Solution of Peter Winkler's Pizza Problem

Viola Mészáros (Charles University)

Joint work with Josef Cibulka, Jan Kynčl, Rudolf Stolař and Pavel Valtr

A Problem of Peter Winkler

Figure: Bob and Alice are sharing a pizza

3

≣ ▶

< 🗗 🕨

A Problem of Peter Winkler

Figure: Bob and Alice are sharing a pizza

How much can Alice gain?

Easy observations

Bob can obtain half of the pizza by cutting the pizza into an even number of slices of equal size.

Easy observations

- Bob can obtain half of the pizza by cutting the pizza into an even number of slices of equal size.
- If the number of slices is even, Alice has a strategy to gain at least half of the pizza.

Shifts and jumps

Figure: The two possible moves

프 🕨 🗉 프

Shifts and jumps

Figure: The two possible moves

If some strategy of a player allows the player to make at most j jumps, then it is a *j*-jump strategy.

Definitions

► The pizza may be represented by a circular sequence $P = p_0 p_1 \dots p_{n-1}$ and by the weights $|p_i| \ge 0$ for $(i = 0, 1, \dots, n-1)$.

(1日) (日) (日)

3

Definitions

- ► The pizza may be represented by a circular sequence $P = p_0 p_1 \dots p_{n-1}$ and by the weights $|p_i| \ge 0$ for $(i = 0, 1, \dots, n-1)$.
- The weight of P is defined by $|P| := \sum_{i=0}^{n-1} |p_i|$.

- ▲ 글 ▶ - 글

Definitions

- ► The pizza may be represented by a circular sequence $P = p_0 p_1 \dots p_{n-1}$ and by the weights $|p_i| \ge 0$ for $(i = 0, 1, \dots, n-1)$.
- The weight of P is defined by $|P| := \sum_{i=0}^{n-1} |p_i|$.
- ► A player has a strategy with *gain* g if that strategy guarantees the player a subset of slices with sum of weights at least g.

Restricting jumps

Claim

Alice has a zero-jump strategy with gain |P|/3 and the constant 1/3 is the best possible.

Restricting jumps

Claim

Alice has a zero-jump strategy with gain |P|/3 and the constant 1/3 is the best possible.

Theorem

Alice has a one-jump strategy with gain 7|P|/16 and the constant 7/16 is the best possible.

Restricting jumps

Claim

Alice has a zero-jump strategy with gain |P|/3 and the constant 1/3 is the best possible.

Theorem

Alice has a one-jump strategy with gain 7|P|/16 and the constant 7/16 is the best possible.

Our main result:

Theorem

For any P, Alice has a two-jump strategy with gain 4|P|/9 and the constant 4/9 is the best possible.

Characteristic cycle

If the number of slices is odd, instead of the circular sequence $P = p_0 p_1 \dots p_{n-1}$ consider the characteristic cycle defined as $V = v_0 v_1 \dots v_{n-1} = p_0 p_2 \dots p_{n-1} p_1 p_3 \dots p_{n-2}$.

< 🗇 > < 🗆 >

- ▲ 글 ▶ - 글

Characteristic cycle

If the number of slices is odd, instead of the circular sequence $P = p_0 p_1 \dots p_{n-1}$ consider the characteristic cycle defined as $V = v_0 v_1 \dots v_{n-1} = p_0 p_2 \dots p_{n-1} p_1 p_3 \dots p_{n-2}$.

Figure: A cutting of a pizza and the corresponding characteristic cycle.

· < @ > < 문 > < 문 > · · 문

Figure: Turns: A_1, B_2, A_3, \ldots , jumps: B_4 and A_5 .

・ロ・ ・ 日・ ・ 日・ ・ 日・

Figure: Turns: A_1, B_2, A_3, \ldots , jumps: B_4 and A_5 .

・ロ・ ・ 日・ ・ 日・ ・ 日・

Figure: Turns: A_1, B_2, A_3, \ldots , jumps: B_4 and A_5 .

◆□▶ ◆圖▶ ◆理▶ ◆理▶ -

Figure: Turns: A_1, B_2, A_3, \ldots , jumps: B_4 and A_5 .

・ロ・ ・ 日・ ・ 日・ ・ 日・

・ロト ・回ト ・ヨト ・ヨト

・ロト ・回ト ・ヨト ・ヨト

・ロト ・回ト ・ヨト ・ヨト

<ロ> <同> <同> < 同> < 同> < 三> < 三> -

► An arc is a sequence of at most n-1 consecutive elements of V.

3

A⊒ ▶ ∢ ∃

- ► An arc is a sequence of at most n-1 consecutive elements of V.
- For an arc $X = v_i v_{i+1} \dots v_{i+k-1}$, its *length* is l(X) := k.

- * 臣 * - 臣

- ► An arc is a sequence of at most n-1 consecutive elements of V.
- For an arc $X = v_i v_{i+1} \dots v_{i+k-1}$, its *length* is I(X) := k.
- The weight of X is $|X| := \sum_{j=i}^{i+k-1} |v_j|$.

