Two non-holonomic lattice walks in the quarter plane

Collaboration with Andrew Rechnitzer

Marni Mishna

Simon Fraser University
February 19, 2007

Problem

Characterize lattice walks that have holonomic generating series.

Problem

Characterize lattice walks that have holonomic generating series.

Why?

- Holonomy is very linked to solvability of systems.

A function is holonomic (Or D-finite) if it satisfies a linear differential equation with polynomial coefficients.

Problem

Characterize lattice walks that have holonomic generating series.

Why?

- Holonomy is very linked to solvability of systems.
- Holonomy implies structure

Everything is non-holonomic unless it is holonomic by design.

- Flajolet, Gerhold, Salvy

A function is holonomic (Or D-finite) if it satisfies a linear differential equation with polynomial coefficients.

Problem

Characterize lattice walks that have holonomic generating series.

Why?

- Holonomy is very linked to solvability of systems.
- Holonomy implies structure Everything is non-holonomic unless it is holonomic by design. - Flajolet, Gerhold, Salvy
- Coefficients are readily computable, and easy to manipulate. (e.g. with tools from gfun)

A function is holonomic (Or D-finite) if it satisfies a linear differential equation with polynomial coefficients.

Why are lattice walks interesting?

- Walks are a very basic combinatorial class.

Why are lattice walks interesting?

- Walks are a very basic combinatorial class.
- In many cases, we can understand much of the story (eg. half plane, slit plane, quarter plane).

Why are lattice walks interesting?

- Walks are a very basic combinatorial class.
- In many cases, we can understand much of the story (eg. half plane, slit plane, quarter plane).
- They are nice candidates for the Kernel Method, a technique that still holds many mysteries.

Goal: Combinatorial criteria in the quarter plane

We would like to be able to say things like...
The generating function will be holonomic if, and only if the walk set has combinatorial property

Goal: Combinatorial criteria in the quarter plane

We would like to be able to say things like...
The generating function will be holonomic if, and only if the walk set has combinatorial property

Is there any hope?

It would seem so: NNNW in the Quarter plane

Theorem (Bousquet-Mélou 2005)

If the walk set has small height variations, and is symmetric across the x-axis, the generating function is holonomic.

It would seem so: NNNW in the Quarter plane

Theorem (Bousquet-Mélou 2005)

If the walk set has small height variations, and is symmetric across the x-axis, the generating function is holonomic.

Conjecture (Mishna 2005)

The generating function is holonomic iff the walk set \mathcal{S} has any of the following four properties,
(1) The quarter plane condition reduces to a half-plane condition;
(2) \mathcal{S} is x - or y-axis symmetric;
(3) $\mathcal{S}=\operatorname{reverse}(\mathcal{S})$ (path reversibility);
(9) $\mathcal{S}=\operatorname{reflect}(\operatorname{reverse}(\mathcal{S}))$;
(5) $\mathcal{S}=\{\mathrm{N}, \mathrm{E}, \mathrm{SW}\}$ or $\mathcal{S}=\{\mathrm{S}, \mathrm{W}, \mathrm{NE}\}$.

In proving the conjecture for walk sets of cardinality 3, we need to prove the non-holonomy of: walks with steps from $\mathcal{S}=\{\mathrm{NW}, \mathrm{NE}, \mathrm{SE}\}$ and $\mathcal{T}=\{\mathrm{NW}, \mathrm{N}, \mathrm{SE}\}$.

In proving the conjecture for walk sets of cardinality 3, we need to prove the non-holonomy of: walks with steps from $\mathcal{S}=\{\mathrm{NW}, \mathrm{NE}, \mathrm{SE}\}$ and $\mathcal{T}=\{\mathrm{NW}, \mathrm{N}, \mathrm{SE}\}$.
Two examples:

In proving the conjecture for walk sets of cardinality 3, we need to prove the non-holonomy of: walks with steps from $\mathcal{S}=\{\mathrm{NW}, \mathrm{NE}, \mathrm{SE}\}$ and $\mathcal{T}=\{\mathrm{NW}, \mathrm{N}, \mathrm{SE}\}$.
Two examples:

Theorem (M., Rechnitzer 2007)

The generating functions $S(t)=\sum_{w \in L(\mathcal{S})} t^{\text {length(} w)}$ and $T(t)=\sum_{w \in L(\mathcal{T})} t^{\text {length }(w)}$ are not holonomic.

