Numerical Methods in Cancer Models

Doron Levy

Department of Mathematics
and
Center for Scientific Computation and Mathematical Modeling (CSCAMM)
University of Maryland, College Park
Plan

- What is cancer?
- Delayed differential equations
- Agent-based models
- PDEs
Delayed Differential Equations in Cancer Models
Analysis & Numerical Methods

Doron Levy

Department of Mathematics
and
Center for Scientific Computation and Mathematical Modeling (CSCAMM)
University of Maryland, College Park

Montréal, May 2013
Outline

1 Motivation
 - Cancer Immunology
 - Stem Cell Transplantation

2 Properties
 - Zero Crossings
 - Time Scales

3 Numerical Methods

4 Stability in the delays space
Outline

1 Motivation
 - Cancer Immunology
 - Stem Cell Transplantation

2 Properties
 - Zero Crossings
 - Time Scales

3 Numerical Methods

4 Stability in the delays space
What is leukemia?

Normal cells: stem cells turn into mature cells

Leukemia: A malignant transformation of a stem cell or a progenitor cell
- Myeloid or Lymphocytic
- Acute or Chronic
CML

3 phases
- **Chronic**: uncontrolled proliferation
- **Accelerated**
- **Acute**: Uncontrolled proliferations. Cells do not mature

Philadelphia chromosome
- Translocation (9;22)
- Oncogenic BCR-ABL gene fusion
- The ABL gene expresses a tyrosine kinase. Growth mechanisms
- Easy to diagnose
- Drug targeting this genetic defect (a tyrosine kinase inhibitor)
Treating leukemia

- Chemotherapy
- Bone Marrow or Stem Cell transplant
 - Chemo + radiotherapy + transplantation
- Imatinib (Gleevec)
 - Molecular targeted therapy - suppresses the corrupted control system
 - $32K-$98K/year
Problems with existing therapies

- **Remission vs. Cure:** Can CML be cured?
 - Yes! but only with a bone marrow (or stem cell) transplant
 - Requires a (matching) donor
 - A risky procedure (+ unpredictable side effects)

- **Imatinib?** Does not cure the disease: stopping it causes a relapse

- **New Medical Data:** There is an anti-leukemia immune response (Lee lab)

- The **strength** and **dynamics** of the specific anti-leukemia immune response can be measured
 - Number of cells
 - Activity (count signaling molecules)
A different immune response for each patient. However:

- At the beginning of the treatment: no immune response
- Peak: around 6-12 months (after starting the drug treatment)
- Later: waning immune response

Question:

What is the relation between the dynamics of the cancer, the drug, and the immune response?
Ingredients:

- Leukemia cells: stem cells, , fully functional cells
- Mutations, Drug (Imatinib), Anti leukemia immune response

Kim, Lee, Levy: PLoS Computational Biology, ’08
Michor et al. (Nature 05). Cronkite and Vincent (69), Rubinow (69), Rubinow & Lebowitz (75), Fokas, Keller, and Clarkson (91), Mackey et al (99,...), Neiman (00), Moore & Li (04), Michor et al (05), Komarova & Woodarz (05).
Motivation
Properties
Stability in the delays space
Numerical methods

The immune response to leukemia
Stem cell transplantation

Michor’s model + immune response

Cells without mutations:

\[
\begin{align*}
\dot{y}_0 &= [r_y(1-u) - d_0]y_0 - q_c p(C, T)y_0, \\
\dot{y}_1 &= a_y y_0 - d_1 y_1 - q_c p(C, T)y_1, \\
\dot{y}_2 &= b_y y_1 - d_2 y_2 - q_c p(C, T)y_2, \\
\dot{y}_3 &= c_y y_2 - d_3 y_3 - q_c p(C, T)y_3.
\end{align*}
\]

Anti-cancer T cells:

\[
\begin{align*}
\dot{T} &= s_t - d_t T - p(C, T)C + 2^n q_T p(C_{nT}, T_{nT})C_{nT}, \\
p(C, T) &= p_0 e^{-c_n C} kT, \\
C &= \sum (y_i + z_i), \\
C_{nT} &= C(t - nT).
\end{align*}
\]
Accounting for the immune response

Motivation
Properties
numerical methods
Stability in the delays space

The immune response to leukemia
Stem cell transplantation

No immune response
Leukemia
T cells

Cell Concentration (k/µL)
0
0.01
0.02
0.03
0.04
0.05
0.06

Time (months)
0 10 20 30 40 50

0

Montréal, May 2013
Stopping imatinib (simulation)

Cell Concentration (k/µL) vs Time (months)