2

- ► An arc is a sequence of at most n-1 consecutive elements of V.
- For an arc $X = v_i v_{i+1} \dots v_{i+k-1}$, its *length* is l(X) := k.
- The weight of X is $|X| := \sum_{j=i}^{i+k-1} |v_j|$.
- An arc of length (n+1)/2 is called a *half-circle*.

- ► An arc is a sequence of at most n-1 consecutive elements of V.
- For an arc $X = v_i v_{i+1} \dots v_{i+k-1}$, its *length* is l(X) := k.
- The weight of X is $|X| := \sum_{j=i}^{i+k-1} |v_j|$.
- An arc of length (n+1)/2 is called a *half-circle*.
- For each v in V the potential of v is the minimum of the weights of half-circles covering v.

Zero-jump strategy

• Lower bound: There exists v on V with potential at least 1/3.

<**-**→ **-**→ **-**→

< ≣ ▶

Zero-jump strategy

• Lower bound: There exists v on V with potential at least 1/3.

Figure: A covering triple of half-circles.

Zero-jump strategy

• Lower bound: There exists v on V with potential at least 1/3.

Figure: A covering triple of half-circles.

• Upper bound: Consider the cutting V = 100100100.

One-jump strategy

Figure: One-jump strategy: Alice chooses a jump rather than a shift (left) and makes no more jumps afterwards (right).

Two-jump strategy

Figure: We define two phases of the game. During the first phase Alice makes one jump (left). She makes another jump as the first turn of the second phase (right).

Analysis of Alice's gain

For $n \ge 1$, let g(n) be the maximum $g \in [0,1]$ such that for any cutting of the pizza into n slices, Alice has a strategy with gain g|P|.

Analysis of Alice's gain

For $n \ge 1$, let g(n) be the maximum $g \in [0,1]$ such that for any cutting of the pizza into n slices, Alice has a strategy with gain g|P|.

Theorem Let $n \ge 1$. Then

$$g(n) = \begin{cases} 1 & \text{if } n = 1, \\ 4/9 & \text{if } n \in \{15, 17, 19, 21, \dots\}, \\ 1/2 & \text{otherwise.} \end{cases}$$

Analysis of Alice's gain

For $n \ge 1$, let g(n) be the maximum $g \in [0,1]$ such that for any cutting of the pizza into n slices, Alice has a strategy with gain g|P|.

Theorem Let $n \ge 1$. Then

$$g(n) = \begin{cases} 1 & \text{if } n = 1, \\ 4/9 & \text{if } n \in \{15, 17, 19, 21, \dots\}, \\ 1/2 & \text{otherwise.} \end{cases}$$

Alice uses a zero-jump strategy when n is even or $n \le 7$, a one-jump strategy for $n \in \{9, 11, 13\}$, and a two-jump strategy for $n \in \{15, 17, 19, 21, ...\}$.

Some more results

Theorem

For any $\omega \in [0,1]$, Bob has a one-jump strategy with gain 5|P|/9 if he cuts the pizza into 15 slices as follows: $P_{\omega} = 0010100(1+\omega)0(2-\omega)00202$. These cuttings describe, up to scaling, rotating and flipping the pizza upside-down, all the pizza cuttings into 15 slices for which Bob has a strategy with gain

pizza cuttings into 15 slices for which Bob has a strategy with gain 5|P|/9.

Some more results

Theorem

For any $\omega \in [0,1]$, Bob has a one-jump strategy with gain 5|P|/9 if he cuts the pizza into 15 slices as follows: $P_{\omega} = 0010100(1+\omega)0(2-\omega)00202$. These cuttings describe, up to scaling, rotating and flipping the pizza upside-down, all the pizza cuttings into 15 slices for which Bob has a strategy with gain 5|P|/9.

Theorem

Up to scaling, rotating and flipping the pizza upside-down, there is a unique pizza cutting into 21 slices of at most two different sizes for which Bob has a strategy with gain 5|P|/9. The cutting is 001010010101010101010101.

Algorithms

Theorem

There is an algorithm that, given a cutting of the pizza with n slices, performs a precomputation in time O(n). Then, during the game, the algorithm decides each of Alice's turns in time O(1) in such a way that Alice makes at most two jumps and her gain is at least g(n)|P|.

Algorithms

Theorem

There is an algorithm that, given a cutting of the pizza with n slices, performs a precomputation in time O(n). Then, during the game, the algorithm decides each of Alice's turns in time O(1) in such a way that Alice makes at most two jumps and her gain is at least g(n)|P|.

Claim

There is an algorithm that, given a cutting of the pizza with n slices, computes an optimal strategy for each of the two players in time $O(n^2)$. The algorithm stores an optimal turn of the player on turn for all the $n^2 - n + 2$ possible positions of the game.

Open problem

Problem

Is there an algorithm that uses $o(n^2)$ time for some precomputations and then computes each optimal turn in constant time?