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A Problem of Peter Winkler

available slices

Figure: Bob and Alice are sharing a pizza
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A Problem of Peter Winkler

available slices

Figure: Bob and Alice are sharing a pizza

How much can Alice gain?
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Easy observations

◮ Bob can obtain half of the pizza by cutting the pizza into an
even number of slices of equal size.
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Easy observations

◮ Bob can obtain half of the pizza by cutting the pizza into an
even number of slices of equal size.

◮ If the number of slices is even, Alice has a strategy to gain at
least half of the pizza.
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Shifts and jumps

shift

jump

Figure: The two possible moves
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Shifts and jumps

shift

jump

Figure: The two possible moves

If some strategy of a player allows the player to make at most j

jumps, then it is a j-jump strategy.
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Definitions

◮ The pizza may be represented by a circular sequence
P = p0p1 . . .pn−1 and by the weights |pi | ≥ 0 for
(i = 0,1, . . . ,n−1).
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Definitions

◮ The pizza may be represented by a circular sequence
P = p0p1 . . .pn−1 and by the weights |pi | ≥ 0 for
(i = 0,1, . . . ,n−1).

◮ The weight of P is defined by |P | := ∑n−1

i=0
|pi |.

◮ A player has a strategy with gain g if that strategy guarantees
the player a subset of slices with sum of weights at least g .
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Restricting jumps

Claim

Alice has a zero-jump strategy with gain |P |/3 and the constant

1/3 is the best possible.
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Restricting jumps

Claim

Alice has a zero-jump strategy with gain |P |/3 and the constant

1/3 is the best possible.

Theorem

Alice has a one-jump strategy with gain 7|P |/16 and the constant

7/16 is the best possible.
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Restricting jumps

Claim

Alice has a zero-jump strategy with gain |P |/3 and the constant

1/3 is the best possible.

Theorem

Alice has a one-jump strategy with gain 7|P |/16 and the constant

7/16 is the best possible.

Our main result:

Theorem

For any P, Alice has a two-jump strategy with gain 4|P |/9 and the

constant 4/9 is the best possible.
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Characteristic cycle

If the number of slices is odd, instead of the circular sequence
P = p0p1 . . .pn−1 consider the characteristic cycle defined as
V = v0v1 . . .vn−1 = p0p2 . . .pn−1p1p3 . . .pn−2.
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Characteristic cycle

If the number of slices is odd, instead of the circular sequence
P = p0p1 . . .pn−1 consider the characteristic cycle defined as
V = v0v1 . . .vn−1 = p0p2 . . .pn−1p1p3 . . .pn−2.
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Figure: A cutting of a pizza and the corresponding characteristic cycle.
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A game

Figure: Turns: A1,B2,A3, . . . , jumps: B4 and A5.
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A game

A1

Figure: Turns: A1,B2,A3, . . . , jumps: B4 and A5.
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A game

A1

B2

Figure: Turns: A1,B2,A3, . . . , jumps: B4 and A5.
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A game

A1

A3

B2

Figure: Turns: A1,B2,A3, . . . , jumps: B4 and A5.
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A game

A1

A3

B2

B4

Figure: Turns: A1,B2,A3, . . . , jumps: B4 and A5.
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A game

A1

A5

A3

B2

B4

Figure: Turns: A1,B2,A3, . . . , jumps: B4 and A5.
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A game

A1

A5

A3

B2

B4

B6

Figure: Turns: A1,B2,A3, . . . , jumps: B4 and A5.
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A game

A1

A5

A3

B2

B4

B6

A7

Figure: Turns: A1,B2,A3, . . . , jumps: B4 and A5.
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Further definitions

◮ An arc is a sequence of at most n−1 consecutive elements of
V .
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Further definitions

◮ An arc is a sequence of at most n−1 consecutive elements of
V .

◮ For an arc X = vivi+1 . . .vi+k−1, its length is l(X ) := k.
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Further definitions

◮ An arc is a sequence of at most n−1 consecutive elements of
V .

◮ For an arc X = vivi+1 . . .vi+k−1, its length is l(X ) := k.

◮ The weight of X is |X | := ∑i+k−1

j=i |vj |.

◮ An arc of length (n+1)/2 is called a half-circle.
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Further definitions

◮ An arc is a sequence of at most n−1 consecutive elements of
V .

