Two non-holonomic lattice walks in the quarter plane Collaboration with Andrew Rechnitzer

Marni Mishna

Simon Fraser University

February 19, 2007

イロト イヨト イヨト イヨト

Presentation of Problem

Walks in the quarter plane Two non-holonomic walks Future work and goals

Importance

Problem

Characterize lattice walks that have holonomic generating series.

Marni Mishna Two non-holonomic lattice walks in the quarter plane

イロン イヨン イヨン イヨン

æ

Presentation of Problem Walks in the quarter plane Two non-holonomic walks

Future work and goals

Important

Problem

Characterize lattice walks that have holonomic generating series.

Why?

• Holonomy is very linked to solvability of systems.

A function is holonomic (Or D-finite) if it satisfies a linear differential equation with polynomial coefficients.

イロン イヨン イヨン イヨン

Presentation of Problem Walks in the quarter plane Two non-holonomic walks

Future work and goals

Important

Problem

Characterize lattice walks that have holonomic generating series.

Why?

- Holonomy is very linked to solvability of systems.
- Holonomy implies structure Everything is non-holonomic unless it is holonomic by design.

- Flajolet, Gerhold, Salvy

イロン イヨン イヨン イヨン

A function is holonomic (Or D-finite) if it satisfies a linear differential equation with polynomial coefficients.

Presentation of Problem Walks in the quarter plane Two non-holonomic walks

Future work and goals

Importan

Problem

Characterize lattice walks that have holonomic generating series.

Why?

• Holonomy is very linked to solvability of systems.

• Holonomy implies structure Everything is non-holonomic unless it is holonomic by design.

- Flajolet, Gerhold, Salvy

イロト イポト イヨト イヨト

• Coefficients are readily computable, and easy to manipulate. (e.g. with tools from gfun)

A function is holonomic (Or D-finite) if it satisfies a linear differential equation with polynomial coefficients.

Importance

Why are lattice walks interesting?

• Walks are a very basic combinatorial class.

イロト イヨト イヨト イヨト

Importance

Why are lattice walks interesting?

- Walks are a very basic combinatorial class.
- In many cases, we can understand much of the story (eg. half plane, slit plane, quarter plane).

イロト イポト イヨト イヨト

Importance

Why are lattice walks interesting?

- Walks are a very basic combinatorial class.
- In many cases, we can understand much of the story (eg. half plane, slit plane, quarter plane).
- They are nice candidates for the Kernel Method, a technique that still holds many mysteries.

イロト イポト イヨト イヨト

Goal: Combinatorial criteria of holonomy Evidence towards a conjecture

Goal: Combinatorial criteria in the quarter plane

We would *like* to be able to say things like...

The generating function will be holonomic if, and only if the walk set has combinatorial property *.

- 4 同 2 4 日 2 4 日 2

Goal: Combinatorial criteria of holonomy Evidence towards a conjecture

Goal: Combinatorial criteria in the quarter plane

We would *like* to be able to say things like...

The generating function will be holonomic if, and only if the walk set has combinatorial property *.

Is there any hope?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Goal: Combinatorial criteria of holonomy Evidence towards a conjecture

It would seem so: NNNW in the Quarter plane

Theorem (Bousquet-Mélou 2005)

If the walk set has small height variations, and is symmetric across the x-axis, the generating function is holonomic.

イロト イポト イヨト イヨト

Goal: Combinatorial criteria of holonomy Evidence towards a conjecture

It would seem so: NNNW in the Quarter plane

Theorem (Bousquet-Mélou 2005)

If the walk set has small height variations, and is symmetric across the x-axis, the generating function is holonomic.

Conjecture (Mishna 2005)

The generating function is holonomic iff the walk set ${\mathcal S}$ has any of the following four properties,

- The quarter plane condition reduces to a half-plane condition;
- 2 S is x- or y- axis symmetric;
- **3** S = reverse(S) (path reversibility);

5
$$S = \{N, E, SW\}$$
 or $S = \{S, W, NE\}$.