An abundance of singularities

- Consider $S_{k}(u ; t)=$ gf for walks ending on diagonal $x+y=k$ (t marks length, u marks ending height)

An abundance of singularities

- Consider $S_{k}(u ; t)=\mathrm{gf}$ for walks ending on diagonal $x+y=k$ (t marks length, u marks ending height)
- The singularities of $S_{k}\left(1, \frac{q}{1+q^{2}}\right)$ slowly fill in unit circle.

An abundance of singularities

- Consider $S_{k}(u ; t)=$ gf for walks ending on diagonal $x+y=k$ (t marks length, u marks ending height)
- The singularities of $S_{k}\left(1, \frac{q}{1+q^{2}}\right)$ slowly fill in unit circle.
- $\Longrightarrow \sum S_{k}(1 ; t) z^{k}$ not holonomic. (à la D-unsolvable)

We can give a recurrence that explains how the singularities arise.

Combinatorial approach

A combinatoiral source of the singularities

A walk ending on $x+y=k$ is a walk ending on $x+y=k-2$, a NE step and then a directed walk in a strip of height k.

$$
D_{i, j}^{(k)}\left(\frac{q}{1+q^{2}}\right)=q^{j-i+1} \frac{\left(1-q^{2 i+2}\right)\left(1-q^{2 k-2 j+2}\right)}{\left(1-q^{2}\right)\left(1-q^{2 k+4}\right)}
$$

A combinatoiral source of the singularities

A walk ending on $x+y=k$ is a walk ending on $x+y=k-2$, a NE step and then a directed walk in a strip of height k.

$$
D_{i, j}^{(k)}\left(\frac{q}{1+q^{2}}\right)=q^{j-i+1} \frac{\left(1-q^{2 i+2}\right)\left(1-q^{2 k-2 j+2}\right)}{\left(1-q^{2}\right)\left(1-q^{2 k+4}\right)}
$$

Recurrence for $S_{k}(1)=S_{k}\left(1, \frac{q}{1+q^{2}}\right)$

$$
S_{k}(1)=\frac{q\left(q^{k+2}+1\right) S_{k-2}(1)-2 q^{3} S_{k-2}(q)}{\left(q^{k+2}+1\right)(q-1)^{2}} .
$$

A combinatoiral source of the singularities

A walk ending on $x+y=k$ is a walk ending on $x+y=k-2$, a NE step and then a directed walk in a strip of height k.

$$
D_{i, j}^{(k)}\left(\frac{q}{1+q^{2}}\right)=q^{j-i+1} \frac{\left(1-q^{2 i+2}\right)\left(1-q^{2 k-2 j+2}\right)}{\left(1-q^{2}\right)\left(1-q^{2 k+4}\right)}
$$

Recurrence for $S_{k}(1)=S_{k}\left(1, \frac{q}{1+q^{2}}\right)$

$$
S_{k}(1)=\frac{q\left(q^{k+2}+1\right) S_{k-2}(1)-2 q^{3} S_{k-2}(q)}{\left(q^{k+2}+1\right)(q-1)^{2}}
$$

Unless "a miracle occurs" we would not expect the singularities to cancel.

Enter Andrew: Analytic atta-a-ack!

(1) Add two indeterminates marking end position (i, j) :

$$
S(x, y ; t)=\sum a(i, j, n) x^{i} y^{j} t^{n}
$$

Enter Andrew: Analytic atta-a-ack!

(1) Add two indeterminates marking end position (i, j) :

$$
S(x, y ; t)=\sum a(i, j, n) x^{i} y^{j} t^{n}
$$

(2) $S(t)=S(1,1 ; t)$

Enter Andrew: Analytic atta-a-ack!

