Strongly Regular Graphs with non-trivial automorphisms

Clement Lam and Majid Behbahani

Concordia University

May 26, 2009

An example Existence of strongly regular graphs

Strongly Regular Graph

Definition

A strongly regular graph $srg(v, k, \lambda, \mu)$ is a graph with v vertices such that the number of common neighbours of x and y is k, λ , or μ according to whether x and y are equal, adjacent, or non-adjacent, respectively.

An example Existence of strongly regular graphs

The Petersen Graph, SRG(10, 3, 0, 1)

Г	0	0	0	0	0	0	0	1	1	1 -
	0	0	0	0	1	1	0	0	0	1
	0	0	0	0	0	1	1	1	0	0
	0	0	0	0	1	0	1	0	1	0
	0	1	0	1	0	0	0	1	0	0
	0	1	1	0	0	0	0	0	1	0
	0	0	1	1	0	0	0	0	0	1
	1	0	1	0	1	0	0	0	0	0
	1	0	0	1	0	1	0	0	0	0
L	. 1	1	0	0	0	0	1	0	0	0

An example Existence of strongly regular graphs

The Petersen Graph, SRG(10, 3, 0, 1)

1	- 0	0	0	0	0	0	0	1	1	1 -	1
	0	0	0	0 0 0	1	1	0	0	0	1	
	0	0	0	0	0	1	1	1	0 1	0	
	0	0	0	0	1	0	1	0	1	0	
	0	1	0	1	0	0	0	1	0	0	
	0	1	1	0 1	0 0	0	0	0	1 0	0	
	0	0	1			0	0	0		1	
	1	0	1 0 0	0	1	0	0	0	0	0 0 0	
	1	0	0	1	0	1	0	0	0	0	
	_ 1	1	0	0	0	0	1	0	0	0	
В	2 =	: (k	- 1	μ)	1+	-μ.	J +	· ()	. —	μ)	В.

An example Existence of strongly regular graphs

Unknown strongly regular graphs with small parameters

v	k	λ	μ
65	32	15	16
69	20	7	5
75	32	10	16
76	30	8	14
76	35	18	14
85	14	3	2
85	30	11	10
85	42	20	21
88	27	6	9
95	40	12	20
96	35	10	14
96	38	10	18
96	45	24	18
99	14	1	2
99	42	21	15
100	33	8	12

Table: (CRC handbook of combinatorial designs)

Theorem (Paduchikh (2009))

If G = srg(85, 14, 3, 2), ρ is an automorphism of G of prime order p, and Δ is the subgraph induced by the fixed points of ρ , then one of the following is true:

(1)
$$p = 5$$
 or $p = 17$ and Δ is the empty graph;

(2) p = 7 and Δ is a 1-clique or p = 5 and Δ is a 5-clique;

(3) p = 3, Δ is a quadrangle or a 2 × 5 lattice, and in the last case the neighbourhoods of six vertices of Δ contain exactly two maximal cliques;

(4)
$$p = 2$$
.

Definition Properties An example of orbit matrices

Orbit matrices

$\operatorname{srg}(10,3,0,1)$

[- 0	0	0	0		0	0	1	1	ך 1
	0	0	0	0	1	1	0	0	0	1 0 0
	0	0	0	0	0	1	1	1	0	0
	0	0	0	0	1	0	1	0	1	0
	0	1	0	1	0	0	0	1	0	0 0 1
	0	1	1	0	0	0	0	0		0
	0	0	1	1	0	0	0	0	0	1
	1	0	1	0	1	0	0	0	0	0
	1	0	0	1	0	1	0	0	0	0
l	. 1	1	0	0	0	0	1	0	0	0]

Definition Properties An example of orbit matrices

Orbit matrices

srg(10, 3, 0, 1)

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix}$$

$$C = [c_{ij}] = \begin{bmatrix} 0 & 0 & 0 & 1 \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Definition Properties An example of orbit matrices

Orbit matrices

srg(10, 3, 0, 1)

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{bmatrix}$$

$$C = [c_{ij}] = \begin{bmatrix} 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 2 & 1 \end{bmatrix}$$

Definition Properties An example of orbit matrices

Orbit matrices

srg(10, 3, 0, 1)

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix}$$

$$C = [c_{ij}] = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \end{bmatrix}$$

Definition Properties An example of orbit matrices

Orbit matrices

$\operatorname{srg}(10,3,0,1)$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ \end{bmatrix}$$

$$C = [c_{ij}] = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ 3 & 1 & 1 & 0 \end{bmatrix},$$

Definition Properties An example of orbit matrices

Orbit matrices

$\operatorname{srg}(10,3,0,1)$

Definition Properties An example of orbit matrices

Orbit matrices

С

$\operatorname{srg}(10,3,0,1)$

6/18

.