Presentation of Problem Walks in the quarter plane Two non-holonomic walks Future work and goals Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

In proving the conjecture for walk sets of cardinality 3, we need to prove the non-holonomy of: walks with steps from $S = \{NW, NE, SE\}$ and $T = \{NW, N, SE\}$.

イロト イポト イヨト イヨト

Presentation of Problem Walks in the quarter plane Two non-holonomic walks Future work and goals Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

In proving the conjecture for walk sets of cardinality 3, we need to prove the non-holonomy of: walks with steps from $S = \{NW, NE, SE\}$ and $T = \{NW, N, SE\}$. Two examples:

イロト イポト イヨト イヨト

Presentation of Problem Walks in the quarter plane Two non-holonomic walks Future work and goals Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

In proving the conjecture for walk sets of cardinality 3, we need to prove the non-holonomy of: walks with steps from $S = \{NW, NE, SE\}$ and $T = \{NW, N, SE\}$. Two examples:

Theorem (M., Rechnitzer 2007)

The generating functions $S(t) = \sum_{w \in L(S)} t^{length(w)}$ and $T(t) = \sum_{w \in L(T)} t^{length(w)}$ are not holonomic.

イロト イポト イヨト イヨト

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

An abundance of singularities

 Consider S_k(u; t)= gf for walks ending on diagonal x + y = k (t marks length, u marks ending height)

イロン イヨン イヨン イヨン

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

An abundance of singularities

- Consider S_k(u; t)= gf for walks ending on diagonal x + y = k (t marks length, u marks ending height)
- The singularities of $S_k(1, \frac{q}{1+q^2})$ slowly fill in unit circle.

(4月) (4日) (4日)

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

An abundance of singularities

- Consider S_k(u; t)= gf for walks ending on diagonal x + y = k (t marks length, u marks ending height)
- The singularities of $S_k(1, \frac{q}{1+a^2})$ slowly fill in unit circle.
- $\implies \sum S_k(1; t) z^k$ not holonomic. (à la D-unsolvable)

We can give a recurrence that explains how the singularities arise.

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

A combinatoiral source of the singularities

A walk ending on x + y = k is a walk ending on x + y = k - 2, a NE step and then a directed walk in a strip of height k.

$$D_{i,j}^{(k)}(rac{q}{1+q^2})=q^{j-i+1}rac{(1-q^{2i+2})(1-q^{2k-2j+2})}{(1-q^2)(1-q^{2k+4})}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

A combinatoiral source of the singularities

A walk ending on x + y = k is a walk ending on x + y = k - 2, a NE step and then a directed walk in a strip of height k.

$$D_{i,j}^{(k)}(rac{q}{1+q^2})=q^{j-i+1}rac{(1-q^{2i+2})(1-q^{2k-2j+2})}{(1-q^2)(1-q^{2k+4})}$$

Recurrence for $S_k(1) = S_k(1, \frac{q}{1+q^2})$ $S_k(1) = \frac{q(q^{k+2}+1)S_{k-2}(1) - 2q^3S_{k-2}(q)}{(q^{k+2}+1)(q-1)^2}.$

イロト イポト イヨト イヨト

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

A combinatoiral source of the singularities

A walk ending on x + y = k is a walk ending on x + y = k - 2, a NE step and then a directed walk in a strip of height k.

$$D_{i,j}^{(k)}(rac{q}{1+q^2})=q^{j-i+1}rac{(1-q^{2i+2})(1-q^{2k-2j+2})}{(1-q^2)(1-q^{2k+4})}$$

Recurrence for $S_k(1) = S_k(1, \frac{q}{1+q^2})$ $S_k(1) = \frac{q(q^{k+2}+1)S_{k-2}(1) - 2q^3S_{k-2}(q)}{(q^{k+2}+1)(q-1)^2}.$

Unless "a miracle occurs" we would not expect the singularities to cancel.

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

Enter Andrew: Analytic atta-a-ack!

