A Different Perspective on Perspective Cuts

Jeff Linderoth

Unemployed linderot@cs.wisc.edu

Mathematical Sciences Department IBM T.J. Watson Research Center gunluk@us.ibm.com

MIP 2007 Centre de recherches mathématiques Université de Montréal August 1, 2007

Indicator MINLPs

- We focus on (convex) MINLPs that are driven by 0-1 indicator variables $z_i, i \in \mathcal{I}$
- ullet Each indicator variable i controls a collection of variables V_i
- If $z_i=0$, the components of x controlled by z_i must collapse to a point: $z_i=0 \Rightarrow x_{V_i}=\hat{x}_{V_i}$
 - WLOG $\hat{x}_{V_i} = 0$ from now on
- If $z_i=1$, the components of x controlled by z_i belong to a convex set $z_i=1\Rightarrow x_{V_i}\in\Gamma_i$
- \bullet Γ_i is specified by (convex) nonlinear inequality constraints and bounds on the variables

$$\Gamma_i \stackrel{\mathrm{def}}{=} \{x_{V_i} \mid f_k(x_{V_i}) \leq 0 \ \forall k \in K_i, l \leq x_{V_i} \leq u\}.$$

Indicator MINLPs

$$\begin{split} \min & \quad c^\mathsf{T} x + d^\mathsf{T} z \\ \mathrm{s.\,t.} & \quad g_m(x,z) & \leq \quad 0 \qquad \forall m \in M \\ & \quad z_i f_k(x_{V_i}) & \leq \quad 0 \qquad \forall i \in \mathcal{I} \ \forall k \in K_i \\ & \quad \ell_j z_i \leq x_j & \leq \quad u_j z_i \qquad \forall i \in \mathcal{I} \ \forall j \in V_i \\ & \quad x \in X \qquad \quad z \in Z \cap \mathbb{B}^p, \end{split}$$

- X, Z polyhedral sets
- Typically, $g_m(x, z) = \bar{g}_m(x) + a_m^T z$ is linear in z, or even $a_m = 0$.
- If $z \in Z \cap \mathbb{B}^p$ is fixed, then the problem is convex.

Indicators Everywhere

Process Flow Applications

•
$$z = 0 \Rightarrow x_1 = x_2 = x_3 = x_4 = 0$$

•
$$z = 1 \Rightarrow f(x_1, x_2, x_3, x_4) \le 0$$

Separable Function Epigraphs

$$y_i > f_i(x_i) \ \forall i \in \mathcal{I}$$

$$\ell z_i \leq x_i \leq u z_i \ \forall i \in \mathcal{I}$$

- Note that here I am already lying
- z = 0 does not imply y = 0
- Nevertheless, results apply to epigraph-type indicator MINLP

A Very Simple Example

$$R \stackrel{\mathrm{def}}{=} \left\{ (x,y,z) \in \mathbb{R}^2 \times \mathbb{B} \mid y \geq x^2, 0 \leq x \leq uz \right\}$$

Deep Insights

• $conv(R) \equiv line connecting (0,0,0) to y = x^2 in the z = 1 plane$

Characterization of Convex Hull

• Work out the algebra to get:

Deep Theorem #1

$$\operatorname{conv}(R) = \left\{ (x, y, z) \in \mathbb{R}^3 \mid yz \ge x^2, 0 \le x \le uz, 0 \le z \le 1, y \ge 0 \right\}$$

$$x^2 < yz, y, z > 0 \equiv$$

Second Order Cone Programming

ullet There are effective and robust algorithms for optimizing linear objectives over $\operatorname{conv}(R)$

Higher Dimensions

• Using an extended formulation, we can describe the convex hull of a higher-dimensional analogue of R:

$$Q \stackrel{\text{def}}{=} \left\{ (w, x, z) \in \mathbb{R}^{1+n} \times \mathbb{B}^n \mid w \ge \sum_{i=1}^n q_i x_i^2, \ u_i z_i \ge x_i \ge 0, \forall i \right\}$$

