Osculating Paths and Oscillating Tableaux

Roger Behrend School of Mathematics Cardiff University

Talk at Combinatorial Problems Raised by Statistical Mechanics Montréal 19–23 February 2007

Full details and further results in math.CO/0701755

Main Result

• There are bijections between certain tuples of *osculating paths* and certain *generalized oscillating tableaux*.

Motivation

- Generalize well-known bijections between certain tuples of *nonintersecting paths* and *semistandard Young tableaux*.
- Improve understanding of combinatorics of alternating sign matrices, e.g.,
 - explain combinatorially the appearance of determinants in enumeration formulae derivations
 - possibly find correspondences with certain *plane partitions*.
- Possibly improve understanding of *osculating walkers*.

Osculating Paths

Consider

- an *a* by *b* rectangle of lattice points with
 - rows labeled 1 to a from top to bottom
 - columns labeled 1 to b from left to right
 - the point in row i and column j labeled (i, j)
- r points on the lower boundary $(a, \beta_1), \ldots, (a, \beta_r)$
- r points on the right boundary $(\alpha_1, b), \ldots, (\alpha_r, b)$

Denote $\alpha = \{\alpha_1, \ldots, \alpha_r\}$ and $\beta = \{\beta_1, \ldots, \beta_r\}.$

Now let $OP(a, b, \alpha, \beta)$ be the set of all *r*-tuples of paths in which

- The k-th path of a tuple starts at (a, β_k) and ends at (α_k, b)
- Each path of a tuple can take only unit steps upwards or rightwards
- Different paths within a tuple are allowed to share lattice points, but not to cross or share lattice edges, i.e., the paths are *osculating*.

Example of an element of $OP(4, 6, \{1, 2, 3\}, \{1, 4, 5\})$:

Alternating Sign Matrices

Define

 $ASM(a, b, \alpha, \beta) := \{A \mid \bullet A \text{ is an } a \times b \text{ matrix with all entries in } \{-1, 0, 1\}$

• along each row and column of A the nonzero entries, if there are any, alternate in sign starting with a 1

•
$$\sum_{j=1}^{b} A_{ij} = \delta_{i \in \alpha}$$
, $i = 1, \dots, a$

•
$$\sum_{i=1}^{a} A_{ij} = \delta_{j\in\beta}$$
, $j = 1, \dots, b$ }

Therefore $ASM(n, n, \{1, ..., n\}, \{1, ..., n\}) = \{standard \ n \times n \ ASMs\}.$

gives a bijection between $\mathsf{OP}(a,b,\alpha,\beta)$ and $\mathsf{ASM}(a,b,\alpha,\beta)$

Known Enumeration Formulae

- Standard ASMs: $|OP(n, n, [n], [n])| = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$ (Zeilberger 1996, Kuperberg 1996)
- Refined ASM: $|OP(n, n+1, [n], [n+1] \setminus \{n+1-m\})| = \frac{(2n-m)! (n+m)!}{n! m! (n-m)!} \prod_{i=1}^{n} \frac{(3i-2)!}{(n+i)!}$ (Zeilberger 1996, Fischer 2007)
- Related case: $|OP(n, n+m, [n], [n-1] \cup \{n+m\})| = \frac{1}{(n-1)! \, m!} \prod_{i=0}^{n-2} \frac{(3i+1)!}{(n+i)!} \sum_{i=0}^{n-1} \frac{(2n-2-i)! \, (n-1+i)! \, (m+i)!}{i!^2 \, (n-1-i)!}$ (Fischer 2007)
- Vertically Symmetric ASMs: $|OP(n, 2n-1, [n], \{1, 3, ..., 2n-1\})| = \prod_{i=1}^{n} \frac{(6i-2)!}{(2n+2i)!}$ (Kuperberg 2002)
- Horizontally and Vertically Symmetric ASMs:

 $|\mathsf{OP}(n, n, \{1, 3, \dots, 2\lceil \frac{n}{2} \rceil - 1\}, \{1, 3, \dots, 2\lceil \frac{n}{2} \rceil - 1\})| = \frac{(\lfloor \frac{3n}{2} \rfloor + 1)!}{3^{\lfloor \frac{n}{2} \rfloor} (2n+1)! \lfloor \frac{n}{2} \rfloor !} \prod_{i=1}^{n} \frac{(3i)!}{(n+i)!}$ (Okada 2006)

Partitions

For the *a* by *b* rectangle with boundary conditions α and β , define the partition

$$\lambda_{a,b,\alpha,\beta} := [a] \times [b] \setminus (b - \beta_1, \dots, b - \beta_r | a - \alpha_1, \dots, a - \alpha_r)$$

using complement and Frobenius notation.

Examples:

$a,\ b,\ lpha,\ eta$	$\lambda_{a,b,lpha,eta}$
$4, 6, \{1, 2, 3\}, \{1, 4, 5\}$	(3,2,2)
$n,\;n,\;[n],\;[n]$	Ø
$n, n+1, [n], [n+1] \setminus \{n+1-m\}$	$(m)^t$
$n, n+m, [n], [n-1] \cup \{n+m\}$	(m)
$n,\ 2n\!-\!1,\ [n],\ \{1,3,\ldots,2n\!-\!1\}$	$(n-1, n-2, \ldots, 1)$
$n, n, \{1, 3, \dots, 2\lceil \frac{n}{2} \rceil - 1\}, \{1, 3, \dots, 2\lceil \frac{n}{2} \rceil - 1\}$	$(n-1, n-2, \ldots, 1)$

Vacancies and Osculations

For a path tuple $P \in OP(a, b, \alpha, \beta)$ define

- *vacancies*: points of the rectangle through which no path of *P* passes
- osculations: points of the rectangle through which two paths of P pass.

vacancies: (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (4,2), (4,3)

osculations: (2,5), (3,4)

Lemmas: For each $P \in OP(a, b, \alpha, \beta)$

- *P* is uniquely determined by its vacancies and osculations
- (number of vacancies in P) (number of osculations in P) = $|\lambda_{a,b,\alpha,\beta}|$.