- Leukemia
- \(1000 \times T\) cell concentration
- Imatinib removed at month 12

Doron Levy | Montréal, May 2013
Cancer vaccines: a mathematical design

Inactivated leukemia cells

\[\dot{V} = -d_V V - q_c p(C, T) V + s_V(t) \]

Anti-cancer T cells

\[\dot{T} = s_t - d_T T - p(C, T)(C + V) + 2^n p(C_n T_n)(q_T C_{nT} + V_{nT}) \]
Model populations

- **Host Cells**
 - Cancer
 - Anti-donor T cells
 - General blood cells

- **Donor cells**
 - Anti-cancer T cells (cancer-specific)
 - Anti-host T cells
 - General blood cells
Everything takes time
Anti-Cancer T Cells

Motivation
Properties
Numerical methods
Stability in the delays space

The immune response to leukemia
Stem cell transplantation

T \text{C}/T \text{C} Interaction

Ignore
React
Proliferate
Reload
Die or Become anergic

T \text{C}/C Interaction

Survive
Perish

\sigma

\kappa\text{T}_C

T \text{C}

\nu

\rho

q_1^{T\text{C}/C}

q_2^{T\text{C}/C}

q_3^{T\text{C}/C}

p_1^{T\text{C}/C}

p_2^{T\text{C}/C}

p_1^{T\text{D}/T\text{C}}

p_2^{T\text{D}/T\text{C}}

k\text{T}_\text{D}\text{T}_\text{C}

k\text{T}_\text{C}

\nu

\sigma

\tau

\nu

\sigma

\tau

\nu

\sigma

\tau

\nu

\sigma

\tau

Doron Levy
Montréal, May 2013
Antithose T Cells

- **Motivation**
 - Immunological response to leukemia
 - Stem cell transplantation

- **Properties**
 - Numerical methods
 - Stability in the delays space

- **Stem Cell Transplantation**

- **Interaction**
 - Anti-Host T Cells
 - $\rho_{H/C}$ Interaction
 - $p_{1H/C}^T$
 - $p_{2H/C}^T$
 - k_{CT_H}
 - Proliferate
 - $n\tau$
 - React
 - Reload
 - ν
 - $q_{1H/C}^T$
 - $q_{2H/C}^T$
 - $q_{3H/C}^T$

- **Death**
 - p_{1H}^T
 - p_{2H}^T
 - d_{TH}

- **Survive**
 - p_{2D/T_H}^T
 - S_{2D}
 - Proliferate
 - $n\tau$
 - React
 - Reload
 - ν
 - q_{1H/T_D}^T
 - q_{2H/T_D}^T

- **Perish**
 - p_{1D/T_H}^T
 - p_{2D/T_H}^T

- **Die or become anergic**
 - q_{3H/T_D}^T

- **No flow**
 - $q_{3H/T_D}^T = 0$

Doron Levy, Montréal, May 2013
Anti-Donor T Cells

Motivation
Properties
numerical methods
Stability in the delays space

The immune response to leukemia
Stem cell transplantation

Doron Levy
Montréal, May 2013
General Donor and Host Blood Cells

Stem Cells

\[D \]

\[S_D \]

\[p_{1/D} k D T_D \]

\[d_D \]

\[T_D/D \text{ Interaction} \]

\[\rho \]

\[\text{Death} \]

\[\text{Perish} \]

Stem Cells

\[H \]

\[S_H \]

\[p_{1/H} k H T_H \]

\[d_H \]

\[T_H/H \text{ Interaction} \]

\[\rho \]

\[\text{Death} \]

\[\text{Perish} \]
Cancer Cells

Motivation
Properties
numerical methods
Stability in the delays space
The immune response to leukemia
Stem cell transplantation

C/T_H Interaction

Perish

p_{1/T_H}^{C/T_H}k_{T_H}C

r_C

logistic growth

C/T_c Interaction

Perish

p_{1/T_c}^{C/T_c}k_{T_c}C

Death rate is included in net logistic growth term

Death

C/T Interaction

\(\rho \)

