Logarithmic Surfaces and Hyperbolicity

Gerd Dethloff (Université de Brest)

Joint work with Steven Lu (Université de Montréal)

Notations:

- \overline{X} : (compact) algebraic surface, $D \subset \overline{X}$: divisor with normal crossings, (\overline{X}, D) : log surface.
- $T^*_{\overline{X}}$: cotangent bundle, \overline{T}^*_X : log cotangent bundle.

$$\begin{split} q_{\bar{X}} &= \dim_{\mathbf{C}} H^0(\bar{X}, T^*_{\bar{X}}) : \text{ irregularity,} \\ \bar{q}_X &= \dim_{\mathbf{C}} H^0(\bar{X}, \bar{T}^*_X) : \text{ log irregularity,} \\ \bar{K}_X &= \wedge^2 \bar{T}^*_X : \text{ log canonical bundle,} \\ \bar{\kappa}_X &= \kappa(\bar{X}, \bar{K}_X) : \text{ log Kodaira dimension.} \end{split}$$

 $\bar{\kappa}_X = -\infty, 0, 1, 2$. If $\bar{\kappa}_X = 2$, the log surface (\bar{X}, D) is called of log general type.

 $\alpha_X : X \to \mathcal{A}_X$ quasi-Albanese map. It is a holomorphic map which extends to a rational map $\bar{\alpha}_X : \bar{X} \to \bar{\mathcal{A}}_X$ (Iitaka '76).

Theorem 1 (Noguchi '81) For any log surface s.th. $\bar{q}_X > 2$, any entire holomorphic curve $f : \mathbb{C} \to X$ is algebraically degenerated.

Theorem 2 Let (\overline{X}, D) a log surface of log general type with log irregularity $\overline{q}_X = 2$. Then any entire holomorphic Brody curve $f : \mathbb{C} \to X$ is algebraically degenerated.

Corollary 3 Let (\bar{X}, D) be a log surface with log irregularity $\bar{q}_X = 2$ and log Kodaira dimension $\bar{\kappa}_X > 0$. If X doesn't contain any non-hyperbolic algebraic curve and if D is hyperbolically stratified, then X is complete hyperbolic and hyperbolically imbedded.

Corollary 4 Let $D \subset \mathbf{P}_2$ be a normal crossing curve of degree at least 4 consisting of at least 3 components. Then every Brody curve $f: \mathbf{C} \to \mathbf{P}_2 \setminus D$ is algebraically degenerated. Theorem 2 does not hold in general for $\bar{\kappa}_X \leq 1$:

Proposition 5 (Counterexample for $\bar{\kappa}_X = 1$) Let *E* be an elliptic curve and $p: E \times E \to E$ the projection to the first factor. Let $P_1, P_2 \in$ *E* be two distinct points, and $Q_i \in p^{-1}(P_i)$, i = 1, 2 two points. Let $b: \bar{X} \to E \times E$ be the blow up of $E \times E$ in the points Q_1, Q_2 . Let *D* the union of the proper transforms of $p^{-1}(P_i), i = 1, 2$ in \bar{X} , and $X := \bar{X} \setminus D$. Then $\bar{q}_X = 2$ and $\bar{\kappa}_X = 1$, but *X* admits entire curves $f: \mathbf{C} \to X$ which are not algebraically degenerate.

So what kind of additional condition is needed ?

Let (\bar{X}, D) be a log surface with log irregularity $\bar{q}_X = 2$. Let $\bar{\alpha}_X : \bar{X} \to \bar{\mathcal{A}}_X$ be the compactified Albanese map, I its finite set of points of indeterminacy and $\bar{\alpha}_0 = \bar{\alpha}_X|_{\bar{X}\setminus I}$. In the case of dominant $\bar{\alpha}_X$, we consider the following condition:

(*) For all $z \in A_X$ and \overline{E} a connected component of the Zariski closure of $\overline{\alpha}_0^{-1}(z)$ with $\overline{E} \cap X \neq \emptyset$, any connected component of D intersecting \overline{E} is contained in \overline{E} (i.e. \overline{E} is a connected component of $\overline{E} \cup D$).

We remark that condition (*) can be expressed intrinsically, is equivalent to a condition on the Stein factorization of a desingularization of $\bar{\alpha}_X$, and is implied by the condition that all the fibers of $\alpha_X : X \to \mathcal{A}_X$ are compact. In particular, this condition is much weaker than the properness of α_X . In the case $\bar{\kappa}_X = 1$ we have the following result:

Theorem 6 Let (\bar{X}, D) be a log surface with log irregularity $\bar{q}_X = 2$ and with log Kodaira dimension $\bar{\kappa}_X = 1$. Assume condition (*) in the case of dominant $\bar{\alpha}_X$. Then every entire curve $f : \mathbf{C} \to X$ is algebraically degenerate.

