Strongly Regular Graphs with non-trivial automorphisms

Clement Lam and Majid Behbahani

Concordia University

May 26, 2009

Strongly Regular Graph

Definition

A strongly regular graph $\operatorname{srg}(v, k, \lambda, \mu)$ is a graph with v vertices such that the number of common neighbours of x and y is k, λ, or μ according to whether x and y are equal, adjacent, or non-adjacent, respectively.

The Petersen Graph, SRG(10, 3, 0, 1)

$\left[\begin{array}{l|lll|lll|lll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$

The Petersen Graph, SRG(10, 3, 0, 1)

$\left[\begin{array}{l|lll|lll|lll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$
$B^{2}=(k-\mu) /+\mu J+(\lambda-\mu) B$.

Unknown strongly regular graphs with small parameters

v	k	λ	μ
65	32	15	16
69	20	7	5
75	32	10	16
76	30	8	14
76	35	18	14
85	14	3	2
85	30	11	10
85	42	20	21
88	27	6	9
95	40	12	20
96	35	10	14
96	38	10	18
96	45	24	18
99	14	1	2
99	42	21	15
100	33	8	12

Table: (CRC handbook of combinatorial designs)

Theorem (Paduchikh (2009))

If $G=\operatorname{srg}(85,14,3,2), \rho$ is an automorphism of G of prime order p, and Δ is the subgraph induced by the fixed points of ρ, then one of the following is true:
(1) $p=5$ or $p=17$ and Δ is the empty graph;
(2) $p=7$ and Δ is a 1-clique or $p=5$ and Δ is a 5-clique;
(3) $p=3, \Delta$ is a quadrangle or a 2×5 lattice, and in the last case the neighbourhoods of six vertices of Δ contain exactly two maximal cliques;
(4) $p=2$.

Orbit matrices
 $\operatorname{srg}(10,3,0,1)$

$\left[\begin{array}{l|lll|lll|lll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$

Orbit matrices
 $\operatorname{srg}(10,3,0,1)$

$$
\begin{aligned}
& {\left[\begin{array}{l|lll|lll|lll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]} \\
& C=\left[c_{i j}\right]=\left[\begin{array}{l|lll}
0 & 0 & 0 & 1 \\
\hline & & & \\
& & &
\end{array}\right.
\end{aligned}
$$

Orbit matrices $\operatorname{srg}(10,3,0,1)$

$$
\begin{aligned}
& {\left[\begin{array}{l|lll|lll|lll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]} \\
& C=\left[c_{i j}\right]=\left[\begin{array}{l|lll}
0 & 0 & 0 & 1 \\
\hline 0 & 0 & 2 & 1 \\
& & &
\end{array}\right.
\end{aligned}
$$

Orbit matrices $\operatorname{srg}(10,3,0,1)$

$$
\begin{aligned}
& {\left[\begin{array}{l|lll|lll|lll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]} \\
& C=\left[c_{i j}\right]=\left[\begin{array}{l|lll}
0 & 0 & 0 & 1 \\
\hline 0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1
\end{array}\right.
\end{aligned}
$$

Orbit matrices $\operatorname{srg}(10,3,0,1)$

$$
\begin{aligned}
& {\left[\begin{array}{l|lll|lll|lll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]} \\
& C=\left[c_{i j}\right]=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
3 & 1 & 1 & 0
\end{array}\right],
\end{aligned}
$$

Orbit matrices $\operatorname{srg}(10,3,0,1)$

$$
\begin{gathered}
{\left[\begin{array}{l|lll|lll|lll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]} \\
C=\left[c_{i j}\right]=\left[\begin{array}{l|lll}
0 & 0 & 0 & 1 \\
\hline 0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
3 & 1 & 1 & 0
\end{array}\right], \quad R=\left[\begin{array}{lllll}
0 & 0 & 0 & 3 \\
\hline 0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
\end{gathered}
$$

