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Abstract

Let X be a minimal projective surface of general type defined over the
complex numbers and let C ⊂ X be an irreducible curve of geomet-
ric genus g. Assume that K2

X is greater than the topological Euler
number c2(X). Then we prove that the “canonical degree” CKX of
C is uniformly bounded in terms of the given invariants g, K2

X and
c2(X), thus giving an effective version of a theorem of Bogomolov on
the boundedness of the curves of fixed genus in X.
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1. Introduction

In 1977, F. Bogomolov showed that, if a minimal complex projective
surface X of general type satifies K2

X > c2(X), then the curves of fixed geo-
metric genus g on X form a bounded family. In particular, such X contains
only finitely many rational/elliptic curves. Bogomolov’s proof (see [2]) in-
volves beautiful ideas, eventually leading to M. McQuillan’s partial solution
[7] of the Green-Griffiths conjecture [3] about the algebraicity and finiteness
of entire holomorphic curves (i.e., non-constant holomorphic images of C)
on a surface of general type.

Unfortunately, the result of Bogomolov-McQuillan is not effective. For
instance, when the ambient surface X deforms in an analytic family, their
theory cannot rule out the possibility that the number of rational/elliptic
curves therein tends to infinity. In this note we make the Bogomolov-
McQuillan theorem effective, by showing that the canonical degree of an
irreducible curve of genus g on X is bounded from above by an explicitly
given function of g, K2

X and c2(X):
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Theorem 1.1(Uniform bound of the canonical degree). Let X be a minimal
projective surface of general type defined over the complex numbers. Let
C ⊂ X be an irreducible curve of geometric genus g. Put x = CKX/K2

X ,
σ = c2(X)/K2

X , γ = (g − 1)/K2
X . If x > 3γ + 3σ − 1, then the inequality

(1− σ)x2 − (3σ − 1 + 4γ)x + 2γ(3σ − 1 + 3γ) ≤ 0 (1)

holds. Consequently, when σ < 1 (i.e., c2(X) < K2
X), the canonical degree

CKX of C is bounded by a function in g, K2
X and c2(X).

Corollary 1.2 (Uniformity of the number of rational/elliptic curves). Let
X be a minimal projective surface of general type over C. If K2

X > c2(X),
then the number of irreducible curves of genus ≤ 1 on X is bounded by a
function of K2

X and c2(X).

Remarks. A. In connection with S. Kobayashi’s complex hyperbolic geom-
etry and P. Vojta’s value distribution theory, S. Lang [5] conjectured that
the union of all the entire holomorphic curves (rational/elliptic curves, for
example) on a variety of general type should be contained in a certain proper
algebraic closed subset. L. Caporaso, J. Harris and B. Mazur [1] pointed
out that Lang’s conjecture in arbitrary dimension would entail Corollary
1.2, i.e., uniform finiteness of rational/elliptic curves on surfaces, even when
the assumption K2 > c2 is dropped (their argument does not give any ex-
plicit bound, though). It is yet to be seen whether the assumption is really
necessary or redundant. It might be any way noteworthy that Bogomolov-
Macquillan’s proof and ours alike require the very same condition K2 > c2

in quite different contexts (see Remark D below).
B. In case C is nonsingular of genus g, the Miyaoka-Yau-Sakai inequality

[11][9] for the open surface X \ C gives

CKX ≤ 4g − 4 + 3c2(X)−K2
X , (2)

regardless of the ratio σ = c2(X)/K2
X . This smoothness hypothesis on C

was marginally relaxed in [6]. We still have a similar bound for CKX under
the assumption that C contains neither ordinary double points nor ordinary
triple points. Strangely, complicated singularities of high multiplicity do not
cause any serious problem to get an estimate of the canonical degree. Curves
with many ordinary double points are technically the hardest to deal with.