\(\rho \)
\[
\frac{d T_H}{d t} = -d_{T_H} T_H - kCT_H - kT_D T_H - kHT_H \\
+ p_{2}^{T_H/C} kC(t - \sigma) T_H(t - \sigma) + p_{2}^{T_D/T_H} p_{2}^{T_H/T_D} kT_D(t - \sigma) T_H(t - \sigma) \\
+ p_{2}^{T_H/H} kH(t - \sigma) T_H(t - \sigma) \\
+ 2^n p_{1}^{T_H/C} q_{1}^{T_H/C} kC(t - \rho - n\tau) T_H(t - \rho - n\tau) \\
+ 2^n p_{1}^{T_H/H} q_{1}^{T_H/H} kH(t - \rho - n\tau) T_H(t - \rho - n\tau) \\
+ 2^n p_{2}^{T_D/T_H} p_{1}^{T_H/T_D} q_{1}^{T_H/T_D} kT_D(t - \rho - n\tau) T_H(t - \rho - n\tau) \\
+ p_{1}^{T_H/C} q_{2}^{T_H/C} kC(t - \rho - \nu) T_H(t - \rho - \nu) \\
+ p_{1}^{T_H/H} q_{2}^{T_H/H} kH(t - \rho - \nu) T_H(t - \rho - \nu) \\
+ p_{2}^{T_D/T_H} p_{1}^{T_H/T_D} q_{2}^{T_H/T_D} kT_D(t - \rho - \nu) T_H(t - \rho - \nu).
\]
Time Delays

- Time for reactive T cell-antigen interaction = 5min
- Time for unreactive interactions = 1min
- Time for cell division = 0.5-1.5 day
- T cell recovery time after killing another cell = 1 day
Relapse

Motivation
Properties
numerical methods
Stability in the delays space

The immune response to leukemia
Stem cell transplantation

0 20 40 60 80 100
0 0.5 1.0 1.5 2.0
General host cells H

0 200 400 600 800
0 0.2 0.4 0.6 0.8 1.0 x 10^{-6}
Cancer cells C

0 20
0 0.5 1.0
Anti-host T cells T_H

ever goes to 0

eventually overwhelms T_H
Remission

General host cells H

Anti–host cells T_H

Cancer cells C

$C = 0$ at time 25.7276

Cell Concentration in 10^3 cells/µL

Time in Days

Doron Levy
Montréal, May 2013
Oscillations

A: Stable oscillation

- Anti–host T cells
- Cancer cells
- General host cells

B: Unstable Oscillation
Extinction instead of stability

Without state constraint

- Anti–host T cells T_h
- Cancer cells C
- The value of C crosses 0 at time 8.0192.

With state constraint

- Anti–host T cells T_h
- Cancer cells C
- The value of C crosses 0 at time 8.0192, and does not recover.

The value of C crosses 0 at time 8.0192.

Doron Levy
Montréal, May 2013
Initial anti-host cells vs. initial host cells

- Higher initial host blood cell concentrations improve the chances of a successful cure.
- Greater initial anti-host T cell concentrations slightly favor the chances of cure.
A higher average number of T cell divisions favor complete remission

Higher cancer growth rate make complete remission slightly more likely
Outline

1 Motivation
 • Cancer Immunology
 • Stem Cell Transplantation

2 Properties
 • Zero Crossings
 • Time Scales

3 Numerical Methods

4 Stability in the delays space
Zero crossing: Example

A simple DDE:

\[
\frac{dx}{dt} = -rx(t - 1), \quad x(t) = 1, \quad t < 0.
\]

- Solve: \(t \in [0, 1) \).

\[
\frac{dx}{dt} = -rx(t - 1) = -r
\]

Then

\[x = -rt + c = 1 - rt. \]

- If \(r > 0 \) then \(x(t) = 0 \) for \(T \in [0, 1) \)
Zero crossing: example

A simple DDE:

\[\frac{dx}{dt} = -rx(t - 1), \quad x(t) = 1, \quad t < 0. \]

Proceed: \(t \in [1, 2) \)

\[\frac{dx}{dt} = -rx(t - 1) = -r + r^2t - r^2 \]

Then

\[x = 1 - rt + \frac{r^2}{2}(t - 1)^2. \]
Zero crossing: example

A simple DDE:

\[
\frac{dx}{dt} = -rx(t-1), \quad x(t) = 1, \ t < 0.
\]

- The general solution: \(t \in [n, n+1) \)

\[
x(t) = \sum_{k=0}^{n+1} (-r)^k \frac{(t-k+1)^k}{k!}
\]

Question:

For what \(r \) does that exist a \(T \in [n, n+1) \) such that

\[
\sum_{k=0}^{n+1} (-r)^k \frac{(T-k+1)^k}{k!} = 0?
\]
Zero crossing: example

A simple DDE:

$$\frac{dx}{dt} = -rx(t-1), \quad x(t) = 1, \quad t < 0.$$

The general solution: \(t \in [n, n+1) \)

$$x(t) = \sum_{k=0}^{n+1} (-r)^k \frac{(t-k+1)^k}{k!}$$

Question:
For what \(r \) does that exist a \(T \in [n, n+1) \) such that

$$\sum_{k=0}^{n+1} (-r)^k \frac{(T-k+1)^k}{k!} = 0?$$
A toy problem

\begin{align*}
x_{n+1} &= (1 - y_n)x_n \\
y_{n+1} &= -x_n^2 + k + y_n
\end{align*}