(1) Add two indeterminates marking end position (i, j) :

$$
S(x, y ; t)=\sum a(i, j, n) x^{i} y^{j} t^{n}
$$

(2) $S(t)=S(1,1 ; t)$
(3) Recurrence: A walk of length n is a walk of length $n-1$ plus a step:

$$
S(x, y ; t)=1+t\left(x y+\frac{x}{y}+\frac{y}{x}\right) S(x, y ; t)-t \frac{x}{y} S(x, 0 ; t)-t \frac{y}{x} S(0, y ; t),
$$

Enter Andrew: Analytic atta-a-ack!

(1) Add two indeterminates marking end position (i, j) :

$$
S(x, y ; t)=\sum a(i, j, n) x^{i} y^{j} t^{n}
$$

(2) $S(t)=S(1,1 ; t)$
(3) Recurrence: A walk of length n is a walk of length $n-1$ plus a step:

$$
S(x, y ; t)=1+t\left(x y+\frac{x}{y}+\frac{y}{x}\right) S(x, y ; t)-t \frac{x}{y} S(x, 0 ; t)-t \frac{y}{x} S(0, y ; t),
$$

(9) By symmetry: $S(t)=\frac{1-2 t S(1,0 ; t)}{1-3 t}$

Enter Andrew: Analytic atta-a-ack!

(1) Add two indeterminates marking end position (i, j) :

$$
S(x, y ; t)=\sum a(i, j, n) x^{i} y^{j} t^{n}
$$

(2) $S(t)=S(1,1 ; t)$
(3) Recurrence: A walk of length n is a walk of length $n-1$ plus a step:

$$
S(x, y ; t)=1+t\left(x y+\frac{x}{y}+\frac{y}{x}\right) S(x, y ; t)-t \frac{x}{y} S(x, 0 ; t)-t \frac{y}{x} S(0, y ; t),
$$

(9) By symmetry: $S(t)=\frac{1-2 t S(1,0 ; t)}{1-3 t}$
(3) Strategy: We show that $S(1,0 ; t)$ has an infinite number of singularities.

The kernel is infinite

$$
\underbrace{\left(x y-t x^{2} y^{2}-t x^{2}-t y^{2}\right)}_{K(x, y)} S(x, y)=x y-t x^{2} S(x, 0 ; t)-t y^{2} S(y, 0 ; t) .
$$

Roots of $K(x, y)$:

$$
Y_{ \pm 1}(x)=\frac{x}{2 t\left(1+x^{2}\right)}\left(1 \mp \sqrt{1-4 t^{2}\left(1+x^{2}\right)}\right)
$$

- Define: $Y_{n}:=Y_{1}\left(Y_{n-1}(x)\right)$
- $Y_{n}\left(Y_{m}(x)\right)=Y_{n} \circ Y_{m}=Y_{n+m}$, identity $Y_{0}=x$
- $\left\{Y_{n} \mid n \in \mathbb{Z}\right\}$ forms an infinite group
- *this is what distinguishes it from the holonomic cases*

The "iterated" part of iterated kernel method

Lemma

$$
S(x, 0 ; t)=\frac{1}{t x^{2}} \sum_{n \geq 0}(-1)^{n} Y_{n}(x) Y_{n+1}(x) .
$$

The "iterated" part of iterated kernel method

Lemma

$$
S(x, 0 ; t)=\frac{1}{t x^{2}} \sum_{n \geq 0}(-1)^{n} Y_{n}(x) Y_{n+1}(x) .
$$

$$
K(x, y) S(x, y)=x y-t x^{2} S(x, 0)-t y^{2} S(y, 0) .
$$

The "iterated" part of iterated kernel method

Lemma

$$
S(x, 0 ; t)=\frac{1}{t x^{2}} \sum_{n \geq 0}(-1)^{n} Y_{n}(x) Y_{n+1}(x) .
$$

$$
K(x, y) S(x, y)=x y-t x^{2} S(x, 0)-t y^{2} S(y, 0) .
$$

$K\left(x, Y_{1}\right)=0: \quad t x^{2} S(x, 0)=x Y_{1}-t Y_{1}^{2} S\left(Y_{1}, 0\right)$

