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An LP-based approach to the Train Unit
Assignment Problem

V. Cacchiani, A. Caprara, P. Toth

Input: • timetabled train trips with a required number of passenger seats

• train unit types

Output: Find a minimum cost assignment of the train units (TUs) to the trips, satisfying a 
set of constraints

Constraints: • required number of passenger seats for each trip (possibly combining TUs)

• maximum number of TUs that can be assigned to each trip (generally 2)

• maximum number of TUs available

• sequencing constraints between trips

University of Bologna (Italy)
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Graph Representation
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ILP Formulation
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Column Generation

The model has an exponential number of variables and can be solved by column
generation techniques.
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It can be solved as a maximum profit path from 0 to n+1 in                
with node profits for each



V. Cacchiani, MIP 2007, Montreal 6

“Strong” capacity constraints

An example
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“Strong” capacity constraints
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The described capacity constraints are 
the following:
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The derived strong inequalities describe the convex hull of the capacity constraints.
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An LP-based Heuristic Algorithm

1. solve the current LP (CPLEX) *z
2. constructive heuristic (based on the optimal dual solution)

4. if there are dual constraints violated add some of the corresponding
primal variables to the current
LP

else

stop5. if the current LP is infeasible
if value of the incumbent solution=*z

fixing

stop

else goto 1.

3. refine the solution found
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Experimental Results on the Case Study
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Future research

• consider other real-life constraints in the problem (maintenance, cyclicity)

• find robust solutions w.r.t. uncertainties in the timetables of the trips due to
possible delays

• test the algorithm on other real-life instances