C. Consider a sufficiently ample divisor H on a surface X. In the com-
plete linear system |H| of dimension (H2 −HKX + 2χ(X,OX)− 2)/2, the
curves with m ordinary double points form a locally closed subset of codi-
mension ≤ m. Hence we have a crude estimate of the minimum gH of the ge-
ometric genera of the members of |H|: gH ≤ HKX +O(1). To put it another
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way, the supremum d(X, g) = sup{CKX | C ⊂ X, g(C) = g} ∈ Z≥0 ∪ {∞}
of the canonical degrees of curves of genus g is expected to satisfy:

d(X, g) ≥ g + O(1). (3)

On the other hand, our quadratic inequality (1) gives the asymptotically
linear estimate

d(X, g) ≤ 2 +
√

6σ − 2
1− σ

g + o(g) (4)

as g grows. If compared with the expected lower bound (3), the estimate
(4) is not so bad. In fact, it asserts something new even for nonsingular
curves. When σ is sufficiently small (1/3 ≤ σ < 3/8), the bound (4) is
asymptotically sharper than (2). In the extremal case σ = 1/3, the left-
hand side of (1) is (2/3)(x− 3γ)2 and Theorem 1.1 boils down to the simple
linear inequality d(X, g) ≤ 3g − 3. In this case X is an unramified quotient
of the complex unit ball B2 ⊂ C2, a hermitian symmetric domain with
constant holomorphic sectional curvature [12], and our upper bound 3g − 3
of the canonical degree is indeed attained if the curve C ⊂ X in question
lifts to a totally geodesic holomorphic curve in B2 [4].

D. The basic idea of Bogomolov-McQuillan is to look at (a) the projective
bundle π : P(Ω1

X) → X with the tautological divisor 1, (b) an effective
divisor F ∈ |n1−mπ∗KX |, and (c) the rational map σ : C → P(Ω1

X) which
is induced by the natural homomorphism ΩX |C → ωC defined on the non-
singular locus of C. Unless σ(C) ⊂ F (i.e., C is a leaf of the multi-valued
foliation induced by F ), the intersection number σ(C)F is non-negative,
whence follows the inequality mCKX ≤ n(2g− 2) (certain extra techniques
take care of the exceptional case σ(C) ⊂ F ). The hypothesis K2

X > c2(X)
appears as a guarantee of the existence of F ∈ |n1−mπ∗KX | for n À m > 0.

Our proof of Theorem 1.1 does not depend on the existence of an effective
divisor F as above, but relies on old inequalities of [8][9]. What is new in
the present note is more or less of technical nature: the systematic use
of orbibundles (though [9] already used the notion implicitly), along with
an elementary reduction process (“G-nef reduction”) for vector bundles of
special type (Lemma 2.3). Theorem 1.1 derives from the Miyaoka-Yau-
Sakai inequality [9] applied to a family of orbibundles Ẽα with parameter
α ∈ [0, 1] ∩Q. The precise construction of Ẽα via G-nef reduction process
will be given in Section 3 below.

Conventions. In this note we work in the category of complex algebraic
varieties. Surfaces will be non-singular and projective unless otherwise men-
tioned. Chern classes of coherent sheaves are regarded as elements in the
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real Betti cohomology ring H∗(·,R). By the (geometric) genus of an irre-
ducible curve, we mean the genus of its normalization. Effective divisors
are often identified with closed subschemes of pure dimension one via the
correspondence A 7→ Spec (O/O(−A)).

2. G-nef reductions of certain vector bundles

In this section, we formulate a couple of technical but elementary results,
which allow us to modify vector bundles of certain type into much simpler
ones, without changing their second Chern classes. Let Z be a surface. A
finite sum G =

∑
Gi of irreducible curves Gi ⊂ Z is said to be a negative

definite cycle if the intersection matrix (GiGj)ij is negative definite (from
the definition it follows that Gi 6= Gi for i 6= i, so that G is reduced). Given a
surjective morphism f : Z → Y onto another surface, the f -exceptional locus
(the union of the curves which f contracts to points) is a typical example of
negative definite cycles.

Proposition 2.1 (The Zariski decomposition with support in a negative
definite cycle). Let G =

∑
Gi ⊂ Z be a negative definite cycle and let A

be an effective Q-divisor on Z. Then there exists a unique decomposition
A = P + N into Q-divisors which satisfies the following four conditions:

(a) Both P and N are effective: P ≥ 0, N ≥ 0.

(b) N is supported by a subset of G, i.e., N =
∑

νiGi, νi ≥ 0.

(c) P is nef on G, i.e., PGi ≥ 0 for every i.

(d) P and N are mutually orthogonal, i.e., PN = 0 (hence A2 = P 2 +N2

and, in view of (c), P is numerically trivial on N , i.e., PGi = 0 for
each Gi ⊂ suppN).

Furthermore, P is the largest effective Q-divisor ≤ A that is nef on G:

(e) If a Q-divisor B with 0 ≤ B ≤ A is nef on G, then B ≤ P .