Definition of a strongly regular graph Orbit Matrices The SRG program Definition Properties An example of orbit matrices

$$B^{2} = (k - \mu)I + \mu J + (\lambda - \mu)B.$$

Lemma

$$CNC^{T} = S. \tag{1}$$

$$s_{ij} = \delta_{ij}(k-\mu)n_j + \mu n_i n_j + (\lambda - \mu)c_{ij}n_j.$$
⁽²⁾

$$s_{rr} = \sum_{k=1}^{t} c_{rk}^2 n_k, \qquad (3)$$

Definition Properties An example of orbit matrices

 $\operatorname{srg}(15,6,1,3)$

srg(15, 6, 1, 3) p = 3fixed points = 3

	Γ0	0	0	0	0	1	1]
	0	0	0	0	1	0	1
	0	0	0	1	0	0	1
<i>C</i> =	0	0	3	0	2	2	1
	0	3	0	2	0	2	1
	3	0	0	2	2	0	1
	3	3	3	1	1	1	1 1 1 1 1 1 0

Definition Properties An example of orbit matrices

Fixed prototype

$$\begin{cases} x_0 + x_1 & = 3, \\ y_0 + y_1 = 4, \\ x_1 + 3y_1 = 6. \end{cases}$$
(4)

Definition Properties An example of orbit matrices

Fixed prototype

$$\begin{cases} x_0 + x_1 & = 3, \\ y_0 + y_1 = 4, \\ x_1 + 3y_1 = 6. \end{cases}$$
(4)

Solutions:

$$(x_0, x_1, y_0, y_1) \in \{(0, 3, 3, 1), (3, 0, 2, 2)\}.$$

Definition Properties An example of orbit matrices

Fixed prototype

$$\begin{cases} x_0 + x_1 & = 3, \\ y_0 + y_1 = 4, \\ x_1 + 3y_1 = 6. \end{cases}$$
(4)

Solutions:

$$(x_0, x_1, y_0, y_1) \in \{(0, 3, 3, 1), (3, 0, 2, 2)\}.$$

The first solution is not accepted since the diagonal of B is zero there has to be at least one zero in the fixed columns. Thus

$$x_0 \neq 0.$$

Definition Properties An example of orbit matrices

Non-fixed prototype

$$\begin{cases} x_0 + x_3 &= 3, \\ y_0 + y_1 + y_2 + y_3 &= 4, \\ x_3 + y_1 + 2y_2 + 3y_3 &= 6, \\ 3x_3 + y_1 + 4y_2 + 9y_3 &= s_{rr}/3. \end{cases}$$
(5)

Definition Properties An example of orbit matrices

Non-fixed prototype

$$\begin{cases} x_0 + x_3 &= 3, \\ y_0 + y_1 + y_2 + y_3 &= 4, \\ x_3 + y_1 + 2y_2 + 3y_3 &= 6, \\ 3x_3 + y_1 + 4y_2 + 9y_3 &= s_{rr}/3. \end{cases}$$
(5)

.

$$s_{rr} = (k - \mu)p + \mu p^2 + (\lambda - \mu)c_{rr}p$$

 $s_{rr}/3 = 12 - 2c_{rr}$
 $c_{rr} = 0, \text{ or } 2$

Definition Properties An example of orbit matrices

Non-fixed prototype

$$\begin{cases} x_0 + x_3 &= 3, \\ y_0 + y_1 + y_2 + y_3 = 4, \\ x_3 + y_1 + 2y_2 + 3y_3 = 6, \\ 3x_3 + y_1 + 4y_2 + 9y_3 = s_{rr}/3. \end{cases}$$
(5)

$$s_{rr} = (k-\mu)p + \mu p^2 + (\lambda-\mu)c_{rr}p.$$

 $s_{rr}/3 = 12 - 2c_{rr}$
 $c_{rr} = 0, \text{ or } 2$

$$(x_0, x_3, y_0, y_1, y_2, y_3) \in$$

{ $(0, 3, 1, 3, 0, 0),$
 $(1, 2, 1, 2, 1, 0),$
 $(2, 1, 1, 1, 2, 0),$
 $(3, 0, 1, 0, 3, 0),$
 $(3, 0, 0, 3, 0, 1)$ }.