1 Add two indeterminates marking end position (i, j):

$$S(x, y; t) = \sum a(i, j, n) x^i y^j t^n$$

イロン イヨン イヨン イヨン

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

Enter Andrew: Analytic atta-a-ack!

1 Add two indeterminates marking end position (i, j):

$$S(x, y; t) = \sum a(i, j, n) x^i y^j t^n$$

2 S(t) = S(1, 1; t)

イロン イヨン イヨン イヨン

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

Enter Andrew: Analytic atta-a-ack!

1 Add two indeterminates marking end position (i, j):

$$S(x,y;t) = \sum a(i,j,n) x^i y^j t^n$$

2 S(t) = S(1, 1; t)

3 Recurrence: A walk of length n is a walk of length n-1 plus a step:

$$S(x, y; t) = 1 + t\left(xy + \frac{x}{y} + \frac{y}{x}\right)S(x, y; t) - t\frac{x}{y}S(x, 0; t) - t\frac{y}{x}S(0, y; t),$$

イロン イヨン イヨン イヨン

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

Enter Andrew: Analytic atta-a-ack!

1 Add two indeterminates marking end position (i, j):

$$S(x,y;t) = \sum a(i,j,n) x^i y^j t^n$$

2 S(t) = S(1, 1; t)

3 Recurrence: A walk of length n is a walk of length n - 1 plus a step:

$$S(x, y; t) = 1 + t\left(xy + \frac{x}{y} + \frac{y}{x}\right)S(x, y; t) - t\frac{x}{y}S(x, 0; t) - t\frac{y}{x}S(0, y; t),$$

• By symmetry: $S(t) = \frac{1-2tS(1,0;t)}{1-3t}$

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

Enter Andrew: Analytic atta-a-ack!

1 Add two indeterminates marking end position (i, j):

$$S(x,y;t) = \sum a(i,j,n) x^i y^j t^n$$

- **2** S(t) = S(1, 1; t)
- **3** Recurrence: A walk of length n is a walk of length n 1 plus a step:

$$S(x, y; t) = 1 + t\left(xy + \frac{x}{y} + \frac{y}{x}\right)S(x, y; t) - t\frac{x}{y}S(x, 0; t) - t\frac{y}{x}S(0, y; t),$$

- By symmetry: $S(t) = \frac{1-2tS(1,0;t)}{1-3t}$
- Strategy: We show that S(1,0; t) has an infinite number of singularities.

・ロト ・回ト ・ヨト ・ヨト

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

The kernel is infinite

$$\underbrace{\left(xy - tx^{2}y^{2} - tx^{2} - ty^{2}\right)}_{K(x,y)} S(x,y) = xy - tx^{2}S(x,0;t) - ty^{2}S(y,0;t).$$

Roots of K(x, y):

$$Y_{\pm 1}(x) = \frac{x}{2t(1+x^2)} \left(1 \mp \sqrt{1-4t^2(1+x^2)}\right)$$

- Define: $Y_n := Y_1(Y_{n-1}(x))$
- $Y_n(Y_m(x)) = Y_n \circ Y_m = Y_{n+m}$, identity $Y_0 = x$
- $\{Y_n | n \in \mathbb{Z}\}$ forms an infinite group
- *this is what distinguishes it from the holonomic cases*