◮ For an arc X = vivi+1 . . .vi+k−1, its length is l(X ) := k.

◮ The weight of X is |X | := ∑i+k−1

j=i |vj |.

◮ An arc of length (n+1)/2 is called a half-circle.

◮ For each v in V the potential of v is the minimum of the
weights of half-circles covering v .
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Zero-jump strategy

◮ Lower bound: There exists v on V with potential at least 1/3.
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Zero-jump strategy

◮ Lower bound: There exists v on V with potential at least 1/3.
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Figure: A covering triple of half-circles.
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Zero-jump strategy

◮ Lower bound: There exists v on V with potential at least 1/3.
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Figure: A covering triple of half-circles.

◮ Upper bound: Consider the cutting V = 100100100.
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One-jump strategy
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Figure: One-jump strategy: Alice chooses a jump rather than a shift
(left) and makes no more jumps afterwards (right).
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Two-jump strategy
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Figure: We define two phases of the game. During the first phase Alice
makes one jump (left). She makes another jump as the first turn of the
second phase (right).
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Analysis of Alice’s gain

For n ≥ 1, let g(n) be the maximum g ∈ [0,1] such that for any
cutting of the pizza into n slices, Alice has a strategy with gain
g |P |.
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Analysis of Alice’s gain

For n ≥ 1, let g(n) be the maximum g ∈ [0,1] such that for any
cutting of the pizza into n slices, Alice has a strategy with gain
g |P |.

Theorem

Let n ≥ 1. Then

g(n) =







1 if n = 1,
4/9 if n ∈ {15,17,19,21, . . . },
1/2 otherwise.
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Analysis of Alice’s gain

For n ≥ 1, let g(n) be the maximum g ∈ [0,1] such that for any
cutting of the pizza into n slices, Alice has a strategy with gain
g |P |.

Theorem

Let n ≥ 1. Then

g(n) =







1 if n = 1,
4/9 if n ∈ {15,17,19,21, . . . },
1/2 otherwise.

Alice uses a zero-jump strategy when n is even or n ≤ 7, a

one-jump strategy for n ∈ {9,11,13}, and a two-jump strategy for

n ∈ {15,17,19,21, . . . }.
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Some more results

Theorem

For any ω ∈ [0,1], Bob has a one-jump strategy with gain 5|P |/9 if

he cuts the pizza into 15 slices as follows:

Pω = 0010100(1+ω)0(2−ω)00202. These cuttings describe, up

to scaling, rotating and flipping the pizza upside-down, all the

pizza cuttings into 15 slices for which Bob has a strategy with gain

5|P |/9.
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Some more results

Theorem

For any ω ∈ [0,1], Bob has a one-jump strategy with gain 5|P |/9 if

he cuts the pizza into 15 slices as follows:

Pω = 0010100(1+ω)0(2−ω)00202. These cuttings describe, up

to scaling, rotating and flipping the pizza upside-down, all the

pizza cuttings into 15 slices for which Bob has a strategy with gain

5|P |/9.

Theorem

Up to scaling, rotating and flipping the pizza upside-down, there is

a unique pizza cutting into 21 slices of at most two different sizes

for which Bob has a strategy with gain 5|P |/9. The cutting is

001010010101001010101.
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Algorithms

Theorem

There is an algorithm that, given a cutting of the pizza with n

slices, performs a precomputation in time O(n). Then, during the

game, the algorithm decides each of Alice’s turns in time O(1) in

such a way that Alice makes at most two jumps and her gain is at

least g(n)|P |.
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Algorithms

Theorem

There is an algorithm that, given a cutting of the pizza with n

slices, performs a precomputation in time O(n). Then, during the

game, the algorithm decides each of Alice’s turns in time O(1) in

such a way that Alice makes at most two jumps and her gain is at

least g(n)|P |.

Claim

There is an algorithm that, given a cutting of the pizza with n

slices, computes an optimal strategy for each of the two players in

time O(n2). The algorithm stores an optimal turn of the player on

turn for all the n2−n+2 possible positions of the game.
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Open problem

Problem

Is there an algorithm that uses o(n2) time for some

precomputations and then computes each optimal turn in constant

time?
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