Definition. The unique decomposition A = P + N as above is said to be
the Zariski decomposition with support in G. We call the Q-divisors P and
N the G-nef part and the G-negative part of A, respectively.

This definition generalizes classical Zariski decompositions [13]. Indeed,
the classical decomposition A = P + N is the decomposition with support
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in N . Among the Zariski decompositions of a fixed divisor A with support
in various negative cycles, the classical one is characterized as the one which
has the largest negative part and the smallest positive part (see Corollary
2.2 (iii) below). In order to avoid unnecessary confusions, we hereafter call
the classical Zariski decomposition the absolute Zariski decomposition.

Proposition 2.1 is proved in exactly the same manner (essentially an
exercise of linear algebra) as in the case of absolute Zariski decompositions
[13][10].

Corollary 2.2. (i) Take two effective Q-divisors A, A′ and let A = P + N ,
A′ = P ′+Q′ be the decompositions into the G-nef parts and the G-negative
parts. If A ≤ A′, then P ≤ P ′.

(ii) Let G and Ĝ be two negative definite cycles and let A = P +N = P̂ + N̂
be the Zariski decompositions with supports in G and Ĝ. If G ≤ Ĝ, then
N ≤ N̂ , P ≥ P̂ . Furthermore, we have the inequalities between self-
intersection numbers: 0 ≥ N2 ≥ N̂2, P 2 ≤ P̂ 2.

(iii) Let A = P + N be the Zariski decomposition with support in G and
let A = P + N denote the absolute Zariski decomposition. Then we have
N ≤ N , P ≥ P , 0 ≥ N2 ≥ N

2, P 2 ≤ P
2.

Proof. (i) is a direct consequence of the property (e) of P ′. Let us prove
(ii). By definition, P̂ is nef on Ĝ and hence on G, so that P̂ ≤ P and
N̂ ≥ N . In particular, supp N̂ ≥ supp N . Let V̂ [resp. V ] denote the
subspace of H2(Z,R) generated by the curves in supp N̂ [resp. suppN ].
Then P̂ [resp. P ] sits in the orthogonal complement V̂ ⊥ [resp. V ⊥], while
R = P − P̂ = N̂ − N ∈ V ⊥ ∩ V̂ . Hence P = P̂ + R ∈ V̂ ⊥ ⊕ (V ⊥ ∩ V̂ ) is
an orthogonal decomposition in V ⊥ and so is N̂ = N + R ∈ V ⊕ (V ⊥ ∩ V̂ )
in V̂ . Noting that R2 ≤ 0, we get (ii). The proof of (iii) is quite similar to
that of (ii). ¤

Take a surjective morphsm f : Z → Y between nonsingular projective
surfaces and denote by G ⊂ Z the f -exceptional locus (which is of course
a divisor of simple normal crossings). Let ∆ ⊂ Z be an effective, reduced,
normal crossing divisor which contains G.

Pick up an effective reduced divisor Γ on Y such that G ⊂ f−1(Γ) ⊂ ∆.
The image f(G) of G in Y is a finite subset of Γ and therefore we can find
an affine open neighborhood U ⊂ Y of f(G) on which Γ is defined by a
single equation ϕ. Since the inverse image f−1(Γ) is supported by a normal
crossing divisor ⊂ ∆, the pull back f∗ϕ of its defining equation is of the form
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2, where a ≥ 0, b ≥ 0, a + b > 0 and z1, z2 are local coordinates of
Z around a point q ∈ G ⊂ f−1(Γ). Thus the logarithmic 1-form

f∗d log ϕ = a
dz1

z1
+ b

dz2

z2
+ (regular 1-form), (a, b) 6= (0, 0)

is a nowhere-vanishing section of Ω1
Z(log ∆)|f−1(U) near G.

Lemma 2.3. Let Y, Z, f, G,Γ,∆, d log ϕ be as above. Assume that a vector
bundle E of rank two on Z satisfies the following four conditions:

(a) E ⊂ Ω1
Z(log ∆).

(b) The determinant divisor D = det E is effective (as a Q-divisor).

(c) The G-nef part P and the G-negative part N of D are integral divisors.

(d) E contains f∗d log ϕ ∈ Ω1
Z(log ∆) on a certain neighborhood V of G.