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

The "iterated" part of iterated kernel method

Lemma

$$S(x,0;t) = \frac{1}{tx^2} \sum_{n\geq 0} (-1)^n Y_n(x) Y_{n+1}(x).$$

イロン イヨン イヨン イヨン

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

The "iterated" part of iterated kernel method

Lemma

$$S(x,0;t) = \frac{1}{tx^2} \sum_{n\geq 0} (-1)^n Y_n(x) Y_{n+1}(x).$$

$$K(x,y)S(x,y) = xy - tx^2S(x,0) - ty^2S(y,0).$$

イロン イヨン イヨン イヨン

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

The "iterated" part of iterated kernel method

Lemma

$$S(x,0;t) = \frac{1}{tx^2} \sum_{n\geq 0} (-1)^n Y_n(x) Y_{n+1}(x).$$

$$K(x,y)S(x,y) = xy - tx^2S(x,0) - ty^2S(y,0).$$

$$K(x, Y_1) = 0$$
: $tx^2S(x, 0) = xY_1 - tY_1^2S(Y_1, 0)$

イロン イヨン イヨン イヨン

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

The "iterated" part of iterated kernel method

Lemma

$$S(x,0;t) = \frac{1}{tx^2} \sum_{n\geq 0} (-1)^n Y_n(x) Y_{n+1}(x).$$

$$K(x,y)S(x,y) = xy - tx^2S(x,0) - ty^2S(y,0).$$

$$\begin{aligned} & \mathcal{K}(x,Y_1) = 0: & tx^2 S(x,0) = x Y_1 - t Y_1^2 S(Y_1,0) \\ & \mathcal{K}(Y_1,Y_2) = 0: & tY_1^2 S(Y_1,0) = Y_1 Y_2 - t Y_2^2 S(Y_2,0) \end{aligned}$$

イロン イヨン イヨン イヨン

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

The "iterated" part of iterated kernel method

Lemma

$$S(x,0;t) = \frac{1}{tx^2} \sum_{n\geq 0} (-1)^n Y_n(x) Y_{n+1}(x).$$

$$K(x,y)S(x,y) = xy - tx^2S(x,0) - ty^2S(y,0).$$

$$\begin{split} & \mathcal{K}(x,Y_1) = 0: \quad tx^2 S(x,0) = xY_1 - tY_1^2 S(Y_1,0) \\ & \mathcal{K}(Y_1,Y_2) = 0: \quad tY_1^2 S(Y_1,0) = Y_1 Y_2 - tY_2^2 S(Y_2,0) \\ & \text{Substitute.} \quad tx^2 S(x,0) = xY_1 - Y_1 Y_2 + tY_2^2 S(Y_2,0) \end{split}$$

イロト イポト イヨト イヨト

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

The "iterated" part of iterated kernel method

Lemma

$$S(x,0;t) = \frac{1}{tx^2} \sum_{n\geq 0} (-1)^n Y_n(x) Y_{n+1}(x).$$

$$K(x,y)S(x,y) = xy - tx^2S(x,0) - ty^2S(y,0).$$

 $\begin{aligned} & \mathcal{K}(x,Y_1) = 0: & tx^2 S(x,0) = xY_1 - tY_1^2 S(Y_1,0) \\ & \mathcal{K}(Y_1,Y_2) = 0: & tY_1^2 S(Y_1,0) = Y_1 Y_2 - tY_2^2 S(Y_2,0) \\ & \text{Substitute..} & tx^2 S(x,0) = xY_1 - Y_1 Y_2 + tY_2^2 S(Y_2,0) \end{aligned}$

ITERATE $K(Y_n, Y_{n+1}) = 0: tY_n^2 S(Y_n, 0) = (Y_n Y_{n+1} - tY_{n+1}^2 S(Y_{n+1}, 0))$

Method based on Prellberg et. al 2006, and related to process of Bousquet-Mélou ,

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

Singularities spring eternal

Theorem

$$S(t) = (1-3t)^{-1}(1-2\sum_{n\geq 0}(-1)^nY_n(1)Y_{n+1}(1)).$$

The set $\bigcup_n \text{poles}(Y_n(1))$ is infinite, and is a subset of poles(S(t)). Consequently, S(t) is not holonomic.

イロン イヨン イヨン イヨン

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

Singularities spring eternal

Theorem

$$S(t) = (1 - 3t)^{-1} (1 - 2\sum_{n \ge 0} (-1)^n Y_n(1) Y_{n+1}(1)).$$

The set $\bigcup_n \text{poles}(Y_n(1))$ is infinite, and is a subset of poles(S(t)). Consequently, S(t) is not holonomic.