The map iterated twice

\begin{align*}
x_{n+2} &= (1 + x_n^2 - k - y_n)(1 - y_n)x_n \\
y_{n+2} &= -((1 - y_n)^2 + 1)x_n^2 + 2k + y_n
\end{align*}
A toy problem

\[x_{n+1} = (1 - y_n)x_n \]
\[y_{n+1} = -x_n^2 + k + y_n \]

The map iterated twice

\[x_{n+2} = (1 + x_n^2 - k - y_n)(1 - y_n)x_n \]
\[y_{n+2} = -((1 - y_n)^2 + 1)x_n^2 + 2k + y_n \]
This corresponds to...
Outline

1 Motivation
 - Cancer Immunology
 - Stem Cell Transplantation

2 Properties
 - Zero Crossings
 - Time Scales

3 Numerical Methods

4 Stability in the delays space
Approach #1

- A mesh in time that is based on the delay.
- Numerical methods for ODEs that use the mesh points only (multistep methods)
- Example:

\[
\begin{align*}
\left\{ \begin{array}{l}
y'(t) &= f(t, y(t), y(t - \tau(t))), \quad t_0 \leq t \leq t_f, \\
y(t) &= \phi(t), \quad t \leq t_0.
\end{array} \right.
\]

- A set of meshpoints:

\[
\Delta = \{t_0, t_1, \ldots, t_N = t_f\},
\]

such that \(t_n - \tau(t_n) \in \Delta\).
- Forward Euler: \(y_{n+1} = y_n + h_{n+1} f(t_n, y_n, y_q), \quad q < n\).
- Same idea with Adams-like methods, Heun, etc.
Approach #2: Feldstein

- Free the mesh selection from the delay
- Use extranodal points for the approximation of the delayed term $y(t - \tau(t))$.
- Example: $(t_0 \leq \alpha(t) \leq t)$
 \[
 \begin{cases}
 y'(t) = f(t, y(t), y(\alpha(t))), & t_0 \leq t \leq t_f, \\
 y(t_0) = y_0,
 \end{cases}
 \]

- Assume $h = (t_f - t_0)/m$. For any $t_n = t_0 + nh$, define
 \[q(n) = \text{floor} \left(\frac{\alpha(t_n) - t_0}{h} \right).\]

- A numerical method:
 \[
 \begin{cases}
 y_{n+1} = y_n + hf(t_n, y_n, z_n), \\
 y_0 = y(t_0),
 \end{cases}
 \]
 where $z_n = y_{q(n)}$, i.e., a piecewise-constant approximation of $y(\alpha(t))$.
 Alternatively, a piecewise-linear approximation:
 \[z_n = (1 - r(n))y_{q(n)} + r(n)y_{q(n)+1}.\]
Approach #3: Bellman’s method of steps

Assume a constant delay. In the first interval $[t_0, t_0 + \tau]$ the DDE has the form:

$$\begin{cases}
 y'(t) = f(y(t), \phi(t - \tau)), \\
 y(t_0) = \phi(t_0).
\end{cases}$$

In the second interval $[t_0 + \tau, t_0 + 2\tau]$, define $y_1 = y(t - \tau)$ and $y_2(t) = y(t)$. Then:

$$\begin{cases}
 y_1'(t) = f(t - \tau, y_1(t), \phi(t - 2\tau)), \\
 y_2'(t) = f(t, y_2(t), y_1(t)), \\
 y_1(t_0 + \tau) = \phi(t_0), \\
 y_2(t_0 + \tau) = y(t_0 + \tau)
\end{cases}$$

And so on...
For every timestep, a larger system. However, this system can be solved using standard methods for ODEs.
Approach #4: Methods based on continuous extensions

- **Continuous Extension**: very low cost method to get an accurate approximation of the solution at every point in the interval

\[
\eta(t_n + \theta h_{n+1}) = \beta_{n,1}(\theta)y_n + \ldots + \beta_{n,i_n+1}(\theta)y_{n-i_n} \\
\quad + h_{n+1}\psi(y_n, \ldots, y_{n-i_n}; \theta, g_\eta, \Delta'_n), \quad 0 \leq \theta \leq 1.
\]

where

\[
g_\eta(f, y) = f(t, y, \eta(t - \tau(t, y))).
\]