Orbit matrices $\operatorname{srg}(10,3,0,1)$

$$
\begin{gathered}
{\left[\begin{array}{lllll|lll|lll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]} \\
C=\left[c_{i j}\right]=\left[\begin{array}{l|lll}
0 & 0 & 0 & 1 \\
\hline 0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
3 & 1 & 1 & 0
\end{array}\right], \quad R=\left[\begin{array}{l|lll}
0 & 0 & 0 & 3 \\
\hline 0 & 0 & 2 & 1 \\
0 & 2 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right], \quad N=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 \\
\hline 0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 3
\end{array}\right] .
\end{gathered}
$$

$$
B^{2}=(k-\mu) I+\mu J+(\lambda-\mu) B .
$$

Lemma

$$
\begin{equation*}
C N C^{T}=S \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
s_{i j}=\delta_{i j}(k-\mu) n_{j}+\mu n_{i} n_{j}+(\lambda-\mu) c_{i j} n_{j} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
s_{r r}=\sum_{k=1}^{t} c_{r k}^{2} n_{k} \tag{3}
\end{equation*}
$$

$\operatorname{srg}(15,6,1,3)$

$\operatorname{srg}(15,6,1,3)$

$$
p=3
$$

fixed points $=3$

$$
C=\left[\begin{array}{lll|llll}
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 3 & 0 & 2 & 2 & 1 \\
0 & 3 & 0 & 2 & 0 & 2 & 1 \\
3 & 0 & 0 & 2 & 2 & 0 & 1 \\
3 & 3 & 3 & 1 & 1 & 1 & 0
\end{array}\right]
$$

Fixed prototype

$$
\left\{\begin{array}{rlrl}
x_{0}+x_{1} & & =3 \tag{4}\\
& y_{0} & +y_{1} & =4 \\
x_{1} & +3 y_{1} & =6
\end{array}\right.
$$

Fixed prototype

$$
\left\{\begin{array}{rlrl}
x_{0}+x_{1} & & =3 \tag{4}\\
& y_{0} & +y_{1} & =4 \\
x_{1} & +3 y_{1} & =6
\end{array}\right.
$$

Solutions:

$$
\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \in\{(0,3,3,1),(3,0,2,2)\} .
$$

Fixed prototype

$$
\left\{\begin{array}{rlrl}
x_{0}+x_{1} & & =3 \tag{4}\\
& y_{0} & +y_{1} & =4 \\
x_{1} & +3 y_{1} & =6
\end{array}\right.
$$

Solutions:

$$
\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \in\{(0,3,3,1),(3,0,2,2)\} .
$$

The first solution is not accepted since the diagonal of B is zero there has to be at least one zero in the fixed columns. Thus

$$
x_{0} \neq 0
$$

Non-fixed prototype

Non-fixed prototype

$$
\left\{\begin{array}{rllll}
x_{0}+x_{3} & & & & =3, \tag{5}\\
& y_{0} & +y_{1}+y_{2} & +y_{3} & =4, \\
x_{3} & +y_{1}+2 y_{2} & +3 y_{3} & =6, \\
3 x_{3} & +y_{1}+4 y_{2} & +9 y_{3} & =s_{r r} / 3
\end{array}\right.
$$

$$
s_{r r}=(k-\mu) p+\mu p^{2}+(\lambda-\mu) c_{r r} p .
$$

$$
\begin{aligned}
s_{r r} / 3 & =12-2 c_{r r} \\
c_{r r} & =0, \text { or } 2
\end{aligned}
$$

Non-fixed prototype

$$
\begin{align*}
& \left\{\begin{array}{rllll}
x_{0}+x_{3} & & & & =3, \\
& y_{0} & +y_{1}+y_{2}+y_{3} & =4, \\
x_{3} & +y_{1}+2 y_{2}+3 y_{3} & =6, \\
3 x_{3} & +y_{1}+4 y_{2}+9 y_{3} & =s_{r r} / 3 .
\end{array}\right. \tag{5}\\
& \left(x_{0}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right) \in \\
& \{(0,3,1,3,0,0) \text {, } \\
& (1,2,1,2,1,0) \text {, } \\
& (2,1,1,1,2,0) \text {, } \\
& (3,0,1,0,3,0) \text {, } \\
& (3,0,0,3,0,1)\} \text {. }
\end{align*}
$$

$\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \in\{(3,0,2,2)\}$.