$$(x_0, x_1, y_0, y_1) \in \{(3, 0, 2, 2)\}.$$

 $(x_0, x_3, y_0, y_1, y_2, y_3) \in \{(0, 3, 1, 3, 0, 0), \\(1, 2, 1, 2, 1, 0), \\(2, 1, 1, 1, 2, 0), \\(3, 0, 1, 0, 3, 0), \\(3, 0, 0, 3, 0, 1)\}.$

$$CNC^T = S.$$

$$(x_0, x_1, y_0, y_1) \in \{(3, 0, 2, 2)\}.$$

 $(x_0, x_3, y_0, y_1, y_2, y_3) \in \{(0, 3, 1, 3, 0, 0), (1, 2, 1, 2, 1, 0), (2, 1, 1, 1, 2, 0), (3, 0, 1, 0, 3, 0), (3, 0, 0, 3, 0, 1)\}.$

$$CNC^{T} = S.$$

$$(x_0, x_1, y_0, y_1) \in \{(3, 0, 2, 2)\}.$$

 $(x_0, x_3, y_0, y_1, y_2, y_3) \in \{(0, 3, 1, 3, 0, 0), (1, 2, 1, 2, 1, 0), (2, 1, 1, 1, 2, 0), (3, 0, 1, 0, 3, 0), (3, 0, 0, 3, 0, 1)\}.$

 $CNC^{T} = S.$

$$\left[\begin{array}{ccccccccc} 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{array}\right]$$

 $(x_0, x_1, y_0, y_1) \in \{(3, 0, 2, 2)\}.$

 $(x_0, x_3, y_0, y_1, y_2, y_3) \in \{(0, 3, 1, 3, 0, 0), (1, 2, 1, 2, 1, 0), (2, 1, 1, 1, 2, 0), (3, 0, 1, 0, 3, 0), (3, 0, 0, 3, 0, 1)\}.$

 $CNC^{T} = S.$

$$(x_0, x_1, y_0, y_1) \in \{(3, 0, 2, 2)\}.$$

 $(x_0, x_3, y_0, y_1, y_2, y_3) \in \{(0, 3, 1, 3, 0, 0), \\(1, 2, 1, 2, 1, 0), \\(2, 1, 1, 1, 2, 0), \\(3, 0, 1, 0, 3, 0), \\(3, 0, 0, 3, 0, 1)\}.$

$$CNC^{T} = S.$$

$$C = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 3 & 0 & 2 & 2 & 1 \\ 0 & 0 & 3 & 0 & 2 & 2 & 1 \end{bmatrix}$$

$$(x_0, x_1, y_0, y_1) \in \{(3, 0, 2, 2)\}.$$

 $(x_0, x_3, y_0, y_1, y_2, y_3) \in \{(0, 3, 1, 3, 0, 0), \\(1, 2, 1, 2, 1, 0), \\(2, 1, 1, 1, 2, 0), \\(3, 0, 1, 0, 3, 0), \\(3, 0, 0, 3, 0, 1)\}.$

 $CNC^{T} = S.$

$$C = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 3 & 0 & 2 & 2 & 1 \\ 0 & 3 & 0 & 2 & 0 & 2 & 1 \\ 3 & 0 & 0 & 2 & 2 & 0 & 1 \\ 3 & 3 & 3 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Algorithm Tests Results

Example

srg(15, 6, 1, 3) p = 5 $\phi = 0$ $C = \begin{pmatrix} 0 & 3 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix}$