• First we write an extended formulation of Q, introducing variables y_i :

$$\bar{Q} \stackrel{\text{def}}{=} \left\{ (w, x, y, z) \in \mathbb{R}^{1+3n} \mid w \ge \sum_{i} q_{i}y_{i}, (x_{i}, y_{i}, z_{i}) \in R_{i}, \ \forall i \right\}$$

$$R_i \stackrel{\mathrm{def}}{=} \left\{ (x_i, y_i, z_i) \in \mathbb{R}^2 \times \mathbb{B} \mid y_i \geq x_i^2, 0 \leq x_i \leq u_i z_i \right\}$$

Extended Formulations

- \bar{Q} is indeed an extended formulation in the sense that projecting out the y variables from \bar{Q} gives Q: $\Pr{oj_{(w,x,z)}\bar{Q}} = Q$.
- The convex hull of \bar{Q} is obtained by replacing R_i with its convex hull description $\mathrm{conv}(R_i)$:

$$\begin{split} \operatorname{conv}(\bar{Q}) = \Big\{ w \in \mathbb{R}, \ x \in \mathbb{R}^n, y \in \mathbb{R}^n, z \in \mathbb{R}^n \ : \ w \geq \sum_i q_i y_i, \\ (x_i, y_i, z_i) \in \operatorname{conv}(R_i), \quad i = 1, 2, \dots, n \Big\}. \end{split}$$

- \bullet Again, the description of $\mathrm{conv}(\bar{Q})$ is SOC-representable.
- You get one rotated cone for each i

Descriptions in the Original Space

 We can also write also write a convex hull description in the original space of variables, by projecting out y:

$$\begin{array}{rcl} Q^{c} & = \left\{ (w,x,z) \in \mathbb{R}^{1+n+n} : & \\ & w \prod_{i \in S} z_{i} \geq \sum_{i \in S} \left(q_{i} x_{i}^{2} \prod_{l \in S \setminus \{i\}} z_{l} \right) & S \subseteq \{1,2,\ldots,n\} \\ & u_{i} z_{i} \geq x_{i} \geq 0, \quad x_{i} \geq 0, \quad i = 1,2,\ldots,n \right\} \end{array}$$
 (II)

Theorem

$$\operatorname{Proj}_{(w,x,z)}(\bar{Q}^c) = Q^c = \operatorname{conv}(Q).$$

• Q^c consists of an exponential number of nonlinear inequalities.

Extending the Intuition

• To deal with general convex sets, let $W = W^1 \cup W^0$:

$$\begin{aligned} W^0 &=& \{(x,z) \in \mathbb{R}^{n+1} \mid x=0,z=0\} \\ W^1 &=& \{(x,z) \in \mathbb{R}^{n+1} \mid f_k(x) \leq 0 \text{ for } k \in K, u \geq x \geq 0, z=1\} \end{aligned}$$

Write an extended formulation (XF) for conv(W)

$$\begin{split} \left\{ (x,x_0,x_1,z,z_0,z_1,\alpha) \in \mathbb{R}^{3n+4} \mid 1 \geq \alpha \geq 0, x^0 = 0, z^0 = 0 \\ x = \alpha x^1 + (1-\alpha)x^0, z = \alpha z^1 + (1-\alpha)z^0, \\ f_i(x^1) \leq 0 \text{ for } i \in I, u \geq x^1 \geq 0, z^1 = 1 \right\} \end{split}$$

Simplify, Simplify, Simplify

- Substitute out x^0, z^0 and z^1 : They are fixed in (XF)
- $z = \alpha$ after these substitutions, so substitute it out as well.
- $x = \alpha x^1 = z x^1$, so we can eliminate x^1 by replacing it with x/z provided that z > 0.

