Groups and symmetries: From the Neolithic Scots to John McKay April 27 – 29, 2007

The G-orbit Hilbert schemes and McKay correspondence for simple singularities

Iku Nakamura

nakamura@math.sci.hokudai.ac.jp Department of Mathematics Hokkaido University Kita 10, Nishi 8, Kita-Ku Sapporo, Hokkaidoo, 060-0810 Japan

Abstract

For a given finite subgroup G of $SL(2, \mathbb{C})$ there is a famous McKay correspondence between the minimal resolution of the quotient \mathbb{C}^2/G and irreducible representations of G. The G-orbit Hilbert scheme of \mathbb{C}^2 is, by definition, the Hilbert scheme which parametrizes all the zero dimensional G-invariant subschemes (= G-clusters), each with structure sheaf isomorphic to the regular representation of G. This turns out to be a minimal resolution of \mathbb{C}^2/G . Thus any point of the minimal resolution of \mathbb{C}^2/G has a nontrivial interpretation as a Gmodule, the defining ideal of the G-cluster. This enables us to give an explanation for the McKay correspondence, other than that given by Gonzalez-Springberg and Verdier. We report this and related results, based on *joint works with Ito, Shinoda and Gomi*.