Algorithm Tests Results

Example

srg(15, 6, 1, 3)	$ \left(\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0 \end{array}\right) $	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	X X X X X X	X X X X X	X X X X X	X X X X X	X X X X X	X X X X X X	X X X X X	X X X X X	X X X X X	X X X X X	
$egin{aligned} m{ ho} &= 5 \ \phi &= 0 \end{aligned} ^{B=}$	X X X X X	X X X X X	X X X X X	X X X X X	X X X X X	0 1 0 0 1	1 0 1 0 0	0 1 0 1 0	0 0 1 0 1	1 0 0 1 0	X X X X X	X X X X X	X X X X X	X X X X X	x x x x x x	
$C = \begin{pmatrix} 0 & 3 & 3 \\ 3 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix}$	$\left \begin{array}{c} x \\ x $	X X X X X	X X X X X	X X X X X	X X X X X	X X X X X X	X X X X X X	X X X X X	X X X X X	X X X X X	X X X X X X	X X X X X	X X X X X	X X X X X	$\begin{pmatrix} x \\ x \\ x \\ x \\ x \\ x \end{pmatrix}$	

Algorithm Tests Results

Algorithm Tests Results

•
$$B^2 = (k - \mu)I + \mu J + (\lambda - \mu)B$$
.

Algorithm Tests Results

•
$$B^2 = (k - \mu)I + \mu J + (\lambda - \mu)B.$$

```
Isomorph rejection.
```


Algorithm Tests Results

$$\blacktriangleright B^2 = (k-\mu)I + \mu J + (\lambda - \mu)B.$$

- Isomorph rejection.
- Positive semidefinite test.

Algorithm Tests Results

Correction test

Aut. group size	Number of SRGs	Number of SRGs
	McKay program	the SRG program
1	28	Not Applicable
2	37	37
3	14	14
4	51	51
8	16	16
12	5	5
16	5	5
21	2	2
24	9	9
32	1	1
36	1	1
48	5	5
64	1	1
72	1	1
144	1	1
216	1	1
432	1	1
12096	1	1

Automorphis group statistics of all SRG(36, 14, 4, 6)

р	#fix point	#orb matrix	#srg found
3	1	0	
	4	2	0
	:		
	28	0	
5	0	3	0
	5	1	0
	10	0	
	:		
	30	0	
7	1	8	0
	8	0	
	15	0	
	22	0	
	29	0	
11	8	0	
	19	0	
	30	0	
13	7	0	
	20	0	
	33	0	
17	0	2	0

Table: Results on the automorphisms of srg(85, 14, 3, 2).

Theorem (Paduchikh (2009))

If G = srg(85, 14, 3, 2), ρ is an automorphism of G of prime order p, and Δ is the subgraph induced by the fixed points of ρ , then one of the following is true:

(1)
$$p = 5$$
 or $p = 17$ and Δ is the empty graph;

(2)
$$p = 7$$
 and Δ is a 1-clique or $p = 5$ and Δ is a 5-clique;

(3) p = 3, Δ is a quadrangle or a 2 × 5 lattice, and in the last case the neighbourhoods of six vertices of Δ contain exactly two maximal cliques;

(4) p = 2.

From out work, p = 2 is the only possible prime divisor of |Aut(G)|.

Definition of a strongly regular graph	Algorithm
Orbit Matrices	Tests
The SRG program	Results

	possible primes
G	$\{p: p Aut(G) \}$
srg(65, 32, 15, 16)	2,3,5
srg(69, 20, 7, 5)	2,3
srg(75, 32, 10, 16)	2,3
srg(76, 30, 8, 14)	2,3
srg(76, 35, 18, 14)	2,3,5
srg(85, 14, 3, 2)	2
srg(85, 30, 11, 10)	2,3,5,17
srg(85, 42, 20, 21)	2,3,5,7
srg(88, 27, 6, 9)	2,3,5,11
srg(95, 40, 12, 20)	2,3,5
srg(96, 35, 10, 14)	2,3,5
srg(96, 38, 10, 18)	2,3,5
srg(96, 45, 24, 18)	2,3,5
srg(99, 14, 1, 2)	2,3
srg(99, 42, 21, 15)	2,3,5,7,11
srg(100, 33, 8, 12)	2,3,5,11

Table: Summary of results for unknown strongly regular graphs

Algorithm Tests Results

Some New srg(49, 18, 7, 6)

Aut. group size	Number of SRGs	New?	Aut. Group
10	1	no	D ₁₀
15	3	2 new	C ₁₅
21	1	yes	7:3
30	1	yes	$D_{10} imes C_3$
63	1	yes	$7:3 \times C_3$
126	1	yes	
1008	1	no	
1764	1	no	

Table: Automorphism group size statistics of all srg(49, 18, 7, 6) with automorphism group size divisible by 5 and 7 obtained from the SRG program.