Lemma

If W^1 is convex, then $conv(W) = W^- \cup W^0$, where

$$W^{-} = \left\{ (x, z) \in \mathbb{R}^{n+1} \mid f_k(x/z) \le 0 \ \forall k \in K, uz \ge x \ge 0, 1 \ge z > 0 \right\}$$

Lemma Extension

Convexify, Convexify, Convexify

- Note: $f_k(x/z)$ is not necessarily convex, even if $f_k(x)$ is.
- However, $zf_k(x/z)$ is convex if $f_k(x)$ is.
- Multiplying both sides of the inequality by z>0 doesn't change the set W^- :

$$W^{-} = \left\{ (x, z) \in \mathbb{R}^{n+1} \mid z f_k(x/z) \le 0 \ \forall k \in K, uz \ge x \ge 0, 1 \ge z > 0 \right\}$$

ullet You can, if you wish, multiply by $z^{
m p}$

Giving You Some Perspective

• For a convex function $f(x) : \mathbb{R}^n \to \mathbb{R}$, the function

$$\mathcal{P}(f(z,x)) = zf(x/z)$$

is known as the perspective function of f

• The epigraph of $\mathcal{P}(f(z,x))$ is a cone pointed at the origin whose lower shape is f(x)

Exploiting Your Perspective

• If z_i is an indicator that the (nonlinear, convex) inequality $f(x) \le 0$ must hold, (otherwise x=0), replace the inequality with its perspective version:

$$z_i f(x/z_i) \leq 0$$

• The resulting (convex) inequality is a much tighter relaxation of the feasible region.

An Axioma Connection

Stubbs (1996)

 In his Ph.D. thesis, Stubbs gives (without proof) $\operatorname{conv}(\bar{Q})$, our original (high-dimensional) set

Ceria and Soares (1999)

- Describe $K = \bigcup_{i \in M} K_i$, with $K_i = \{x \mid f_i(x) \leq 0\}$ in a higher-dimensional space.
- $x \in \operatorname{conv}(K) \Leftrightarrow$

$$x = \sum_{i \in M} \lambda_i x_i, \mathcal{P}(f_i(\lambda_i, x_i)) \leq 0, \lambda \in \Delta_{|M|}$$

Other Smart People

Frangioni and Gentile (2006)

• Study: $y \ge f(x), x \le uz$, give perspective cut:

$$y \ge f(x) + \nabla f(x)^T (x - \hat{x}) - (\hat{x}^T \nabla f(\hat{x}) + f(\hat{x}))(z - 1)$$

- This is first-order Taylor expansion of perspective $zf(x/z) + y \le 0$ about $(\hat{x}, f(\hat{x}), 1)$
- Feasible inequality by convexity of f(x)

Aktürk, Atamtürk, and Gürel (2007)

- Apply perspective reformulation (of epigraph indicator MINLP) to nonlinear machine scheduling problem
- Explain that formulations are representable as SOCP.

Facility Location

- M: Facilities
- N: Customers
- \bullet x_{ij} : percentage of customer i's demand served from facility j
- $z_i = 1 \Leftrightarrow$ facility i is opened
- Fixed cost for opening facility i
- Quadratic cost for serving j from i
- Problem studied by Günlük, Lee, and Weismantel ('07), and classes of strong cutting planes derived

Separable Quadratic UFL—Formulation

$$z^* \stackrel{\mathrm{def}}{=} \min \sum_{i \in M} c_i z_i + \sum_{i \in M} \sum_{j \in N} q_{ij} x_{ij}^2 \underline{\textbf{y}}_{ij}$$

subject to

$$\begin{array}{cccccc} x_{ij} & \leq & z_i & \forall i \in M, \forall j \in N \\ \sum_{i \in M} x_{ij} & = & 1 & \forall j \in N \\ & x_{ij} & \geq & 0 & \forall i \in M, \forall j \in N \\ & z_i & \in & \{0,1\} & \forall i \in M \\ x_{ij}^2 - z_i y_{ij} & \leq & 0 & \forall i \in M, \forall j \in N \end{array}$$

Strength of Relaxations

- z_R: Value of NLP relaxation
- z_{GLW}: Value of NLP relaxation after GLW cuts
- z_P: Value of perspective relaxation
- z^* : Optimal solution value