Define

 $OP(a, b, \alpha, \beta, l) := \{ P \in OP(a, b, \alpha, \beta) \mid (number of vacancies in P) + (number of osculations in P) = l \}.$

Oscillating Tableaux

For a partition λ and nonnegative integer l, an oscillating tableau of shape λ and length l is a sequence of l+1 partitions for which

- The first partition is \emptyset .
- The last partition is λ .
- The Young diagrams of successive partitions differ by the addition or deletion of a single square.

Let $OT(\lambda, l)$ denote the set of all such oscillating tableaux.

For $\eta = (\eta_0, \eta_1, \dots, \eta_l) \in OT(\lambda, l)$, define the *profile* of η as

$$\Omega(\eta) := (j_1 - i_1, \dots, j_l - i_l)$$

where (i_k, j_k) is the position of the square by which the diagram of η_k differs from the diagram of η_{k-1} .

Example of an element η of OT((3, 2, 2), 11):

It follows that

- Each oscillating tableau is uniquely determined by its profile
- $OT(\lambda, |\lambda|) \iff \{\text{standard Young tableaux of shape } \lambda\}.$

Theorem:
$$|OT(\lambda, l)| = {l \choose |\lambda|} (l - |\lambda| - 1)!! f^{\lambda}$$
 (Sundaram 1986)

where f^{λ} = number of SYT of shape λ .

Proof: Bijection between $OT(\lambda, l)$ and certain pairs of matchings and standard Young tableaux.

Generalized Oscillating Tableaux

For an integer q and positive integer n, define the set of *generalized oscillating* tableaux GOT (n, q, λ, l) to be the set of pairs $((t_1, \ldots, t_l), \eta)$ in which

- t_k is an integer between 1 and n, for each $k = 1, \ldots, l$
- η is an oscillating tableau of shape λ and length l
- $t_k < t_{k+1}$, or $t_k = t_{k+1}$ and $\Omega(\eta)_k \prec_q \Omega(\eta)_{k+1}$, for each $k = 1, \ldots, l-1$, where \prec_q is the *total strict order* on the integers defined by $z \prec_q z'$ if and only if |z-q| > |z'-q| or z-q = q-z' < 0i.e., $\ldots \prec_q q-2 \prec_q q+2 \prec_q q-1 \prec_q q+1 \prec_q q$.

Bijection

Theorem: There is a bijection between $OP(a, b, \alpha, \beta, l)$ and $GOT(min(a, b), b-a, \lambda_{a,b,\alpha,\beta}, l)$.

Given a path tuple P the corresponding generalized oscillating tableau (t, η) is obtained as follows.

(1) For any lattice point (i, j), define the *level* $L_{i,j} := \begin{cases} \max(i, j+a-b), a \leq b \\ \max(i-a+b, j), a \geq b \end{cases}$.

- (2) Order the l vacancies and osculations of P as $(i_1, j_1), \ldots, (i_l, j_l)$ with $L_{i_k, j_k} < L_{i_{k+1}, j_{k+1}}$, or $L_{i_k, j_k} = L_{i_{k+1}, j_{k+1}}$ and $j_k i_k \prec_{b-a} j_{k+1} i_{k+1}$.
- (3) Then $t = (L_{i_1,j_1}, \dots, L_{i_l,j_l})$ and η is the oscillating tableau with profile $\Omega(\eta) = (j_1 i_1, \dots, j_l i_l).$
- If (i_k, j_k) is a vacancy or osculation of P, then the diagram of η_k is related to that of η_{k-1} by respectively the addition or deletion of a square.

Corollary: The number of osculating path tuples can be written as a sum over oscillating tableaux,

$$|\mathsf{OP}(a, b, \alpha, \beta, l)| = \sum_{\eta \in \mathsf{OT}(\lambda_{a, b, \alpha, \beta}, l)} \left(\begin{array}{c} \min(a, b) + A_{b-a}(\eta) \\ l \end{array} \right),$$

where $A_q(\eta) = |\{k \mid \Omega(\eta)_k \prec_q \Omega(\eta)_{k+1})\}|.$

- (2) The ordered list of vacancies and osculations is (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (1,4), (3,4), (2,5), (4,2), (4,3).
- (3) t = (1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4) and $\Omega(\eta) = (0, 1, 2, -1, 0, 1, 3, 1, 3, -2, -1)$, so η is the previous example of an oscillating tableau:

Part of Proof

Use a sequence of l+1 path tuples in the a by b rectangle in which

- The first tuple has no vacancies or osculations
- Each successive tuple has an additional vacancy or osculation
- The last tuple is *P*.

Example:

Further Work

- Use the osculating paths oscillating tableaux bijection, other known bijections, and the Lindström-Gessel-Viennot theorem to obtain determinantal enumeration formulae and generating functions for ASMs, and possibly an ASM – descending plane partition bijection.
- Study osculating paths with other external configurations.
- Find representation theoretic interpretation of generalized oscillating tableaux.