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Ferrers diagram

λ = (λ1, . . . , λk) with λ1 ≥ . . . ≥ λk ≥ 0
λ = (7, 5, 5, 3, 0)

Length=number of rows + number of columns=λ1 + k
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Number of Ferrers diagrams of length n : 2n−1



Example I

λ = (n, n, . . . , n)
One 1 in each row and column : Permutation matrix
The number of PM of length 2n is n!.

An inversion in a permutation is a couple
(i , j) such that i < j and σ(i) > σ(j).

Question: What is the generating function

∑

σ∈Sn

qinv(σ)?

σ = 412635
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∑

σ∈Sn

qinv(σ) =

n
∏

i=1

(1 + . . . + qi−1) = [n]q!



Example I (continued)

Any λ and one 1 per row and per column : Rook placements
The number of RP of length 2n is (2n − 1)!!.

b b b b b b b b b b 7→ 1
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Example I (continued)

Any λ and one 1 per row and per column : Rook placements
The number of RP of length 2n is (2n − 1)!!.

b b b b b b b b b b
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7→ 1
1

1
1

1

×
×

×

10 9 8
7

6
5

43
2

1

Crossings ↔ Inversions

∑

m∈M2n

qcr(m) =
∑

rook placement

qinv(R)



Example I (cont.)

= q +

∑

rook placement

qinv(R) = 〈W |(D + U)2n|V 〉

where DU = qUD + I , 〈W |U = 0, D|V 〉 = 0, 〈W ||V 〉 = 1.

∑

rook placement

qinv(R) = 1
(1−q)n

n
∑

i=0

(−1)i
(

( 2n
n−i

)

−
( 2n
n−i−1

)

)

q
i(i+1)

2 .

(Touchard 50s, Riordan 70s)



Example II

Pierre Leroux (88) 0-1 tableaux : One 1 per column.

The number of tableaux of length n is Bn (the nth Bell number)

Set partitions 7→ 0-1 tableaux

π = (1, 3, 4, 8)(2)(5, 6)(7, 9) 7→
1
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Example II

Pierre Leroux (88) 0-1 tableaux : One 1 per column.

The number of tableaux of length n is Bn (the nth Bell number)

Set partitions 7→ 0-1 tableaux

π = (1, 3, 4, 8)(2)(5, 6)(7, 9) 7→
1

1

×
×
×
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1
× ×

1 1

2
345

67
89

Sq(n, k) =
∑

0-1 tableaux
length n, k rows

qinv(T )

q-Log concavity (Leroux 88)

Sq(n, k)2 − Sq(n, k − 1)Sq(n, k + 1)≥q0.



Example II (cont.)

= q +

Enumeration

Sq(n, k) = [yk ]〈W |(yD + U)n|V 〉

with DU = qUD + U, 〈W |E = 0, D|V 〉 = 1.

Sq(n, k) =
1

(1− q)n−k

n−k
∑

j=0

(−1)j
(

n

k + j

)[

k + j

j

]

q

(Wachs and White 88)



Permutation tableaux (Postnikov 01, Williams 04)

Origin : Totally non negative part of the Grassmanian

Permutation tableau T : a Ferrers diagram filled with 0’s and 1’s
such that :

1. Each column contains at least one 1.

2. There is no 0 which has a 1 above it in the same column and

a 1 to its left in the same row.

1
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0 1 1 1 1

0 0 1 0 1

0 0 1 0 0 1 1

1

0 0 0

0 1 0 1 1

0 0 0 0 1

0 0 1 0 0 1 1
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Permutation tableaux (Postnikov 01, Williams 04)

Origin : Totally non negative part of the Grassmanian

Permutation tableau T : a Ferrers diagram filled with 0’s and 1’s
such that :

1. Each column contains at least one 1.

2. There is no 0 which has a 1 above it in the same column and

a 1 to its left in the same row.

1

0 0 0

0 1 1 1 1

0 0 1 0 1

0 0 1 0 0 1 1

1

0 0 0

0 1 0 1 1

0 0 0 0 1

0 0 1 0 0 1 1

Number of permutation tableaux of length n is n!