$C N C^{T}=S$.

$$
\begin{aligned}
& \left(x_{0}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right) \in \\
& \{(0,3,1,3,0,0), \\
& (1,2,1,2,1,0), \\
& (2,1,1,1,2,0), \\
& (3,0,1,0,3,0), \\
& (3,0,0,3,0,1)\} .
\end{aligned}
$$

$$
C=
$$

$$
\begin{gathered}
\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \in\{(3,0,2,2)\} . \\
\left(x_{0}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right) \in \\
\{(0,3,1,3,0,0), \\
(1,2,1,2,1,0), \\
(2,1,1,1,2,0), \\
(3,0,1,0,3,0), \\
(3,0,0,3,0,1)\} .
\end{gathered}
$$

$C N C^{\top}=S$.

$$
\begin{gathered}
\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \in\{(3,0,2,2)\} . \\
\left(x_{0}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right) \in \\
\{(0,3,1,3,0,0), \\
(1,2,1,2,1,0), \\
(2,1,1,1,2,0), \\
(3,0,1,0,3,0), \\
(3,0,0,3,0,1)\} .
\end{gathered}
$$

$C N C^{\top}=S$.

$$
\left[\begin{array}{lll|llll}
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right.
$$

$$
C=
$$

$$
\begin{gathered}
\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \in\{(3,0,2,2)\} . \\
\left(x_{0}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right) \in \\
\{(0,3,1,3,0,0), \\
(1,2,1,2,1,0), \\
(2,1,1,1,2,0), \\
(3,0,1,0,3,0), \\
(3,0,0,3,0,1)\} .
\end{gathered}
$$

$C N C^{\top}=S$.

$$
C=\left[\begin{array}{lll|llll}
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline & & & & & &
\end{array}\right.
$$

$$
\begin{gathered}
\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \in\{(3,0,2,2)\} . \\
\left(x_{0}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right) \in \\
\{(0,3,1,3,0,0), \\
(1,2,1,2,1,0), \\
(2,1,1,1,2,0), \\
(3,0,1,0,3,0), \\
(3,0,0,3,0,1)\} .
\end{gathered}
$$

$C N C^{\top}=S$.

$$
C=\left[\begin{array}{lll|llll}
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 3 & 0 & 2 & 2 & 1 \\
& & & & & &
\end{array}\right.
$$

$$
\begin{gathered}
\left(x_{0}, x_{1}, y_{0}, y_{1}\right) \in\{(3,0,2,2)\} . \\
\left(x_{0}, x_{3}, y_{0}, y_{1}, y_{2}, y_{3}\right) \in \\
\{(0,3,1,3,0,0), \\
(1,2,1,2,1,0), \\
(2,1,1,1,2,0), \\
(3,0,1,0,3,0), \\
(3,0,0,3,0,1)\} .
\end{gathered}
$$

$C=\left[\begin{array}{lll|llll}0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 0 & 0 & 3 & 0 & 2 & 2 & 1 \\ 0 & 3 & 0 & 2 & 0 & 2 & 1 \\ 3 & 0 & 0 & 2 & 2 & 0 & 1 \\ 3 & 3 & 3 & 1 & 1 & 1 & 0\end{array}\right]$

Example

$$
\begin{gathered}
\operatorname{srg}(15,6,1,3) \\
p=5 \\
\phi=0 \\
C=\left(\begin{array}{lll}
0 & 3 & 3 \\
3 & 2 & 1 \\
3 & 1 & 2
\end{array}\right)
\end{gathered}
$$

Example

$$
\begin{aligned}
& C=\left(\begin{array}{lll}
0 & 3 & 3 \\
3 & 2 & 1 \\
3 & 1 & 2
\end{array}\right)\left(\begin{array}{llllllllll}
x & x & x & x & x & x & x & x & x & x \\
x & x & x & x & x & x & x & x & x & x \\
x & x & x & x & x & x & x & x & x & x \\
x & x & x & x & x & x & x & x & x & x \\
x & x & x & x & x & x & x & x & x & x
\end{array}\right. \\
& \begin{array}{ll}
X & X \\
X & X \\
X & X \\
X & X \\
X & X
\end{array} \\
& \begin{array}{l}
X \\
X \\
X \\
X \\
X
\end{array} \\
& \times \times \times \times \\
& \begin{array}{l}
X \\
X \\
X \\
X \\
x
\end{array}
\end{aligned}
$$

Pruning the backtrack search

Pruning the backtrack search

- $B^{2}=(k-\mu) I+\mu J+(\lambda-\mu) B$.

