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Main Result

• There are bijections between certain tuples of osculating paths and certain

generalized oscillating tableaux.



Motivation

• Generalize well-known bijections between certain tuples of nonintersecting

paths and semistandard Young tableaux.

• Improve understanding of combinatorics of alternating sign matrices, e.g.,

– explain combinatorially the appearance of determinants in enumeration

formulae derivations

– possibly find correspondences with certain plane partitions.

• Possibly improve understanding of osculating walkers.



Osculating Paths

Consider

• an a by b rectangle of lattice points with

– rows labeled 1 to a from top to bottom

– columns labeled 1 to b from left to right

– the point in row i and column j labeled (i, j)

• r points on the lower boundary (a, β1), . . . , (a, βr)

• r points on the right boundary (α1, b), . . . , (αr, b)
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Denote α = {α1, . . . , αr} and β = {β1, . . . , βr}.

Now let OP(a, b, α, β) be the set of all r-tuples of paths in which

• The k-th path of a tuple starts at (a, βk) and ends at (αk, b)

• Each path of a tuple can take only unit steps upwards or rightwards

• Different paths within a tuple are allowed to share lattice points, but not

to cross or share lattice edges, i.e., the paths are osculating.



Example of an element of OP(4,6, {1,2,3}, {1,4,5}):
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Alternating Sign Matrices

Define

ASM(a, b, α, β) := {A | • A is an a×b matrix with all entries in {−1,0,1}
• along each row and column of A the nonzero entries,

if there are any, alternate in sign starting with a 1

• ∑b
j=1Aij = δi∈α , i = 1, . . . , a

• ∑a
i=1Aij = δj∈β , j = 1, . . . , b }

Therefore ASM(n, n, {1, . . . , n}, {1, . . . , n}) = {standard n× n ASMs}.



ASM – Osculating Path Correspondence

↓ ↓ ↓ ↓ ↓ ↓
0 0 0 0 −1 1

gives a bijection between OP(a, b, α, β) and ASM(a, b, α, β)

Example: ←→




0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 −1 1
0 0 0 0 1 −1






Known Enumeration Formulae

• Standard ASMs: |OP(n, n, [n], [n])|= ∏n−1
i=0

(3i+1)!
(n+i)!

(Zeilberger 1996,Kuperberg 1996)

• Refined ASM: |OP(n, n+1, [n], [n+1]\{n+1−m})| = (2n−m)! (n+m)!
n!m! (n−m)!

∏n
i=1

(3i−2)!
(n+i)!

(Zeilberger 1996, Fischer 2007)

• Related case: |OP(n, n+m, [n], [n−1]∪{n+m})| =
1

(n−1)!m!

∏n−2
i=0

(3i+1)!
(n+i)!

∑n−1
i=0

(2n−2−i)! (n−1+i)! (m+i)!
i!2 (n−1−i)!

(Fischer 2007)

• Vertically Symmetric ASMs: |OP(n,2n−1, [n], {1,3, . . . ,2n−1})| = ∏n
i=1

(6i−2)!
(2n+2i)!

(Kuperberg 2002)

• Horizontally and Vertically Symmetric ASMs:

|OP(n, n, {1,3, . . . ,2dn
2
e−1}, {1,3, . . . ,2dn

2
e−1})| = (b3n

2
c+1)!

3b
n
2
c (2n+1)! bn

2
c!
∏n
i=1

(3i)!
(n+i)!

(Okada 2006)



Partitions

For the a by b rectangle with boundary conditions α and β, define the partition

λa,b,α,β := [a]×[b]\(b−β1, . . . , b−βr | a−α1, . . . , a−αr)
using complement and Frobenius notation.

Examples:
a, b, α, β λa,b,α,β

4, 6, {1,2,3}, {1,4,5} (3,2,2)

n, n, [n], [n] ∅
n, n+1, [n], [n+1]\{n+1−m} (m)t

n, n+m, [n], [n−1]∪{n+m} (m)

n, 2n−1, [n], {1,3, . . . ,2n−1} (n−1, n−2, . . . ,1)

n, n, {1,3, . . . ,2dn
2
e−1}, {1,3, . . . ,2dn

2
e−1} (n−1, n−2, . . . ,1)



Vacancies and Osculations

For a path tuple P ∈ OP(a, b, α, β) define

• vacancies: points of the rectangle through which no path of P passes

• osculations: points of the rectangle through which two paths of P pass.

Example:

4

3

2

1
1 2 3 4 5 6

vacancies: (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (4,2), (4,3)

osculations: (2,5), (3,4)



Lemmas: For each P ∈ OP(a, b, α, β)

• P is uniquely determined by its vacancies and osculations

• (number of vacancies in P )− (number of osculations in P ) = |λa,b,α,β|.

