# Combinational properties of residue sets modulio prime and Epdős-Graham problem. 

A. A. Glibichuk<br>aanatol@mail.ru<br>Department of Mechanics \& Mathemathics<br>Moscow State University<br>Vorobevy gory, 1, MSU Main Building<br>Moscow, 119992<br>RUSSIA


#### Abstract

Let $A, B$ be subsets of a field of residues modulio prime $p$ (we'll denote it $\mathbb{F}_{p}$ ). Consider the sum set $$
A+B:=\{a+b: a \in A, b \in B\}
$$ and the product set $$
A \cdot B:=\{a b: a \in A, b \in B\} .
$$

For given positive integer $k$ denote $$
k A=\underbrace{A+A+\cdots+A}_{k} .
$$

We will call subset $A$ symmetrical if from $a \in A$ follows that $-a \in A$. Opposite, we call $A$ antisymmetrical if from $a \in A$ follows that $a \notin A$.

The main problem is by subset $A \subset \mathbb{F}_{p}$ determine or estimate minimum $k$ such that $k A=\mathbb{F}_{p}$.

I can present you these following lemmas: Lemma 1. If $A \subset \mathbb{F}_{p}$ and $B \subset \mathbb{F}_{p}$, such that $B$ is symmetical subset and $|A||B|>p$, then $8 A B=\mathbb{F}_{p}$. Lemma 2. If $A \subset \mathbb{F}_{p}$ and $B \subset \mathbb{F}_{p}$, such that $B$ is antisymmetrical and $|A||B|>p$, then $8 A B=\mathbb{F}_{p}$.

From this lemmas one can deduce series of corollaries and next theorem


## Additive Combinatorics

March 30 - April 12, 2006
Theorem 1. For every $\varepsilon>0$, for every sufficiently large prime $p$ and for every residue a $(\bmod p)$ there are exist positive pairwise distinct integers $x_{1}, \ldots, x_{N} \leqslant p^{\varepsilon}$ with $N=8 \cdot\left(\left[1 / \varepsilon+\frac{1}{2}\right]+1\right)^{2}$, such that

$$
a \equiv x_{1}^{-1}+\cdots+x_{N}^{-1} \quad(\bmod p)
$$

Here $x_{i}^{-1}$ denotes lowest positive integer such that $x_{i}^{-1} x_{i} \equiv 1$ $(\bmod p)$.

We will prove following theorem, using similar techniques:
Theorem 2. Let $A$ be subset of $\mathbb{F}_{p}$ such that multiplicative subgroup, generated by set $A-A+A-A / A-A+A-A \backslash\{0\}$ is all the group $\mathbb{F}_{p}^{*}$. Then

$$
k \underbrace{A \cdot A \cdots \cdots A}_{f+1}=\mathbb{F}_{p}
$$

where $f=4[\log p / 2 \log |A|]+2$ and $k$ depends only on $\log p / \log |A|$.
This result are interesting because one can deduce many corrolaries from this theorem.

