On a Kakeya-type problem

Gregory A. Freiman
grisha@math.tau.ac.il
The Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University
School of Mathematical Sciences
Ramat Aviv, Tel Aviv 69978
ISRAEL
Yonutz V. Stanchescu
ionut@openu.ac.il
Department of Mathematics
The Open University of Israel
The Dorothy de Rothschild Campus
108 Ravutski Street, P. O. Box 808
Raanana, 43107
ISRAEL

Abstract

Let A be a finite set of integers $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, k=|A|$. For every element b_{i} of the sumset $2 A=A+A=\left\{a+a^{\prime}: a \in A, a^{\prime} \in A\right\}=$ $\left\{b_{1}, b_{2}, \ldots, b_{|2 A|}\right\}$ we denote $r_{i}=r_{i}(A)=\mid\left\{\left(a, a^{\prime}\right): a+a^{\prime}=b_{i}, a \in A, a^{\prime} \in\right.$ $A\} \mid$ and $$
D_{i}=D_{i}(A)=\left\{a-a^{\prime}: a \in A, a^{\prime} \in A, a+a^{\prime}=b_{i}\right\}, d_{i}=d_{i}(A)=\left|D_{i}\right|
$$

After an eventual reordering of the set $2 A$, we may assume that $r_{1} \geq r_{2} \geq$ $\cdots \geq r_{|2 A| .}$. For every $1 \leq s \leq|2 A|$ we denote $R_{s}(A)=\left|D_{1} \cup D_{2} \cup \cdots \cup D_{s}\right|$ and define

$$
R_{s}(k)=\max \left\{R_{s}(A): A \subseteq \mathbb{Z},|A|=k\right\}
$$

Katz and Tao [Math. Res. Lett. 6 (1999), 625-630] obtained an estimate of $R_{s}(k)$ assuming $s \leq k$.

In this note we find the exact value of $R_{s}(k)$ in cases $s=1, s=2$ and $s=3$. The case $s=3$ appeared to be not so simple. The structure of extremal sets A^{*}, i.e. sets of integers for which we have $R_{3}\left(A^{*}\right)=R_{3}(k)$, led us to sets isomorphic to planar sets having a rather unexpected form of a perfect hexagon. The proof of this result suggests the way of dealing with the general case $s \geq 4$.