Define

OP(a, b, α, β, l) := {P ∈ OP(a, b, α, β) | (number of vacancies in P ) +

(number of osculations in P ) = l }.



Oscillating Tableaux

For a partition λ and nonnegative integer l, an oscillating tableau of shape λ and

length l is a sequence of l+1 partitions for which

• The first partition is ∅.
• The last partition is λ.

• The Young diagrams of successive partitions differ by the addition or deletion

of a single square.

Let OT(λ, l) denote the set of all such oscillating tableaux.



For η = (η0, η1, . . . , ηl) ∈ OT(λ, l), define the profile of η as

Ω(η) := (j1−i1, . . . , jl−il)
where (ik, jk) is the position of the square by which the diagram of ηk differs from

the diagram of ηk−1.

Example of an element η of OT((3,2,2),11):

k 0 1 2 3 4 5 6 7 8 9 10 11

ηk ∅

Ω(η)k 0 1 2 −1 0 1 3 1 3 −2 −1



It follows that

• Each oscillating tableau is uniquely determined by its profile

• OT(λ, |λ|) ←→ {standard Young tableaux of shape λ}.

Theorem: |OT(λ, l)| =
(
l
|λ|
)

(l−|λ|−1)!! fλ (Sundaram 1986)

where fλ = number of SYT of shape λ.

Proof: Bijection between OT(λ, l) and certain pairs of matchings

and standard Young tableaux.



Generalized Oscillating Tableaux

For an integer q and positive integer n, define the set of generalized oscillating

tableaux GOT(n, q, λ, l) to be the set of pairs ((t1, . . . , tl), η) in which

• tk is an integer between 1 and n, for each k = 1, . . . , l

• η is an oscillating tableau of shape λ and length l

• tk < tk+1, or tk = tk+1 and Ω(η)k ≺q Ω(η)k+1, for each k = 1, . . . , l−1,

where ≺q is the total strict order on the integers defined by

z ≺q z′ if and only if |z−q| > |z′−q| or z−q = q−z′ < 0

i.e., . . . ≺q q−2 ≺q q+2 ≺q q−1 ≺q q+1 ≺q q.



Bijection
Theorem: There is a bijection between OP(a, b, α, β, l) and

GOT(min(a, b), b−a, λa,b,α,β, l).

Given a path tuple P the corresponding generalized oscillating tableau (t, η) is

obtained as follows.

(1) For any lattice point (i, j), define the level Li,j :=

{
max(i, j+a−b), a ≤ b
max(i−a+b, j), a ≥ b .

(2) Order the l vacancies and osculations of P as (i1, j1), . . . , (il, jl) with

Lik,jk < Lik+1,jk+1, or Lik,jk = Lik+1,jk+1 and jk−ik ≺b−a jk+1−ik+1.

(3) Then t = (Li1,j1, . . . , Lil,jl) and η is the oscillating tableau with profile

Ω(η) = (j1−i1, . . . , jl−il).

• If (ik, jk) is a vacancy or osculation of P , then the diagram of ηk is related to that

of ηk−1 by respectively the addition or deletion of a square.



Corollary: The number of osculating path tuples can be written

as a sum over oscillating tableaux,

|OP(a, b, α, β, l)| =
∑

η∈OT(λa,b,α,β,l)

(
min(a, b) +Ab−a(η)

l

)
,

where Aq(η) = |{k |Ω(η)k ≺q Ω(η)k+1)}|.



Example:

4

3

2

1
1 2 3 4 5 6

(1) Li,j = max(i, j−2) →



1 1 1 2 3 4
2 2 2 2 3 4
3 3 3 3 3 4
4 4 4 4 4 4


.

(2) The ordered list of vacancies and osculations is (1,1), (1,2), (1,3), (2,1),

(2,2), (2,3), (1,4), (3,4), (2,5), (4,2), (4,3).

(3) t = (1,1,1,2,2,2,2,3,3,4,4) and Ω(η) = (0,1,2,−1,0,1,3,1,3,−2,−1),

so η is the previous example of an oscillating tableau:

ηk ∅

Ω(η)k 0 1 2 −1 0 1 3 1 3 −2 −1



Part of Proof

Use a sequence of l+1 path tuples in the a by b rectangle in which

• The first tuple has no vacancies or osculations

• Each successive tuple has an additional vacancy or osculation

• The last tuple is P .

Example:



Further Work

• Use the osculating paths – oscillating tableaux bijection, other known

bijections, and the Lindström-Gessel-Viennot theorem to obtain

determinantal enumeration formulae and generating functions for

ASMs, and possibly an ASM – descending plane partition bijection.

• Study osculating paths with other external configurations.

• Find representation theoretic interpretation of generalized oscillating

tableaux.


