}<L_{i_{k+1}, j_{k+1}}$, or $L_{i_{k}, j_{k}}=L_{i_{k+1}, j_{k+1}}$ and $j_{k}-i_{k} \prec_{b-a} j_{k+1}-i_{k+1}$.
(3) Then $t=\left(L_{i_{1}, j_{1}}, \ldots, L_{i, j, j}\right)$ and η is the oscillating tableau with profile $\Omega(\eta)=\left(j_{1}-i_{1}, \ldots, j_{l}-i_{l}\right)$.

- If $\left(i_{k}, j_{k}\right)$ is a vacancy or osculation of P, then the diagram of η_{k} is related to that of η_{k-1} by respectively the addition or deletion of a square.

Corollary: The number of osculating path tuples can be written as a sum over oscillating tableaux,

$$
\begin{gathered}
|\mathrm{OP}(a, b, \alpha, \beta, l)|=\sum_{\eta \in \mathrm{OT}\left(\lambda_{a, b, \alpha, \beta}, l\right)}\binom{\min (a, b)+A_{b-a}(\eta)}{l}, \\
\text { where } \left.A_{q}(\eta)=\mid\left\{k \mid \Omega(\eta)_{k} \prec_{q} \Omega(\eta)_{k+1}\right)\right\} \mid .
\end{gathered}
$$

Example:

(1) $L_{i, j}=\max (i, j-2) \rightarrow\left(\begin{array}{llllll}1 & 1 & 1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 2 & 3 & 4 \\ 3 & 3 & 3 & 3 & 3 & 4 \\ 4 & 4 & 4 & 4 & 4 & 4\end{array}\right)$.
(2) The ordered list of vacancies and osculations is $(1,1),(1,2),(1,3),(2,1)$, $(2,2),(2,3),(1,4),(3,4),(2,5),(4,2),(4,3)$.
(3) $t=(1,1,1,2,2,2,2,3,3,4,4)$ and $\Omega(\eta)=(0,1,2,-1,0,1,3,1,3,-2,-1)$, so η is the previous example of an oscillating tableau:

Part of Proof

Use a sequence of $l+1$ path tuples in the a by b rectangle in which

- The first tuple has no vacancies or osculations
- Each successive tuple has an additional vacancy or osculation
- The last tuple is P.

Example:

Further Work

- Use the osculating paths - oscillating tableaux bijection, other known bijections, and the Lindström-Gessel-Viennot theorem to obtain determinantal enumeration formulae and generating functions for ASMs, and possibly an ASM - descending plane partition bijection.
- Study osculating paths with other external configurations.
- Find representation theoretic interpretation of generalized oscillating tableaux.