Then, after shrinking V to a smaller neighborhood if necessary, we have an
exact sequence 0 → OV → E|V → OV (det E) → 0 and we can construct a
new vector bundle Ẽ on Z which satisfies the following three conditions:

i) Ẽ ⊂ E and Ẽ = E outside G;

ii) det Ẽ = P ;

iii) c2(Ẽ) = c2(E);

Proof. The logarithmic 1-form f∗d log ϕ gives a nowhere vanishing global
section of E|V and hence an injection OV → E|V , of which the cokernel is
locally free and isomorphic to det E|V .

We regard N as the subscheme determined by the ideal OZ(−N). Con-
sider the composite of the natural projections E → E|V → OV (det E) →
ON (det E) and define Ẽ to be the kernel of this composite map. We have
the equality c(Ẽ)c (ON (det E)) = c(E) in H∗(Z,R). Since det E = P + N , P
being numerically trivial on N , we get

c (ON (det E)) = c (ON (N)) = c (OZ(N)) c (OZ)−1 = 1 + N.

Hence
P + N = det E = c1(E) = c1(Ẽ) + N = det Ẽ + N,

c2(E) = c2(Ẽ) + c1(Ẽ)N = c2(Ẽ) + PN = c2(Ẽ). ¤

Definition. The new vector bundle Ẽ ⊂ E obtained in Lemma 2.3 is called
the G-nef reduction of E .
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3. Proof of Theorem 1.1

In this section, we define an orbibundle Eα determined by the triple
(α, X,C), where α ∈ [0, 1] ∩Q, X is a minimal surface of general type and
C is an irreducible curve on it. Theorem 1.1 follows from the Miyaoka-Yau-
Sakai inequality applied to the nef reduction Ẽα of Eα.

Throughout the section, we use the following symbols:

α a parameter ∈ [0, 1] ∩Q,
X a minimal surface of general type,
C an irreducible curve on X,
e the topological Euler number c2(X) of X,
g geometric genus of C,
s the number of the singular points of C,
µ : Y → X the blowing up at the s singular points of C,
E1, . . . , Es the exceptional curves on Y ,
Γ the exceptional locus E1 + · · ·+ Es of µ.

Since µ−1(C) may not be a divisor of simple normal crossings, we choose a
log-resolution π: (Ỹ , C) → (

Y, µ−1(C)
)
. Namely,

(a) π : Ỹ → Y is the composite Ỹ = Yr
πr−→ Yr−1

πr−1−→ · · · π1−→ Y0 = Y,
where πi is the blowing up at a singular point of π−1

i−1 · · ·π−1
1 µ−1(C);

(b) C, the inverse image π−1µ−1(C) with reduced structure, is a divisor
of simple normal crossings. (In particular, the strict transorm C̃ ⊂ Ỹ
of C ⊂ X is nonsingular. C is a sum of C̃ and a disjoint union of s
connected trees of P1’s.)

We introduce further symbols associated with this log resolution:

• Es+i ⊂ Yi is the (−1)-curve attached to πi : Yi → Yi−1 (i = 1, . . . , r).

• Ei ∈ Div(Ỹ ) is the total transform of Ei (i = 1, . . . , s, s+1, . . . , s+r),
and E is the sum E1 + · · ·+ Es+r (hence KeY = π∗µ∗KX + E).

• F1, . . . , Fs [resp. G1, . . . , Gr] are the strict transforms on Ỹ of E1, . . . , Es

[resp. of Es+1, . . . , Es+r], and F = F1+ · · ·+Fs (the strict transform
of Γ = E1 + · · ·+ Es ⊂ Y ).

Thus the exceptional locus G of π is G1 + · · ·+ Gr, while the inverse image
π−1µ−1(C) is C = C̃ + F + G.
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For a given parameter α ∈ [0, 1]∩Q, we define the orbibundles Eα to be
the kernel of the homomorphism ρ : Ω1

eY (log C) → O
(1−α) eC induced by the

natural residue map Ω1
eY (log C) → OX/OX(−C̃). To be more precise, choose

any branched Galois covering f : Z → Ỹ such that Aα = (1−α)f∗C̃ ≤ f∗C̃ is
an integral divisor. Then let Eα denote Ker

(
f∗Ω1

eY (log C) → OZ/OZ(−Aα)
)
,

which is a well defined vector bundle on Z.1 Its total Chern class c(Eα) is
computed by

c(Eα) = c
(
f∗Ω1

eY (log C)
)

c (OAα)−1

= c
(
f∗Ω1

eY (log C)
)(

1− (1− α)f∗C̃)
)

.