- This is how every Matlab routine provides solutions at the sampled points
Approach #4: Methods based on continuous extensions

Consider the DDE

\[
\begin{align*}
y'(t) &= f(t, y(t), y(t - \tau(t, y(t)))), & t_0 \leq t \leq t_f, \\
y(t) &= \phi(t), & t \leq t_0.
\end{align*}
\]

Using continuous extensions, solving the DDE amounts to solving the ODE:

\[
\begin{align*}
w_{n+1}'(t) &= f(t, w_{n+1}(t), x(t - \tau(t, w_{n+1}(t)))), & t_n \leq t \leq t_{n+1} \\
w_{n+1}(t_n) &= y_n,
\end{align*}
\]

where

\[
x(s) = \begin{cases}
\phi(s), & s \leq t_0, \\
\eta(s), & t_0 \leq s \leq t_n, \\
w_{n+1}(s), & t_n \leq s \leq t_{n+1}.
\end{cases}
\]

and \(\eta\) is the continuous extension interpolant.
Bellen and Zennaro, Numerical Methods for Delay Differential Equations, Oxford

Shampine and Thompson, Numerical Solution of Delay Differential Equations
Outline

1. Motivation
 - Cancer Immunology
 - Stem Cell Transplantation

2. Properties
 - Zero Crossings
 - Time Scales

3. Numerical Methods

4. Stability in the delays space
Stability in the delays space

\[
d\frac{d^2x}{dt^2} + \frac{dx}{dt} + \frac{dx(t - \tau_1)}{dt} + \frac{dx(t - \tau_2)}{dt} + 8x = 0
\]
Stability crossing curves

- **Stability crossing curves**: The set of delays for which the characteristic equation has at least one imaginary zero (or pair of imaginary zeros).
- **Associated with change of stability**

Ref:
The two delays case

A DDE with two constant delays

\[x(t) + c_1 x(t - \tau_1) + c_2 x(t - \tau_2) + c_3 x'(t) + c_4 x'(t - \tau_1) + c_5 x'(t - \tau_2) = 0. \]

The characteristic equation:

\[h(s) = h_0(s) + h_1(s)e^{-\tau_1 s} + h_2(s)e^{-\tau_2 s}. \]

Let \(a_k(s) = h_k(s)/h_0(s) \). Then

\[a(s, \tau_1, \tau_2) = 1 + a_1(s)e^{-\tau_1 s} + a_2(s)e^{-\tau_2 s} = 0. \]

- **Stability**: a question of the number of the roots of the characteristic equation with a real part on the right hand side of the plane.
The two delays case

For an imaginary \(s = i\omega \) to satisfy \(a(s, \tau_1, \tau_2) = 0 \), the vector corresponding to the three terms must form a triangle:

\[
a(s, \tau_1, \tau_2) = 1 + a_1(s)e^{-\tau_1 s} + a_2(s)e^{-\tau_2 s} = 0.
\]

Hence, their magnitudes must satisfy the triangle inequalities:

\[
|a_1(i\omega)| + |a_2(i\omega)| \geq 1,
\]

\[
-1 \leq |a_1(i\omega)| - |a_2(i\omega)| \leq 1.
\]
The two delays case

- The triangle inequalities determine which $i\omega$ may be zeros of $a(s)$.
- The set of all such ω are the crossing set Ω.
- Any given ω defines a collection of pairs (τ_1, τ_2).

$$
\begin{align*}
\tau_1 &= \frac{\angle a_1(i\omega) + (2u - 1)\pi \pm \theta_1}{\omega} \\
\tau_2 &= \frac{\angle a_2(i\omega) + (2v - 1)\pi \mp \theta_2}{\omega}
\end{align*}
$$

where from the law of cosine:

$$
\theta_{1,2} = \cos^{-1}\left(\frac{1 + |a_{1,2}(i\omega)|^2 - |a_{2,1}(i\omega)|^2}{2|a_{1,2}(i\omega)|}\right),
$$

and u_0^\pm, v_0^\pm are the smallest possible integers such that the corresponding $\tau_{1,2}$ are nonnegative.
The two delays case

- The crossing set Ω always consists of a finite number of intervals of finite length.

- Any interval of ω’s defines a collection of curves in \mathbb{R}^2.

- The general case is a union of the following sets:

![Graph showing different types of curves for the two delays case](image)
Example

DDE:

\[\frac{dx}{dt} = -2x(t - \tau_1) + x(t - \tau_2). \]