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Presentation of Problem
Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Importance

Problem

Characterize lattice walks that have holonomic generating series.

Why?

Holonomy is very linked to solvability of systems.

Holonomy implies structure
Everything is non-holonomic unless it is holonomic by design.

- Flajolet, Gerhold, Salvy

Coefficients are readily computable, and easy to manipulate.
(e.g. with tools from gfun)

A function is holonomic (Or D-finite) if it satisfies a linear differential equation with polynomial coefficients.
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Presentation of Problem
Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Importance

Why are lattice walks interesting?

Walks are a very basic combinatorial class.

In many cases, we can understand much of the story (eg. half
plane, slit plane, quarter plane).

They are nice candidates for the Kernel Method, a technique
that still holds many mysteries.
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Presentation of Problem
Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Goal: Combinatorial criteria of holonomy
Evidence towards a conjecture

Goal: Combinatorial criteria in the quarter plane

We would like to be able to say things like...

The generating function will be holonomic if, and only if the walk
set has combinatorial property ❂.

Is there any hope?
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Presentation of Problem
Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Goal: Combinatorial criteria of holonomy
Evidence towards a conjecture

It would seem so: NNNW in the Quarter plane

Theorem (Bousquet-Mélou 2005)

If the walk set has small height variations, and is symmetric across the
x-axis, the generating function is holonomic.

Conjecture (Mishna 2005)

The generating function is holonomic iff the walk set S has any of the
following four properties,

1 The quarter plane condition reduces to a half-plane condition;

2 S is x– or y– axis symmetric;

3 S = reverse(S) (path reversibility);

4 S = reflect(reverse(S));

5 S = {N,E,SW} or S = {S,W,NE}.
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Presentation of Problem
Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Combinatorial approach
Analytic attack
The singularities don’t cancel
The non-holonomy of one implies the other

In proving the conjecture for walk sets of cardinality 3, we need to
prove the non-holonomy of: walks with steps from
S = {NW,NE,SE} and T = {NW,N,SE}.

Two examples:

Theorem (M., Rechnitzer 2007)

The generating functions S(t) =
∑

w∈L(S) t length(w) and

T (t) =
∑

w∈L(T ) t length(w) are not holonomic.
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Presentation of Problem
Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Combinatorial approach
Analytic attack
The singularities don’t cancel
The non-holonomy of one implies the other

An abundance of singularities

Consider Sk(u; t)= gf for walks ending on diagonal x + y = k
(t marks length, u marks ending height)

The singularities of Sk(1, q
1+q2 ) slowly fill in unit circle.

=⇒
∑

Sk(1; t)zk not holonomic. (à la D-unsolvable)

We can give a recurrence that explains how the singularities arise.
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Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Combinatorial approach
Analytic attack
The singularities don’t cancel
The non-holonomy of one implies the other

A combinatoiral source of the singularities

A walk ending on x + y = k is a walk ending on x + y = k − 2, a NE
step and then a directed walk in a strip of height k.

D
(k)
i,j (

q

1 + q2
) = qj−i+1 (1− q2i+2)(1− q2k−2j+2)

(1− q2)(1− q2k+4)

Recurrence for Sk(1) = Sk(1,
q

1+q2 )

Sk(1) =
q(qk+2 + 1)Sk−2(1)− 2q3Sk−2(q)

(qk+2 + 1)(q − 1)2
.

Unless “a miracle occurs” we would not expect the singularities to cancel.
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Presentation of Problem
Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Combinatorial approach
Analytic attack
The singularities don’t cancel
The non-holonomy of one implies the other

Enter Andrew: Analytic atta-a-ack!

1 Add two indeterminates marking end position (i , j):

S(x , y ; t) =
∑

a(i , j , n)x iy j tn

2 S(t) = S(1, 1; t)
3 Recurrence: A walk of length n is a walk of length n − 1 plus

a step:

S(x, y ; t) = 1 + t

„
xy +

x

y
+

y

x

«
S(x, y ; t)− t

x

y
S(x, 0; t)− t

y

x
S(0, y ; t),

4 By symmetry: S(t) = 1−2tS(1,0;t)
1−3t

5 Strategy: We show that S(1, 0; t) has an infinite number of
singularities.
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Two non-holonomic walks

Future work and goals

Combinatorial approach
Analytic attack
The singularities don’t cancel
The non-holonomy of one implies the other

The kernel is infinite

(
xy − tx2y2 − tx2 − ty2

)︸ ︷︷ ︸
K(x ,y)

S(x , y) = xy−tx2S(x , 0; t)−ty2S(y , 0; t).