M	N	z_{R}	z_{GLW}	$z_{\rm P}$	z*
10	30	140.6	326.4	346.5	348.7
15	50	141.3	312.2	380.0	384.1
20	65	122.5	248.7	288.9	289.3
25	80	121.3	260.1	314.8	315.8
30	100	128.0	327.0	391.7	393.2

Design of Uncongested Network

- Capacitated directed network:
 G = (N, A)
- Set of commodities: K
- Node demands: b_i^k $\forall i \in N, \forall k \in K$
- Each arc $(i, j) \in A$ has
 - Fixed cost: c_{ij}
 - Capacity: uij
 - Queueing weight: r_{ij}

- $z_{ij} \in \{0, 1\}$: Indicates whether arc $(i, j) \in A$ is opened.
- x_{ii}^k : The quantity of commodity k routed on arc (i, j)

Network Design

- Let $f_{ij} \stackrel{\mathrm{def}}{=} \sum_{k \in K} x_{ii}^k$ be the flow on arc (i,j).
- A measure of queueing delay is:

$$\rho(f) \stackrel{\mathrm{def}}{=} \sum_{(i,j) \in A} r_{ij} \frac{f_{ij}}{1 - f_{ij}/u_{ij}}$$

Our Network Design Problem

Design network to keep total queueing delay less than a given value β , and this is to be accomplished at minimum cost.

Network Design Formulation

$$\begin{split} \text{s.t.} & \sum_{(i,j)\in A} c_{ij}z_{ij} \\ \\ \text{s.t.} & \sum_{(j,i)\in A} x_{ij}^k - \sum_{(i,j)\in A} x_{ij}^k = b_i^k \quad \forall i\in N, \forall k\in K \\ \\ & \sum_{k\in K} x_{ij}^k - f_{ij} = 0 \quad \forall (i,j)\in A \\ \\ & f_{ij} \leq u_{ij}z_{ij} \quad \forall (i,j)\in A \\ \\ & y_{ij} \geq \frac{r_{ij}f_{ij}}{1 - f_{ij}/u_{ij}} \quad \forall (i,j)\in A \\ \\ & \sum_{(i,j)\in A} y_{ij} \leq \beta \end{split}$$

Perspective Formulations and Cones

• Consider the nonlinear inequality:

$$y \ge \frac{\mathrm{rf}}{1 - \mathrm{f/u}} \Leftrightarrow \mathrm{ruf} \le y(u - \mathrm{f})$$

• Since $z_{ij} = 0 \Rightarrow f_{ij} = 0$, we can write the perspective reformulation:

$$y/z \ge \frac{rf/z}{1 - f/zu} \Leftrightarrow ruzf \le y(uz - f)$$

Cones Are Everywhere!

• The inequalities $\text{ruf} \le y(u-f)$ and $\text{urf}z \le y(uz-f)$ are SOC-representable:

$$ruf \le y(u - f) \Leftrightarrow rf^2 \le (y - rf)(u - f)$$

$$rufz \le y(uz - f) \Leftrightarrow rf^2 \le (y - rf)(uz - f)$$

since
$$u > rf$$
, $u > f$, $uz > f$

Results (Under Construction)

- ZIB SNDLIB instance: ATL.
- |N| = |K| = 15, |A| = 22
- Instance solved using (beta) version of Mosek (v5) conic MIP solver
- No fancy cutting planes (cut-set inequalities) added

_	
Recui	ltc.
i (Cou	رما

	Nodes	Time
No Perspective	3686	517.1
W/Perspective	414	52.5

ATL Network

Conclusions

Other Conclusions

- Strong reformulations for MINLPs are likely to be just as important as they are for MILPs
- Strong formulations for MINLPs may require nonlinear inequalities.
 (Duh!)
- Much of the work we present here has (recently) found its way into the literature.

Our "contributions"

- Give convex hull for the union of a (general) bounded convex set and a point
- Give description in original space of variables
- Exploit SOC-representability of strong reformulations to solve instances much more effectively

