Additive Combinatorics

March 30 - April 12, 2006

Binary linear forms over finite sets of integers

Melvyn Nathanson
nathansn@lehman.cuny.edu
Department of Mathematics $\mathcal{E}^{\text {C Computer Science }}$
CUNY
250 Bedford Park Boulevard W.
Bronx, NY 10468
USA

Abstract

Let A be a finite set of integers. For a polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ with integer coefficients, let $f(A)=\left\{f\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in A\right\}$. It is proved that for most pairs of binary linear forms $f(x, y)=u_{1} x+v_{1} y$ and $g(x, y)=u_{2} x+v_{2} y$ with integral coefficients such that $\left(u_{i}, v_{i}\right)=1$ and $u_{i} \geq\left|v_{i}\right| \geq 1$ for $i=1,2$, there exist finite sets of integers A and B such that $|f(A)|>|g(A)|$ and $|f(B)|<|g(B)|$.

This is joint work with Kevin O'Bryant, Brooke Orosz, Imre Ruzsa, Manuel Silva.