Permutation tableaux and alternative tableaux

Restricted zero : lies below some 1
A permutation tableau is uniquely defined by its topmost ones and
rightmost restricted zeros.

(C. Nadeau 07)
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Restricted zero : lies below some 1
A permutation tableau is uniquely defined by its topmost ones and
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Permutation tableaux and alternative tableaux

Restricted zero : lies below some 1
A permutation tableau is uniquely defined by its topmost ones and
rightmost restricted zeros.

(C. Nadeau 07)

1

0

1 1

1

1 1 1

↑

←

↑ ↑

↑

Alternative tableaux (Viennot 08, Nadeau 09)



Permutation tableaux and permutations

Columns ↔ Descents
(C. and Nadeau 07)

1 0 0 0 1 1 1 1
23

1 0 1 1 1 4
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0 1 1 8
91011
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Permutation tableaux and permutations

Columns ↔ Descents
(C. and Nadeau 07)

1 1 1 1 1
23

1 1 4
56

0 7

0 1 8
91011

(10,8,11,5,3,2,1,7,9,6,4)



Other bijections

◮ Postnikov 01, Steingrimsson and Williams 05 : excedances
and crossings.

◮ Burstein 05 : cycles

◮ C. and Nadeau 07 : descents and 31-2.

◮ Viennot 07 : descents



Enumeration of PT

◮ u(T ) : number of unrestricted rows minus one

◮ f (T ) : number of ones in the first row

1
0
0 1 1 1 1
0 0 1 0 1
0 0 0 01 1 1

00

f (T ) = 3

u(T ) = 4− 1 = 3

∑

T length n+1

xu(T )y f (T ) =

n−1
∏

i=0

(x + y + i) = (x + y)n.

(C. and Nadeau 07)



q-enumeration of PT of a given shape

wt(T ): number of ones minus number of columns

0 1 1 1 1
0 0 1 0 1
1 0 0 01 1 1

wt(T ) = 10− 7 = 3

Fλ(q) =
∑

T shape λ qwt(T )

For any λ and a given corner, we define smaller Young diagrams:

λ(1) = λ(2) = λ(3) =

Fλ(q) is defined by the recurrence

Fλ = qFλ(1) + Fλ(2) + Fλ(3) ; F∅ = 1

(Williams 05)



q-enumeration of PT of a given shape

As columns ↔ descents
Non commutative symmetric functions (Tevlin 07)

λ = (7, 5, 5, 3, 1)



q-enumeration of PT of a given shape

As columns ↔ descents
Non commutative symmetric functions (Tevlin 07)

λ = (7, 5, 5, 3, 1)

I (λ) = (1, 3, 3, 1, 3)

Fλ(q) = eI (λ)(q) =
∑

J�I

(−q)ℓ(J)−ℓ(I )q−st′(I ,J)
p

∏

k=1

[k]jkq .

(Novelli, Thibon, Williams 08)



q-enumeration (cont.)

Ek,n(q) =
∑

λ
ℓ(λ)=k
length n

Fλ(q)

q-enumeration of PT of length n with k rows

Ek,n(q) = qn−k2
k−1
∑

i=0

(−1)i [k − i ]nq

((

n

i

)

qk−i +

(

n

i − 1

))

(Williams 05)
q-analogue of Eulerian numbers
q = 0 Narayana numbers, q = −1 Binomial numbers

Moments of q-Laguerre polynomials
(Kasraoui and Zeng 09)



PT permutation tableaux and Motzkin paths

Fn(q) =
∑

λ length n

Fλ(q) =
1

(1− q)n

∑

p length n

w(p)

Weight of each step starting at height h is
◮ East : 1− qh+1 or 1− qh

◮ North-East : 1− qh+1

◮ South-East : 1− qh

q-Laguerre Polynomials

Fn(q) =
1

(1− q)n

n
∑

k=0

(−1)k
((

2n

n − k

)

−

(

2n

n − k − 2

)) k
∑

j=0

qj(k−j+1)

(C. Josuat-Vergès, Prellberg, Rubey 09)



PT permutation tableaux and Matrix Ansatz

Fn+1(q, α, β) =
∑

T length n+1 qwt(T )α−f (T )β−u(T ),

Fn+1(q, α, β) = 〈W |(D + U)n|V 〉, where

DU = qUD + D + U;

= q + +

α〈W |E = 〈W |; βD|V 〉 = |V 〉 〈W ||V 〉 = 1.

