Totally Silver Graphs

Mohammad Ghebleh

Department of Mathematics and Computer Science
Kuwait University

CanaDAM
27 May 2009
This is a joint work with:

Ebad S. Mahmoodian

Department of Mathematical Sciences
Sharif University of Technology
Tehran, Iran
Silver matrix:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
An IMO Problem

Silver matrix:

$$
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 1 & 5 & 3 & 6 & 4 \\
8 & 10 & 1 & 6 & 4 & 2 \\
9 & 8 & 11 & 1 & 2 & 5 \\
10 & 11 & 9 & 7 & 1 & 3 \\
11 & 9 & 7 & 10 & 8 & 1 \\
\end{array}
$$

There is no silver matrix of order 1997.

There exist silver matrices of infinitely many different orders.
Silver matrix:

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 1 & 5 & 3 & 6 & 4 \\
8 & 10 & 1 & 6 & 4 & 2 \\
9 & 8 & 11 & 1 & 2 & 5 \\
10 & 11 & 9 & 7 & 1 & 3 \\
11 & 9 & 7 & 10 & 8 & 1 \\
\end{array}
\]

Problem

- There is no silver matrix of order 1997.
- There exist silver matrices of infinitely many different orders.
Problem

- There is no silver matrix of order 1997.
- There exist silver matrices of infinitely many different orders.
Silver Matrices

Problem
- There is no silver matrix of order 1997.
- There exist silver matrices of infinitely many different orders.

Theorem (Mahdian, Mahmoodian; 2000)
A silver matrix of order n exists, if and only if $n = 1$ or $2|n$.
Theorem (G, Goddyn, Mahmoodian, Verdian; 2008)
A silver cube of order $n = 2^a 3^b 5^c$ exists.

Theorem (Ventullo, Khodkar; 2007)
A silver cube of order 7 exists.
Theorem (G, Goddyn, Mahmoodian, Verdian; 2008)

A silver cube of order n exists, if $n = 2^a3^b5^c$.
Theorem (G, Goddyn, Mahmoodian, Verdian; 2008)

A silver cube of order n exists, if $n = 2^a3^b5^c$.

Theorem (Ventullo, Khodkar; 2007)

A silver cube of order 7 exists.
Silver Cubes

Definition

An \((n, d)\)-silver cube is any

\[c : V(K_n^d) \rightarrow \{0, 1, \ldots, d(n - 1)\} \]

in which every vertex of a diagonal is rainbow.
Silver Cubes

Definition

An \((n, d)\)-silver cube is any

\[c : V(K_n^d) \rightarrow \{0, 1, \ldots, d(n - 1)\} \]

in which every vertex of a diagonal is rainbow.

- \(d = 2\): silver matrices
Silver Cubes

Definition
An \((n, d)\)-silver cube is any
\[c : V(K^d_n) \rightarrow \{0, 1, \ldots, d(n - 1)\} \]
in which every vertex of a diagonal is rainbow.

- \(d = 2\): silver matrices
- \(d = 3\): silver cubes
Definition

An \((n, d)\)-silver cube is any

\[c : V(K^d_n) \rightarrow \{0, 1, \ldots, d(n - 1)\} \]

in which every vertex of a diagonal is rainbow.

- \(d = 2\): silver matrices
- \(d = 3\): silver cubes
- \(n = 2\): hypercubes, packing general binary codes with distance 4
Silver Cubes

Definition

An \((n, d)\)-silver cube is any

\[c : V(K_n^d) \rightarrow \{0, 1, \ldots, d(n - 1)\} \]

in which every vertex of a diagonal is rainbow.

- \(d = 2\): silver matrices
- \(d = 3\): silver cubes
- \(n = 2\): hypercubes, packing general binary codes with distance 4

Open Problems

- \(K_{11}^3\) (\(K_p^3\) is silver where \(p \geq 11\) is a prime)
Definition

An \((n, d)\)-silver cube is any

\[c : V(K_n^d) \rightarrow \{0, 1, \ldots, d(n - 1)\} \]

in which every vertex of a diagonal is rainbow.

- \(d = 2\): silver matrices
- \(d = 3\): silver cubes
- \(n = 2\): hypercubes, packing general binary codes with distance 4

Open Problems

- \(K_{11}^3\) (\(K_p^3\) is silver where \(p \geq 11\) is a prime)
- \(Q_{20}\) (\(Q_n\) is not silver where \(4|n\) and \(n \neq 2^t\))
Definition

Given an r–regular G and a diagonal I,

$$c : V(G) \to \{0, 1, \ldots, r\}$$

is a \textit{silver colouring} if every $v \in I$ is rainbow.
Definition

Given an r–regular G and a diagonal I,

$$c : V(G) \rightarrow \{0, 1, \ldots, r\}$$

is a silver colouring if every $v \in I$ is rainbow. Totally silver if every $v \in V(G)$ is rainbow.

G is said to be (totally) silver, if it admits a (totally) silver colouring.
Observation

G is totally silver iff G is \textit{domatically full}, i.e. $V(G)$ admits $\delta(G) + 1$ disjoint dominating sets.
Observation

G is totally silver iff G is \textit{domatically full}, i.e. $V(G)$ admits $\delta(G) + 1$ disjoint dominating sets.

Observation

G is totally silver iff $\chi(G^2) = r + 1$ where G^2 is the \textit{square} of G.
Examples of Totally Silver Graphs

```
1  2  3
4  5  1
7  1  6
```

```
6  7  1
3  1  2
1  4  5
```

```
5  1  4
1  6  7
2  3  1
```
Examples of Totally Silver Graphs
Characterization of Totally Silver Graphs
Characterization of Totally Silver Graphs

C_{r+1}

C_1

C_2

C_3
Characterization of Totally Silver Graphs

C_{r+1}

C_1

C_2

C_3
Characterization of Totally Silver Graphs

Theorem

Every r–regular totally silver graph can be obtained by a sequence of (coloured) 2–switches from a disjoint union of copies of $r + 1$–cliques.
Totally Silver Cubic Graphs

3– and 4–cycles can be reduced.
3– and 4–cycles can be reduced.
5–cycles are forbidden.

So a nontrivial totally silver cubic graph is bridgeless with girth at least 6.

Question
Do there exist totally silver cubic graphs of high girth?
Totally Silver Cubic Graphs

- 3- and 4-cycles can be reduced.
- 5-cycles are forbidden.
- Bridges are forbidden: indeed, every totally silver cubic graph is 3-edge colourable.
3- and 4-cycles can be reduced.
5-cycles are forbidden.
bridges are forbidden: indeed, every totally silver cubic graph is 3-edge colourable.

So a nontrivial totally silver cubic graph is bridgeless with girth at least 6.
3– and 4–cycles can be reduced.
5–cycles are forbidden.
bridges are forbidden: indeed, every totally silver cubic graph is 3–edge colourable.

So a nontrivial totally silver cubic graph is bridgeless with girth at least 6.

Question

Do there exist totally silver cubic graphs of high girth?
An Example with Girth 9

[Diagram of a graph with vertices labeled 1, 2, 3, and edges connecting them in a cycle to form a graph with girth 9.]
An Example with Girth 9
Thank you!