The following result generalizes Kawamata's theorem for normal surfaces finite over a semiabelian surface to surfaces with log irregularity 2 by relating it to entire holomorphic curves. **Theorem 7** Let (\bar{X}, D) be a log surface with log irregularity $\bar{q}_X = 2$. In the case of dominant $\bar{\alpha}_X$, assume condition (*). Then the following are equivalent.

(1) There is an entire curve $f : \mathbb{C} \to X$ such that $f^*w \equiv 0$ for some $w \in H^0(\bar{T}^*_X)$ and f is not algebraically degenerate.

(2) $\bar{\kappa}_X = 0$.

(3) $\bar{\alpha}_X$ is birational and $\mathcal{A}_X \setminus \alpha_X(X)$ is finite.

Remark 8 The construction of Proposition 5 also shows that without condition (*) condition (1) is neither equivalent to condition (2) nor to condition (3). **Remark 9** Much is known already about the hyperbolicity of log surfaces having ample irreducible components D_i of D and small Neron-Severi groups (Noguchi-Winkelmann '02).

The case where \overline{X} is the projective plane (e.g. Demailly-ElGoul) or a torus (e.g. Noguchi et al.) are particularily well understood.

In the case of proper quasi-Albanese map α_X , the result was recently proved by Noguchi-Winkelmann-Yamnoi '05 even in dimension n. However, our result do not require any condition in the case of log general type and our condition (*), which we use in the general case, is still much weaker than the condition of properness of the quasi-Albanese map: Let X be the complement of a smooth ample divisor D in a abelian surface \bar{X} . Then $\bar{K}_X = D$ and so $\bar{\kappa}_X = 2$. Also $\bar{q}_X = q_{\bar{X}} = 2$. This means that the compactified quasi-Albanese map is the identity map and so the Albanese map is not proper.

Basic Proof Ideas of Theorem 2:

I:)

We will reduce Theorem 2 by a result of Mc-Quillen and ElGoul and by log-Bloch's theorem to the following:

Theorem 10 Let (\bar{X}, D) be a log surface with $\bar{q}_X = 2$ and dominant $\bar{\alpha}_X$ and with log Kodaira dimension $\bar{\kappa}_X = 2$. Let $f : \mathbb{C} \to X$ be a Brody curve. Assume that f is not algebraically degenerate. Then $\alpha_X \circ f : \mathbb{C} \to \mathcal{A}_X$ is a translate of a complex one parameter subgroup of \mathcal{A}_X . The result of McQuillan and ElGoul we need is the following:

Theorem 11 (ElGoul '03) Let (\bar{X}, D) be a log surface of log general type. Let $f : \mathbb{C} \to X$ be an entire curve. Suppose that there exists a foliation \mathcal{F} on \bar{X} such that f is (contained in) a leaf of \mathcal{F} . Then f is algebraically degenerate in \bar{X} .

What we will need for the proof of Theorem 2 is only a corollary of a very special case of Theorem 11:

Proposition 12 Let (\bar{X}, D) be a log surface of log general type. Let $\Psi : X \to \mathcal{A}_X$ be a dominant morphism which extends to a rational map $\bar{\Psi} : \bar{X} \to \bar{\mathcal{A}}_X$. Let $f : \mathbf{C} \to X$ be an entire curve. Assume that the map $\Psi \circ f : \mathbf{C} \to \mathcal{A}_X$ is linearly degenerate with respect to the universal cover $\mathbf{C}^2 \to \mathcal{A}_X$. Then f is algebraically degenerate.

II:)

- In the case $q_{\bar{X}} = 2$, the compactified quasi-Albanese map $\bar{\alpha}_X$ is a morphism and so this theorem is trivial.
- If $q_{\bar{X}} < 2$, $\bar{\alpha}_X$ can have points of indeterminacy so that Brody curves are not preserved by $\bar{\alpha}_X$ in general.
- From value distribution theory, the order of growth of a holomorphic curve is preserved under rational maps and Brody curves are of order at most two.

- The key analysis in this proof consists of a detailed study of the geometry of the quasi-Albanese map (in particular at its points of indeterminacy) with respect to f to reduce the order of $\bar{\alpha}_X \circ f$ to one or less. Then it is a translate of a one parameter subgroup.
- We do this componentwise where in the case $q_{\bar{X}} = 1$, we use the fact from Noguchi-Winkelmann-Yamanoi '02 that one can choose a metric on $\bar{\mathcal{A}}_X$ which lifts to the product metric on the universal cover $\mathbf{C} \times \mathbf{P}_1$ of $\bar{\mathcal{A}}_X$.
- In the case $q_{\bar{X}} = 0$ we take rational monomials of the components of $\bar{\alpha}_X$ motivated by arranging residues in a way that allows us to control the points of indeterminacy of the resulting map with respect to f.