(C. Williams 06)



PT permutation tableaux and Motzkin paths

Fn+1(q, α, β) =
1

(1− q)n

∑

p length n

w(p)

α̃ =
q − 1

α
+ 1; β̃ =

q − 1

β
+ 1

Weight of each step starting at height h is

◮ East : 1− α̃qh or 1− β̃qh

◮ North-East : 1− qh+1

◮ South-East : 1− α̃β̃qh−1

(Brak, C. Essam, Parviainen,Rechnitzer 05)



Enumeration of PT (The end)

Fn+1(q, α, β) =
1

(1− q)n

n
∑

m=0

Rn,m(q)Bm(α̃, β̃; q),

with

Dn,k =

(

2n

n − k

)

−

(

2n

n− k − 2

)

; Bm(α̃, β̃; q) =

m
∑

k=0

[

m

k

]

q

α̃m−k β̃k ;

Rn,m =

⌊ n−m
2

⌋
∑

k=0

(−1)kDn,m+2kq(k+1
2 )

[

m + k

k

]

q

(Josuat-Vergès 09)



PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied
The sites are delimited by n + 1 positions (n − 1 positions in
between sites, left border and right border).
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PT and Partially asymmetric exclusion process

Model : n sites that are empty or occupied
The sites are delimited by n + 1 positions (n − 1 positions in
between sites, left border and right border).

◮ First a position is chosen at random

◮ A particle hops to the right with probability 1

◮ A particle hops to the left with probability q

◮ A particle enters with probability α

◮ A particles leaves with probability β

β



Markov chain n = 2

1/3q/3

α/3 β/3

α/3β/3



Stationary distribution of the PASEP chain

↔ τ = (0, 0, 1, 0, 0, 1, 1, 0, 0)

Let P
q,α,β
n (τ) be the probability to be in state τ = (τ1, . . . , τn).

Theorem. (Derrida et al. 93) The probability to be in state
τ = (τ1, . . . , τn) is

Pn(τ) =
〈W |(

∏n
i=1(τiD + (1− τi)E ))|V 〉

Zn

.

with Zn = 〈W |(D + E )n|V 〉, D and E are infinite matrices, V is a
column vector, and W is a row vector, such that

DE − qED = D + E

βD|V 〉 = |V 〉

α〈W |E = 〈W |



Permutation tableaux

τ = (0, 0, 1, 0, 0, 1, 1, 0, 0) ↔ λ(τ) =

Theorem. Fix τ = (τ1, . . . , τn) ∈ {0, 1}
n, and let λ := λ(τ). The

probability of finding the PASEP chain in configuration τ in the
steady state is

Fλ(q, α, β)

Fn+1(q, α, β)
.

(C. and Williams 06)

Markov chain on Permutation tableaux
(C. and Williams 07)



Ongoing work

◮ General PASEP with γ and δ

1

q

α β

γ δ

New tableaux. Enumeration problems? Crossings?
Combinatorics of Askey-Wilson polynomials? Grassmanians?
(C. and Williams 09)
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Ongoing work

◮ General PASEP with γ and δ

1

q

α β

γ δ

New tableaux.

◮ Nice enumeration problems for Type B permutation tableaux.
(C., Kim, Williams 09)

◮ Combinatorial setting : balanced graphs. Tableaux?

◮ PASEP with several types of particles and Koornwinder
polynomials? (Haiman 07)



Thank you for your attention

Thank you for your attention