Denoting by d the mapping degree [C(Z) : C(Ỹ )] = [C(Z) : C(X)] of f , we
have:

c1 (Eα) = f∗
(
KeY + F + G + αC̃

)
= f∗

(
π∗µ∗KX + E + F + G + αC̃

)
,

c2 (Eα) = c2

(
f∗Ω1

eY (log(F + G))
)

+ c2

(
O

αf∗ eC(−(1− α)f∗C̃)
)

+ c1

(
f∗Ω1

eY (log(F + G))
)

c1

(
O

αf∗ eC(−(1− α)f∗C̃)
)

= d
(
e− s + α(KeY + F + G)C̃ + αC̃2

)

= d
(
e− s + α(2g − 2) + αC̃(F + G)

)
∈ H4(Z,Z) ' Z.

Put Dα = π∗µ∗KX +E +F +G+αC̃. The Q-divisor Dα and the second

Chern class of Eα can be computed in terms of resolution data. Write

C̃ = π∗C −
s+r∑

i=1

miEi, F + G =
s∑

i=1

Ei +
s+r∑

i=s+1

εiEi,

where {
mi ≥ 2 for i = 1, . . . , s
mi ≥ 1, εi ≤ 0 for i = s + 1, . . . , s + r.

1Rigorously speaking, our choice of the covering f: Z → eY depends on the (denomina-

tor of the) rational number α and we should write fα: Zα → eY ; however, our subsequent
argument is little affected by the choice and we may always replace Z by its good ramified
covers of sufficiently large degree. In this sense, the natural framework for our purpose is
the projective limit of good coverings of Ỹ .
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Then

Dα = π∗µ∗(KX + αC) +
s∑

i=1

(2− αmi)Ei +
s+r∑

j=s+1

(1 + εj − αmj)Ej ,

c2(Eα)
d

=
c2(Ẽα)

d
= e + α(2g − 2) +

s∑

i=1

(αmi − 1) +
r∑

i=s+1

αεimi.

As the expression above shows, the Q-divisor Dα and hence c1(Eα) are
in general not nef on G or on f−1(G). Let Dα = Pα + Nα be the Zariski
decomposition into the G-nef part and the G-negative part (thanks to the
uniqueness property, the Zariski decomposition of c1(Ẽα) with support in
f−1(G) is given by f∗Dα = f∗Pα + f∗Nα). We write

Nα =
s+r∑

j=s+1

bjEj ,

bj = bj(α) being rational numbers. If j = s + 1, . . . , s + r, then the effective
divisor Ej is supported by a subset of G so that 0 ≤ PαEj = (Dα−Nα)Ej =
−1− εj + αmj + bi, thus proving

Lemma 3.1. bj ≥ 1 + εj − αmj for j = s + 1, . . . , s + r, and therefore

−N2
α ≥

s+r∑

j=s+1

(max {1 + εj − αmj , 0})2 . (5)

Noting the inclusion relations (πf)∗Ω1
Y (log Γ) ⊂ Eα ⊂ Ω1

Z(log f−1(C)),
we can apply Lemma 2.3 to E = Eα, with minor modifications (we change
f,G, ∆, P, N etc. to π◦f, f−1(G), f−1(C), f∗Pα, f∗Nα etc. and, if necessary,
we replace Z by its suitable ramified cover in order to make f∗Pα, f∗Nα

integral divisors). Let Ẽα be the f−1(G)-nef reduction of Eα with c1(Ẽα) =
f∗Pα, c2(Ẽα) = c2(Eα).

Proposition 3.2. We have the formula:

3c2(Ẽα)− c2
1(Ẽα)

d
=

3c2(Eα)− c2
1(Eα) + (f∗Nα)2

d
= 3e−K2

X − 2α(CK − 3g + 3)− α2C2

+
s∑

i=1

(
1− αmi + α2m2

i

)
+

t∑

j=s+1

(
3αεj + (1 + εj − αmj)2 − b2

j

)
.
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The proof is immediate by simple calculation.
In this formula, the right-hand side is a sum of three terms: the first is

independent of the singularity of C, the second involves certain data coming
from the first s blowups and the third is concerned with further infinitely
near singularities of C. As for the third term, we observe

Lemma 3.3. For j = s + 1, . . . , s + r, we have the estimate

3αεjmj + (1 + εj − αmj)2 − b2
j ≤

3α2mj(mj − 1)
2

.