The "iterated" part of iterated kernel method

Lemma

$$
S(x, 0 ; t)=\frac{1}{t x^{2}} \sum_{n \geq 0}(-1)^{n} Y_{n}(x) Y_{n+1}(x) .
$$

$$
K(x, y) S(x, y)=x y-t x^{2} S(x, 0)-t y^{2} S(y, 0) .
$$

$K\left(x, Y_{1}\right)=0: \quad t x^{2} S(x, 0)=x Y_{1}-t Y_{1}^{2} S\left(Y_{1}, 0\right)$
$K\left(Y_{1}, Y_{2}\right)=0: \quad t Y_{1}^{2} S\left(Y_{1}, 0\right)=Y_{1} Y_{2}-t Y_{2}^{2} S\left(Y_{2}, 0\right)$

The "iterated" part of iterated kernel method

Lemma

$$
S(x, 0 ; t)=\frac{1}{t x^{2}} \sum_{n \geq 0}(-1)^{n} Y_{n}(x) Y_{n+1}(x) .
$$

$$
K(x, y) S(x, y)=x y-t x^{2} S(x, 0)-t y^{2} S(y, 0) .
$$

$K\left(x, Y_{1}\right)=0: \quad t x^{2} S(x, 0)=x Y_{1}-t Y_{1}^{2} S\left(Y_{1}, 0\right)$
$K\left(Y_{1}, Y_{2}\right)=0: \quad t Y_{1}^{2} S\left(Y_{1}, 0\right)=Y_{1} Y_{2}-t Y_{2}^{2} S\left(Y_{2}, 0\right)$
Substitute.. $t x^{2} S(x, 0)=x Y_{1}-Y_{1} Y_{2}+t Y_{2}^{2} S\left(Y_{2}, 0\right)$

The "iterated" part of iterated kernel method

Lemma

$$
S(x, 0 ; t)=\frac{1}{t x^{2}} \sum_{n \geq 0}(-1)^{n} Y_{n}(x) Y_{n+1}(x) .
$$

$$
K(x, y) S(x, y)=x y-t x^{2} S(x, 0)-t y^{2} S(y, 0) .
$$

$K\left(x, Y_{1}\right)=0: \quad t x^{2} S(x, 0)=x Y_{1}-t Y_{1}^{2} S\left(Y_{1}, 0\right)$
$K\left(Y_{1}, Y_{2}\right)=0: \quad t Y_{1}^{2} S\left(Y_{1}, 0\right)=Y_{1} Y_{2}-t Y_{2}^{2} S\left(Y_{2}, 0\right)$
Substitute.. $t x^{2} S(x, 0)=x Y_{1}-Y_{1} Y_{2}+t Y_{2}^{2} S\left(Y_{2}, 0\right)$
ITERATE
$K\left(Y_{n}, Y_{n+1}\right)=0: \quad t Y_{n}^{2} S\left(Y_{n}, 0\right)=\left(Y_{n} Y_{n+1}-t Y_{n+1}^{2} S\left(Y_{n+1}, 0\right)\right)$
Method based on Prellberg et. al 2006, and related to process of Bousquet-Mélou

Singularities spring eternal

Theorem

$$
S(t)=(1-3 t)^{-1}\left(1-2 \sum_{n \geq 0}(-1)^{n} Y_{n}(1) Y_{n+1}(1)\right) .
$$

The set \bigcup_{n} poles $\left(Y_{n}(1)\right)$ is infinite, and is a subset of poles $(S(t))$. Consequently, $S(t)$ is not holonomic.

Singularities spring eternal

Theorem

$$
S(t)=(1-3 t)^{-1}\left(1-2 \sum_{n \geq 0}(-1)^{n} Y_{n}(1) Y_{n+1}(1)\right) .
$$

The set \bigcup_{n} poles $\left(Y_{n}(1)\right)$ is infinite, and is a subset of poles $(S(t))$. Consequently, $S(t)$ is not holonomic.