Basic Proof Ideas of Theorems 6 and 7:

I:)

We first prove a generalization of the structure theorem of Kawamata for open subsets of finite branched covers of semi-abelian varieties:

Theorem 13 (Kawamata '81) Let X be a normal algebraic variety, \mathcal{A} a semi-abelian variety and let $f : X \to \mathcal{A}$ be a finite morphism. Then $\overline{\kappa}_X \geq 0$ and there exist a connected complex algebraic subgroup $\mathcal{B} \subset \mathcal{A}$, étale covers \tilde{X} of X and $\tilde{\mathcal{B}}$ of \mathcal{B} , and a normal algebraic variety \tilde{Y} such that

(i) \tilde{Y} is finite over \mathcal{A}/\mathcal{B} .

(ii) \tilde{X} is a fiber bundle over \tilde{Y} with fiber $\tilde{\mathcal{B}}$ and translations by $\tilde{\mathcal{B}}$ as structure group.

(iii) $\bar{\kappa}_{\tilde{Y}} = \dim \tilde{Y} = \bar{\kappa}_X$.

If further $\bar{\kappa}_X = 0$ and f is surjective, then f is an étale morphism.

Theorem 14 Let X be a normal algebraic surface, \mathcal{A} a semi-abelian surface and let f: $X \to \mathcal{A}$ be a finite morphism. Let $X_0 \subset X$ be an open algebraic subvariety.

(1) In the case $\bar{\kappa}_{X_0} = 1$, let $\Phi : X^* \to Y^*$ be the logarithmic Iitaka fibration of X_0 , $\Psi : X^* \to X_0$ the birational morphism relating X_0 to X^* , and for $y \in Y^*$, let $X_y^* = \Phi^{-1}(y), X_y = \Psi(X_y^*) \subset X_0 \subset X$ and $B_y = f(X_y)$. Then for generic $y \in Y^*$, $X_y \subset X$ is a closed subvariety and B_y is a translate of a complex one parameter algebraic subgroup \mathcal{B} of \mathcal{A} . Moreover, there are étale covers \tilde{X} of X and $\tilde{\mathcal{B}}$ of \mathcal{B} , and a smooth algebraic curve \tilde{Y} such that

- (i) \tilde{Y} is finite over \mathcal{A}/\mathcal{B} .
- (ii) \tilde{X} is a fiber bundle over \tilde{Y} with fiber $\tilde{\mathcal{B}}$ and translations by $\tilde{\mathcal{B}}$ as structure group. In particular, X and \tilde{X} are smooth.
- (iii) dim $\tilde{Y} = \bar{\kappa}_X = 1$.

In particular, for generic $y \in Y^*$, $X_y \subset X$ is equal to the image of a suitable fiber of the fiber bundle \tilde{X} over \tilde{Y} , and the image of a generic fiber of this fiber bundle is of the form X_y for $y \in Y^*$.

(2) If $\bar{\kappa}_{X_0} = 0$, then f is an étale morphism and $X \setminus X_0$ is finite.

We follow essentially the original ideas of Kawamata but with several new ingredients:

- In the case $\bar{\kappa}_{X_0} = 1$, one needs to observe that even though the quasi-Albanese map to the semi-abelian variety is not proper, the restriction to the generic fiber is.
- In the case $\bar{\kappa}_{X_0} = 0$, we need to observe that a complement of a (singular) curve in a semi-abelian variety is of log general type unless the curve is a translate of a algebraic subgroup. We reduce (the proof of) this observation by the addition theorem of Kawamata below to the case where the semi-abelian variety is a simple abelian variety.

Theorem 15 (Kawamata '77) Let $f: V \rightarrow B$ be a fibered variety for a nonsingular algebraic surface V and a nonsingular algebraic curve B. Let F be a general fiber of f. Then

$$\bar{\kappa}_V \geq \bar{\kappa}_F + \bar{\kappa}_B.$$

II:)

For Theorem 6, the main observation is that condition (*) is equivalent to a condition on the Stein factorization of a desingularization of the quasi-Albanese map and that this allows us to use Theorem 14 to conclude that the base of the Iitaka fibration is hyperbolic.

III:) Proof of Theorem 7

• $(1) \Rightarrow (2)$:

Theorem 6 and Theorem 11.

•
$$(2) \Rightarrow (3)$$
:

Theorem 15 and Theorem 14.

•
$$(3) \Rightarrow (1)$$
:

Elementary methods.