•
$$Y_n(1; \frac{q}{1+q^2}) = q^n + \dots;$$

イロン イヨン イヨン イヨン

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

Singularities spring eternal

Theorem

$$S(t) = (1-3t)^{-1}(1-2\sum_{n\geq 0}(-1)^nY_n(1)Y_{n+1}(1)).$$

The set $\bigcup_n \text{poles}(Y_n(1))$ is infinite, and is a subset of poles(S(t)). Consequently, S(t) is not holonomic.

•
$$Y_n(1; \frac{q}{1+q^2}) = q^n + \dots;$$

• Valid power series in q;

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

Singularities spring eternal

Theorem

$$S(t) = (1 - 3t)^{-1} (1 - 2\sum_{n \ge 0} (-1)^n Y_n(1) Y_{n+1}(1)).$$

The set $\bigcup_n \text{poles}(Y_n(1))$ is infinite, and is a subset of poles(S(t)). Consequently, S(t) is not holonomic.

•
$$Y_n(1; \frac{q}{1+q^2}) = q^n + \dots;$$

- Valid power series in q;
- Show $\sum_{n\geq 0} (-1)^n Y_n(1) Y_{n+1}(1)$ convergent, except: when denominator is zero and along the branch cut of Y_1 .

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

Singularities spring eternal

Theorem

$$S(t) = (1 - 3t)^{-1} (1 - 2\sum_{n \ge 0} (-1)^n Y_n(1) Y_{n+1}(1)).$$

The set $\bigcup_n \text{poles}(Y_n(1))$ is infinite, and is a subset of poles(S(t)). Consequently, S(t) is not holonomic.

•
$$Y_n(1; \frac{q}{1+q^2}) = q^n + \dots;$$

- Valid power series in q;
- Show $\sum_{n\geq 0} (-1)^n Y_n(1) Y_{n+1}(1)$ convergent, except: when denominator is zero and along the branch cut of Y_1 .
- Show singularities don't cancel.

Combinatorial approach Analytic attack **The singularities don't cancel** The non-holonomy of one implies the other

The singularities don't cancel

As usual, the hardest part is showing that there is no massive cancellation. But we succeed!

Essentially, because of the nice recurrence

$$\frac{1}{Y_n} = \frac{1+q^2}{qY_{n-1}} - \frac{1}{Y_{n-2}}.$$

Combinatorial approach Analytic attack **The singularities don't cancel** The non-holonomy of one implies the other

The singularities don't cancel

As usual, the hardest part is showing that there is no massive cancellation. But we succeed!

Essentially, because of the nice recurrence

$$rac{1}{Y_n} = rac{1+q^2}{qY_{n-1}} - rac{1}{Y_{n-2}}.$$

If q_c is a root of $\frac{1}{Y_n}$,

$$rac{1}{Y_{n+k}(q_c)} = rac{1}{Y_{n+1}(q_c)} rac{1-q_c^{2k}}{(1-q_c^2)q_c^{k-1}}$$

Combinatorial approach Analytic attack **The singularities don't cancel** The non-holonomy of one implies the other

The singularities don't cancel

As usual, the hardest part is showing that there is no massive cancellation. But we succeed!

Essentially, because of the nice recurrence

$$\frac{1}{Y_n} = \frac{1+q^2}{qY_{n-1}} - \frac{1}{Y_{n-2}}.$$

If q_c is a root of $\frac{1}{Y_n}$,

$$rac{1}{Y_{n+k}(q_c)} = rac{1}{Y_{n+1}(q_c)} rac{1-q_c^{2k}}{(1-q_c^2)q_c^{k-1}}$$

We can show q_c is not a root of unity; Recall $Y_0(1) = 1$.

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

What about $T = {NW, N, SE}$?

In fact, the non-holonomy of \mathcal{T} follows from \mathcal{S} (with a smidge of elbow grease)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

What about $T = {NW, N, SE}$?