- $Y_{n}\left(1 ; \frac{q}{1+q^{2}}\right)=q^{n}+\ldots ;$

Singularities spring eternal

Theorem

$$
S(t)=(1-3 t)^{-1}\left(1-2 \sum_{n \geq 0}(-1)^{n} Y_{n}(1) Y_{n+1}(1)\right) .
$$

The set \bigcup_{n} poles $\left(Y_{n}(1)\right)$ is infinite, and is a subset of poles $(S(t))$. Consequently, $S(t)$ is not holonomic.

- $Y_{n}\left(1 ; \frac{q}{1+q^{2}}\right)=q^{n}+\ldots$;
- Valid power series in q;

Singularities spring eternal

Theorem

$$
S(t)=(1-3 t)^{-1}\left(1-2 \sum_{n \geq 0}(-1)^{n} Y_{n}(1) Y_{n+1}(1)\right)
$$

The set \bigcup_{n} poles $\left(Y_{n}(1)\right)$ is infinite, and is a subset of poles $(S(t))$.
Consequently, $S(t)$ is not holonomic.

- $Y_{n}\left(1 ; \frac{q}{1+q^{2}}\right)=q^{n}+\ldots$;
- Valid power series in q;
- Show $\sum_{n \geq 0}(-1)^{n} Y_{n}(1) Y_{n+1}(1)$ convergent, except: when denominator is zero and along the branch cut of Y_{1}.

Singularities spring eternal

Theorem

$$
S(t)=(1-3 t)^{-1}\left(1-2 \sum_{n \geq 0}(-1)^{n} Y_{n}(1) Y_{n+1}(1)\right)
$$

The set \bigcup_{n} poles $\left(Y_{n}(1)\right)$ is infinite, and is a subset of poles $(S(t))$.
Consequently, $S(t)$ is not holonomic.

- $Y_{n}\left(1 ; \frac{q}{1+q^{2}}\right)=q^{n}+\ldots$;
- Valid power series in q;
- Show $\sum_{n \geq 0}(-1)^{n} Y_{n}(1) Y_{n+1}(1)$ convergent, except: when denominator is zero and along the branch cut of Y_{1}.
- Show singularities don't cancel.

The singularities don't cancel

As usual, the hardest part is showing that there is no massive cancellation. But we succeed!
Essentially, because of the nice recurrence

$$
\frac{1}{Y_{n}}=\frac{1+q^{2}}{q Y_{n-1}}-\frac{1}{Y_{n-2}}
$$

The singularities don't cancel

As usual, the hardest part is showing that there is no massive cancellation. But we succeed!
Essentially, because of the nice recurrence

$$
\frac{1}{Y_{n}}=\frac{1+q^{2}}{q Y_{n-1}}-\frac{1}{Y_{n-2}}
$$

If q_{c} is a root of $\frac{1}{Y_{n}}$,

$$
\frac{1}{Y_{n+k}\left(q_{c}\right)}=\frac{1}{Y_{n+1}\left(q_{c}\right)} \frac{1-q_{c}^{2 k}}{\left(1-q_{c}^{2}\right) q_{c}^{k-1}} .
$$

The singularities don't cancel

As usual, the hardest part is showing that there is no massive cancellation. But we succeed!
Essentially, because of the nice recurrence

$$
\frac{1}{Y_{n}}=\frac{1+q^{2}}{q Y_{n-1}}-\frac{1}{Y_{n-2}}
$$

If q_{c} is a root of $\frac{1}{Y_{n}}$,

$$
\frac{1}{Y_{n+k}\left(q_{c}\right)}=\frac{1}{Y_{n+1}\left(q_{c}\right)} \frac{1-q_{c}^{2 k}}{\left(1-q_{c}^{2}\right) q_{c}^{k-1}} .
$$

We can show q_{c} is not a root of unity; Recall $Y_{0}(1)=1$.

The non-holonomy of one implies the other

What about $\mathcal{T}=\{N W, N, S E\}$?