Proof. If 1+εj−αmj > 0, then the assertion follows from the two inequalities
bj ≥ 1 + εj − αmj and εj ≤ 0. Assume that 1 + εj ≤ αmj . Then

3αεjmj + (1 + εj − αmj)2 = α2m2
j − α(2− εj)mj + (1 + εj)2

≤ α2m2
j − α(2− εj)mj + α(1 + εj)mj = α2m2

j − α(1− 2εj)mj

≤ α2m2
j − αmj ≤ α2m2

j − α2mj ≤ (3/2)α2mj(mj − 1). ¤

The G-nef divisor Pα may not be nef on F +G. Let Pα = P̂α + N̂α [resp.
Pα = Pα + Nα] be the Zariski decomposition with support in F + G [resp.
the absolute Zariski decomposition].

Lemma 3.4 (Cf. Lemma 3.1, Equation (5)). In the notation above,

N
2
α ≤ N̂2

α ≤ −
s∑

i=1

(max {2− αmi, 0})2 .

Proof. We showed that N
2
α ≤ N̂2

α in Corollary 2.2. Put N̂α =
s+r∑

i=1

b̂iEi.

Then the coefficient 2− αmi − b̂i of Ei in P̂α (i ≤ s) is non-positive by the
same reason as in Lemma 3.1. Therefore |̂bi| ≥ max{2 − αmi, 0} for i ≤ s,

whence follows N̂2
α ≤ −

s∑

i=1

(max{2− αmi, 0})2. ¤

Proposition 3.5. We have

1
d

(
3c2(Ẽα)− c2

1(Ẽα) +
(f∗Nα)2

4

)

≤ 3e−K2
X − 2α(CKX − 3g + 3)− α2C2 +

3α2

2

s+r∑

i=1

mi(mi − 1)

= 3e−K2
X − 2α(CKX − 3g + 3) +

α2

2
(
C2 + 3CKX − 6g + 6

)
.

10



Proof. The second equality readily follows from the adjunction formula
C2 + CKX +

∑
mi(mi− 1) = 2g− 2 for C̃ ⊂ Ỹ . In view of Proposition 3.2,

Lemma 3.3 and Lemma 3.4, the first inequality reduces to the estimate

4
(
1− αmi + α2mi

)− (max{2− αmi, 0})2 ≤ 6α2mi(mi − 1)

for i = 1, . . . , s. In case αmi ≤ 2, the left-hand side is 3α2m2
i , which satisfies

≤ 6α2mi(mi − 1) because mi ≥ 2. If αmi ≥ 2, then

4− 4αmi + 4α2m2
i − 6α2mi(mi − 1)

≤ 2αmi − 4αmi + 4α2m2
i − 6α2mi(mi − 1)

= 2αmi(3α− 1− αmi) ≤ 2αmi(2− αmi) ≤ 0. ¤

Proof of Theorem 1.1. Put x = CKX/K2
X , σ = e/K2

X , γ = (g−1)/K2
X .

We view the polynomial

Q(α) = 6σ − 2− 4α(x− 3γ) + α2
(
x2 + 3x− 6γ

)

as a function of α with parameters x, σ, γ. Then Q(α) must be non-negative
on the interval [0, 1] by virtue of

(a) Proposition 3.5,

(b) the Hodge index theorem C2/K2
X ≤ x2 and

(c) the Miyaoka-Yau-Sakai inequality 3c2(Ẽα)−c2
1(Ẽα)+(1/4)(f∗Nα)2 ≥ 0

([9] Theorem 1.1).

Specifically the values Q(0) and Q(1) give 3σ − 1 ≥ 0 (the Miyaoka-Yau
inequality [8]) and x2 ≥ x−6γ−6σ+2, respectively. Assume that x > 3γ +
3σ−1 (≥ (6γ + 3σ − 1) /2). The coefficient x2+3x−6γ (≥ 2(2x−6γ−3σ+1))
of α2 is then positive and Q(α) attains the minimum value

Q(α0) = 6σ − 2− 4(x− 3γ)2

x2 + 3x− 6γ

at α0 =
2(x− 3γ)

x2 + 3x− 6γ
≤ x− 3γ

2x− 6γ − 3σ + 1
. Since x > 3γ + 3σ − 1 ≥ 3γ, we

have 0 < α0 < 1. Thus Q(α0) ≥ 0 or, equivalently,

2(x− 3γ)2 − (3σ − 1)(x2 + 3x− 6γ) ≤ 0,

which turns out to be identical with the desired inequality (1). ¤
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