In fact, the non-holonomy of \mathcal{T} follows from \mathcal{S} (with a smidge of elbow grease)

The equation here is not symmetric

$$(1-3t)T(t) = 1 - T(1,0;t) - T(0,1;t)$$

- Lucky us! T(1,0;t) = S(1,0;t), not holonomic! (Walks ending on the x-axis are in bijection.)
- Show that an infinite collection of singularities from T(1,0;t) is not in any way cancelled by T(0,1;t).

Combinatorial approach Analytic attack The singularities don't cancel The non-holonomy of one implies the other

What about $T = {NW, N, SE}$?

In fact, the non-holonomy of \mathcal{T} follows from \mathcal{S} (with a smidge of elbow grease)

The equation here is not symmetric

$$(1-3t)T(t) = 1 - T(1,0;t) - T(0,1;t)$$

- Lucky us! T(1,0;t) = S(1,0;t), not holonomic! (Walks ending on the x-axis are in bijection.)
- Show that an infinite collection of singularities from T(1,0; t) is not in any way cancelled by T(0,1; t).

Which other walks reduce to S-case?

Bootstrap these cases to get families Projects and goals

Lots of non-holonomic classes?

Can proving the non-holonomy of these classes be far behind?

- ∢ ≣ >

Bootstrap these cases to get families Projects and goals

Lots of non-holonomic classes?

Can proving the non-holonomy of these classes be far behind?

The gf of S-walks in any wedge less than the half plane seems to satisfy an equation not unlike in the quarter plane, recall:

$$D_k(1) = rac{q(q^{k+2}+1)D_{k-2}(1)-2q^3D_{k-2}(q)}{(q^{k+2}+1)(q-1)^2}.$$

A (1) > A (1) > A

Bootstrap these cases to get families Projects and goals

Lots of non-holonomic classes?

Can proving the non-holonomy of these classes be far behind?

The gf of S-walks in any wedge less than the half plane seems to satisfy an equation not unlike in the quarter plane, recall:

$$D_k(1) = \frac{q(q^{k+2}+1)D_{k-2}(1) - 2q^3D_{k-2}(q)}{(q^{k+2}+1)(q-1)^2}$$

Can we reduce this to the quarter plane case? (work in progress with D. Laferrière)

- 4 同 2 4 日 2 4 日 2

Bootstrap these cases to get families Projects and goals

Current projects and goals

 Prove conjecture; (with or without Fayolle- lasnogordski-Malyshev 99)

Bootstrap these cases to get families Projects and goals

Current projects and goals

- Prove conjecture; (with or without Fayolle- lasnogordski-Malyshev 99)
- Olassify walks in other wedges (with D. Laferrière);

Bootstrap these cases to get families Projects and goals

Current projects and goals

- Prove conjecture; (with or without Fayolle- lasnogordski-Malyshev 99)
- Olassify walks in other wedges (with D. Laferrière);
- Understand the magic that is the kernel method (with A. Rechnitzer);

Bootstrap these cases to get families Projects and goals

Current projects and goals

- Prove conjecture; (with or without Fayolle- lasnogordski-Malyshev 99)
- Olassify walks in other wedges (with D. Laferrière);
- Understand the magic that is the kernel method (with A. Rechnitzer);
- Consider other walks;

Bootstrap these cases to get families Projects and goals

Current projects and goals

- Prove conjecture; (with or without Fayolle- lasnogordski-Malyshev 99)
- Olassify walks in other wedges (with D. Laferrière);
- Understand the magic that is the kernel method (with A. Rechnitzer);
- Consider other walks;
- Develop combinatorial criteria of non-holonomy;

Bootstrap these cases to get families Projects and goals

Current projects and goals

- Prove conjecture; (with or without Fayolle- lasnogordski-Malyshev 99)
- Olassify walks in other wedges (with D. Laferrière);
- Understand the magic that is the kernel method (with A. Rechnitzer);
- Consider other walks;
- O Develop combinatorial criteria of non-holonomy;
- Prove that miracles don't exist. (or, rather understand when they do.)