Pruning the backtrack search

- $B^{2}=(k-\mu) I+\mu J+(\lambda-\mu) B$.
- Isomorph rejection.

Pruning the backtrack search

- $B^{2}=(k-\mu) I+\mu J+(\lambda-\mu) B$.
- Isomorph rejection.
- Positive semidefinite test.

Correction test

Aut. group size	Number of SRGs McKay program	Number of SRGs the SRG program
1	28	Not Applicable
2	37	37
3	14	14
4	51	51
8	16	16
12	5	5
16	5	5
21	2	2
24	9	9
32	1	1
36	1	1
48	5	5
64	1	1
72	1	1
144	1	1
216	1	1
432	1	1
12096	1	1

p	\#fix point	\#orb matrix	\#srg found
3	1	0	
	4	2	0
	\vdots	\vdots	
	28	0	
5	0	3	0
	5	1	0
	10	0	
	\vdots	\vdots	
	30	0	
	1	8	
	8	0	
	15	0	
	22	0	
11	8	0	
	19	0	
	30	0	
13	7	0	
	20	0	
	33	0	0
17	0	2	

Table: Results on the automorphisms of $\operatorname{srg}(85,14,3,2)$.

Theorem (Paduchikh (2009))
If $G=\operatorname{srg}(85,14,3,2), \rho$ is an automorphism of G of prime order p, and Δ is the subgraph induced by the fixed points of ρ, then one of the following is true:
(1) $p=5$ or $p=17$ and Δ is the empty graph;
(2) $p=7$ and Δ is a 1-clique or $p=5$ and Δ is a 5-clique;
(3) $p=3, \Delta$ is a quadrangle or a 2×5 lattice, and in the last case the neighbourhoods of six vertices of Δ contain exactly two maximal cliques;
(4) $p=2$.

From out work, $p=2$ is the only possible prime divisor of $|\operatorname{Aut}(G)|$.

G	possible primes $\{p: p\| \| A u t(G) \mid\}$
$\operatorname{srg}(65,32,15,16)$	$2,3,5$
$\operatorname{srg}(69,20,7,5)$	2,3
$\operatorname{srg}(75,32,10,16)$	2,3
$\operatorname{srg}(76,30,8,14)$	2,3
$\operatorname{srg}(76,35,18,14)$	$2,3,5$
$\operatorname{srg}(85,14,3,2)$	2
$\operatorname{srg}(85,30,11,10)$	$2,3,5,17$
$\operatorname{srg}(85,42,20,21)$	$2,3,5,7$
$\operatorname{srg}(88,27,6,9)$	$2,3,5,11$
$\operatorname{srg}(95,40,12,20)$	$2,3,5$
$\operatorname{srg}(96,35,10,14)$	$2,3,5$
$\operatorname{srg}(96,38,10,18)$	$2,3,5$
$\operatorname{srg}(96,45,24,18)$	$2,3,5$
$\operatorname{srg}(99,14,1,2)$	2,3
$\operatorname{srg}(99,42,21,15)$	$2,3,5,7,11$
$\operatorname{srg}(100,33,8,12)$	$2,3,5,11$

Table: Summary of results for unknown strongly regular graphs

Some New $\operatorname{srg}(49,18,7,6)$

Aut. group size	Number of SRGs	New?	Aut. Group
10	1	no	D_{10}
15	3	2 new	C_{15}
21	1	yes	$7: 3$
30	1	yes	$D_{10} \times C_{3}$
63	1	yes	$7: 3 \times C_{3}$
126	1	yes	
1008	1	no	
1764	1	no	

Table: Automorphism group size statistics of all $\operatorname{srg}(49,18,7,6)$ with automorphism group size divisible by 5 and 7 obtained from the SRG program.

