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Projecting out continuous variables from a
system of linear inequalities

Q ={(u,x) e RPT¥: Au+ Bx < d, x € T}, Amxp, Bmxgq

e The projection of @’ onto the x-space is defined as
P (Q):={x€RINT:3ucRP with (u,x) € Q'}
e Projection cone:
W ={veR":vA=0, v >0}

e P(Q)Y={x€eRINT:(vB)x < vd for all v € extr W'}

(Special case when A has a single column: Fourier elimination)



Projecting out 0-1 variables from a system of linear
inequalities
Q:={(u,x) ERPT9: Au+ Bx < d, uc{0,1}", xc T}
e The projection of @ onto the x-space is defined as
Pi(Q) :={xeRINT:3ue {0,1}° with (u,x) € Q}
In general, P,(Q) is nonconvex; we are also interested in

P:(Q) := conv Py (Q).

In general,



Example:

u + x =1
x1 + x =1

u + xx =1
u,xi,x0 > 0

Q' = {(u, x1,x) € R3: (1) holds}
Q = {(u,x1,x2) € R3: (1) holds, u € {0,1}}
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Projecting out v € {0,1}7

Let a; be the j-th column of A.

Forany S C{1,...,p}, let a(S):=> (aj:j€5)
Let S :={SC{1,...,p}, S#0}

Theorem. If T is convex, then

P(Q)={xeRINT:(vB)x < vd forall v e extr W}

where

W{VERm

vd — w3(d—a(S)) = 0 S8

vB — w°B = 0 Ses§
v,w®>>0,SeS




Proof outline.
(u,x) € Qiff x e RIN T satisfies

\/ (Bx < d—a(s)) 1)

Ses’
where &’ := SU {0}, i.e.
P(Q)={x€eRINT:Bx<d—a(S) for some S € §'}.

Hence

PS(Q)={xeRINT :x —Z(ys:SES')
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Projecting out (y°,y5), S € &', it follows that x € PS(Q) iff it
satisfies

ax <
for every (a, 3) such that
o - w°B =0
-8 + w(d—a(S)) = 0
w? >0 Seds.

Setting v := w” and substituting vB for o and vd for 3 yields W.
[



Easy case

e @ is down-monotone in u:
(u,x) €@, 0<y<u)=(y,x) €Q
(eg. A>0)
Proposition. If Q is down-monotone in u,
Pi(Q)={xeRINT:Bx<d}

i.e. Py(Q) is the restriction of Q to u = 0.



Proof.

e If X satisfies Bx < d, then (&I, X), with & = 0, satisfies
Au + Bx < d; hence X € P,(Q).

e If Bix > d; for some i, then Aju+ BiX > d;, i.e. (u,X) & Q
for all u € {0,1}~. O

Example. Set packing:
Q = {(u,x) € {0,1}P*9: Au+ Bx <1}, ajj, bge € {0,1}

P.(Q) = {x € {0,1}9: Bx < 1}



Easy case:

e @ is up-monotone in u:
(1, x)€Q, u<y<1)=(y,x) €Q
(where @ is defined with > instead of <).

Proposition. If @ is up-monotone in wu,
Pi(Q)={x€eRINT:Bx>d— Al},

i.e. Py(Q) is the restriction of Q to u=1.



Proof.

If x satisfies Bx > d — Al, then (&, X), with & = 1, satisfies
Au+ Bx > d; hence x € P,(Q).

Conversely, if X € Px(Q), there exists & € {0, 1}* with (0,%) € Q,
hence X satisfies Bx > d — At > d — Al. ]

Example. Set covering:
Q = {(u,x) € {0,1}P*9: Au+ Bx > 1}, ajj, bys € {0,1}}
P (Q)={x€{0,1}9: Bix > 1, for all i s.t. A; =0}
Hard case: Set partitioning

Not monotone



Example: Set packing

X1 “+Xa
X2 +X3
X1 +x3 +Xx4
X1

Projecting out x; and
X2+ x3 <

x3 <

<

X5

<

<

<

+x5 <

Xy yields
1
1
1

= e

Example: Set covering

X1 +X4 >

X2 +Xx3 >
X1 +Xx3 +X4 Z
X1 +x5 >

Projecting out x; and x; yields

Xo + X3 Z 1

[



Eliminating one 0-1 variable

Q = {(x0,x) €0, 1}"Jrl D ajoxo + ajx > by,
ieM, a;eZ", ie M}
Q = {Q:x €1{0,1} is replaced by 0 < xp < 1}
M+ = {iel\/l:a,-0>0}
M- = {iGM:a;0<0}
MO = {iEM:a;OZO}
Fourier elimination:
P(Q)={x€{0,1}":a;ix > b;— ajo, ieM*
aix > b, e M~ U M,
S (aiakj — akoaij)x; > aiobk — akobi, i€ Mt ke M~}
j=1



Let F(Q") := Px(Q')\ Px(Q)
Theorem. F(Q’) is the set of those x € Py(Q’) for which
3i € MT, k € M~ such that ajg > 2, axg < —2, and
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bi — aix < aj+ |aio/ako]

ao+1 < b — ax < |ako/aio)

(3)

Corollary. If ajo € {1,—1,0} for all i € M, then F(Q") =10, i.e.



Why Fourier elimination does not work
for Set Partitioning
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Projection in Propositional Calculus

o Satisfiability:
Is a set of clauses C;, i € M, in literals x;,%;, j € N,

G x1VXxo V-V X, ieM

satisfiable?
e If 3k € N (and no other h € N), s.t.

xx € Ci, X € Cj for some | # J,

then
Cc . =GU CJ \ {Xk,)_(k}

is the resolvent of C; and (;
Resolution (which replaces C;, C; by C) is a projection
method.



e |P formulation:

ZXJ' + Z(l—xj-) > 1 ieM

JjeNT JENT
x;€4{0,1}, jeN

If xx € C; and (1 — xx) € Cp, h # i, then Fourier elimination
combines C; with Cj, to obtain

Y 0g i€ NFUNAATKD)+Y ((L=x) - j € Ny UN, \{k}) > 1

which is the resolvent C of C; and .



Another representation
Q :={(u,x) € {0,1}PT9: Au+ Bx = d},

a(S):=>(aj:jeS5),SC{1,...,p}

x — Y(y°:5€8 =0
By —(d—a(S)y; = 0 Se& (2)
Xy =1
Ses§’
x — y51 _y52 .. —ysq =0 d°:=d- 2(5)
BySt _d51y051 =0
By52 _d52y052 =0

BySq —dSq ygq =0

S1

S;
Yo +y5° +y' =1 {l,...,q} =S



x—y% —y> o~y =0 dS:=d—a(s)

Bysl _dsly[;-;l —0

By —dSyp2 =0

By>a —dSQ)/OSq =0
%! +y5? T =1 {1,....q}=8

The system (2) implies
Bx —3(d°)s:S€S8') = 0
YAs:S5e8) =1 (3)
ds > 0,Scd

When are (2) and (3) equivalent?



Let Bnxg, m<gq

Theorem. (2) and (3) are equivalent if
for every m x m nonsingular submatrix D of B
and every convex combination d(\) of d° with weights \s,S € &',

D~1d(\) > 0 implies D™1d® > 0 whenever As > 0.



Cases when the condition holds:

e x belongs to one of several boxes (multidimensional intervals)
e x belongs to one of several simplices

e x belongs to one of several network (or multiple network)
polyhedra

e Application: derivation of Ball, Liu and Pulleyblank’'s compact
linear characterization of 2-terminal Steiner-tree polyhedra