In fact, the non-holonomy of \mathcal{T} follows from \mathcal{S} (with a smidge of elbow grease)

What about $\mathcal{T}=\{N W, N, S E\} ?$

In fact, the non-holonomy of \mathcal{T} follows from \mathcal{S} (with a smidge of elbow grease)

The equation here is not symmetric

$$
(1-3 t) T(t)=1-T(1,0 ; t)-T(0,1 ; t)
$$

(1) Lucky us! $T(1,0 ; t)=S(1,0 ; t)$, not holonomic! (Walks ending on the x-axis are in bijection.)
(2) Show that an infinite collection of singularities from $T(1,0 ; t)$ is not in any way cancelled by $T(0,1 ; t)$.

What about $\mathcal{T}=\{N W, N, S E\} ?$

In fact, the non-holonomy of \mathcal{T} follows from \mathcal{S} (with a smidge of elbow grease)

The equation here is not symmetric

$$
(1-3 t) T(t)=1-T(1,0 ; t)-T(0,1 ; t)
$$

(1) Lucky us! $T(1,0 ; t)=S(1,0 ; t)$, not holonomic! (Walks ending on the x-axis are in bijection.)
(2) Show that an infinite collection of singularities from $T(1,0 ; t)$ is not in any way cancelled by $T(0,1 ; t)$.

Which other walks reduce to \mathcal{S}-case?

Lots of non-holonomic classes?

Can proving the non-holonomy of these classes be far behind?

Lots of non-holonomic classes?

Can proving the non-holonomy of these classes be far behind?

The gf of \mathcal{S}-walks in any wedge less than the half plane seems to satisfy an equation not unlike in the quarter plane, recall:

$$
D_{k}(1)=\frac{q\left(q^{k+2}+1\right) D_{k-2}(1)-2 q^{3} D_{k-2}(q)}{\left(q^{k+2}+1\right)(q-1)^{2}} .
$$

Lots of non-holonomic classes?

Can proving the non-holonomy of these classes be far behind?

The gf of \mathcal{S}-walks in any wedge less than the half plane seems to satisfy an equation not unlike in the quarter plane, recall:

$$
D_{k}(1)=\frac{q\left(q^{k+2}+1\right) D_{k-2}(1)-2 q^{3} D_{k-2}(q)}{\left(q^{k+2}+1\right)(q-1)^{2}} .
$$

Can we reduce this to the quarter plane case? (work in progress with D. Laferrière)

Current projects and goals

(1) Prove conjecture; (with or without Fayolle- IasnogordskiMalyshev 99)

Current projects and goals

(1) Prove conjecture; (with or without Fayolle- lasnogordskiMalyshev 99)
(2) Classify walks in other wedges (with D. Laferrière);

Current projects and goals

(1) Prove conjecture; (with or without Fayolle- lasnogordskiMalyshev 99)
(2) Classify walks in other wedges (with D. Laferrière);
(3) Understand the magic that is the kernel method (with A. Rechnitzer);

Current projects and goals

(1) Prove conjecture; (with or without Fayolle- lasnogordskiMalyshev 99)
(2) Classify walks in other wedges (with D. Laferrière);
(3) Understand the magic that is the kernel method (with A. Rechnitzer);
(4) Consider other walks;

Current projects and goals

(1) Prove conjecture; (with or without Fayolle- lasnogordskiMalyshev 99)
(2) Classify walks in other wedges (with D. Laferrière);
(3) Understand the magic that is the kernel method (with A. Rechnitzer);
(4) Consider other walks;
(5) Develop combinatorial criteria of non-holonomy;

Current projects and goals

(1) Prove conjecture; (with or without Fayolle- lasnogordskiMalyshev 99)
(2) Classify walks in other wedges (with D. Laferrière);
(3) Understand the magic that is the kernel method (with A. Rechnitzer);
(4) Consider other walks;
(5) Develop combinatorial criteria of non-holonomy;
(0) Prove that miracles don't exist. (or, rather understand when they do.)