Roots of K (x , y):

Y±1(x) =
x

2t(1 + x2)

(
1∓

√
1− 4t2(1 + x2)

)
.

Define: Yn := Y1(Yn−1(x))

Yn(Ym(x)) = Yn ◦ Ym = Yn+m, identity Y0 = x

{Yn|n ∈ Z} forms an infinite group

*this is what distinguishes it from the holonomic cases*
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Two non-holonomic walks

Future work and goals

Combinatorial approach
Analytic attack
The singularities don’t cancel
The non-holonomy of one implies the other

The “iterated” part of iterated kernel method

Lemma

S(x , 0; t) =
1

tx2

∑
n≥0

(−1)nYn(x)Yn+1(x).

K (x , y)S(x , y) = xy − tx2S(x , 0)− ty2S(y , 0).

K (x ,Y1) = 0 : tx2S(x , 0) = xY1 − tY 2
1 S(Y1, 0)

K (Y1,Y2) = 0 : tY 2
1 S(Y1, 0) = Y1Y2 − tY 2

2 S(Y2, 0)
Substitute.. tx2S(x , 0) = xY1 − Y1Y2 + tY 2

2 S(Y2, 0)

ITERATE
K (Yn,Yn+1) = 0 : tY 2

n S(Yn, 0) =
(
YnYn+1 − tY 2

n+1S(Yn+1, 0)
)

Method based on Prellberg et. al 2006, and related to process of Bousquet-Mélou
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Future work and goals

Combinatorial approach
Analytic attack
The singularities don’t cancel
The non-holonomy of one implies the other

Singularities spring eternal

Theorem

S(t) = (1− 3t)−1(1− 2
∑
n≥0

(−1)nYn(1)Yn+1(1)).

The set
⋃

n poles(Yn(1)) is infinite, and is a subset of poles(S(t)).
Consequently, S(t) is not holonomic.

Yn(1; q
1+q2 ) = qn + . . . ;

Valid power series in q;

Show
∑

n≥0(−1)nYn(1)Yn+1(1) convergent, except: when
denominator is zero and along the branch cut of Y1.

Show singularities don’t cancel.
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Future work and goals

Combinatorial approach
Analytic attack
The singularities don’t cancel
The non-holonomy of one implies the other

The singularities don’t cancel

As usual, the hardest part is showing that there is no massive
cancellation. But we succeed!
Essentially, because of the nice recurrence

1

Yn
=

1 + q2

qYn−1
− 1

Yn−2
.

If qc is a root of 1
Yn

,

1

Yn+k(qc)
=

1

Yn+1(qc)

1− q2k
c

(1− q2
c )q

k−1
c

.

We can show qc is not a root of unity; Recall Y0(1) = 1.
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Presentation of Problem
Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Combinatorial approach
Analytic attack
The singularities don’t cancel
The non-holonomy of one implies the other

What about T = {NW, N, SE}?

In fact, the non-holonomy of T follows from S (with a smidge of
elbow grease)

The equation here is not symmetric

(1− 3t)T (t) = 1− T (1, 0; t)− T (0, 1; t)

1 Lucky us! T (1, 0; t) = S(1, 0; t), not holonomic! (Walks
ending on the x-axis are in bijection.)

2 Show that an infinite collection of singularities from T (1, 0; t)
is not in any way cancelled by T (0, 1; t).

Which other walks reduce to S-case?
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Presentation of Problem
Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Bootstrap these cases to get families
Projects and goals

Lots of non-holonomic classes?

Can proving the non-holonomy of these classes be far behind?

The gf of S-walks in any wedge less than the half plane seems to
satisfy an equation not unlike in the quarter plane, recall:

Dk(1) =
q(qk+2 + 1)Dk−2(1)− 2q3Dk−2(q)

(qk+2 + 1)(q − 1)2
.

Can we reduce this to the quarter plane case?
(work in progress with D. Laferrière)
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Presentation of Problem
Walks in the quarter plane
Two non-holonomic walks

Future work and goals

Bootstrap these cases to get families
Projects and goals

Current projects and goals

1 Prove conjecture; (with or without Fayolle- Iasnogordski-
Malyshev 99)

2 Classify walks in other wedges (with D. Laferrière);

3 Understand the magic that is the kernel method (with A.
Rechnitzer);

4 Consider other walks;

5 Develop combinatorial criteria of non-holonomy;

6 Prove that miracles don’t exist. (or, rather understand when
they do.)
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