Combinational properties of residue sets modulio prime and Epdős–Graham problem.

A. A. Glibichuk

aanatol@mail.ru Department of Mechanics & Mathemathics Moscow State University Vorobevy gory, 1, MSU Main Building Moscow, 119992 RUSSIA

Abstract

Let A, B be subsets of a field of residues modulio prime $p(\text{we'll} \text{ denote it } \mathbb{F}_p)$. Consider the sum set

$$A + B := \{a + b \colon a \in A, b \in B\}$$

and the product set

$$A \cdot B := \{ab \colon a \in A, b \in B\}.$$

For given positive integer k denote

$$kA = \underbrace{A + A + \dots + A}_{k}.$$

We will call subset A symmetrical if from $a \in A$ follows that $-a \in A$. Opposite, we call A antisymmetrical if from $a \in A$ follows that $a \notin A$.

The main problem is by subset $A \subset \mathbb{F}_p$ determine or estimate minimum k such that $kA = \mathbb{F}_p$.

I can present you these following lemmas:

Lemma 1. If $A \subset \mathbb{F}_p$ and $B \subset \mathbb{F}_p$, such that B is symmetrical subset and |A| |B| > p, then $8AB = \mathbb{F}_p$.

Lemma 2. If $A \subset \mathbb{F}_p$ and $B \subset \mathbb{F}_p$, such that B is antisymmetrical and |A| |B| > p, then $8AB = \mathbb{F}_p$.

From this lemmas one can deduce series of corollaries and next theorem

Theorem 1. For every $\varepsilon > 0$, for every sufficiently large prime p and for every residue $a \pmod{p}$ there are exist positive pairwise distinct integers $x_1, \ldots, x_N \leq p^{\varepsilon}$ with $N = 8 \cdot ([1/\varepsilon + \frac{1}{2}] + 1)^2$, such that

$$a \equiv x_1^{-1} + \dots + x_N^{-1} \pmod{p}.$$

Here x_i^{-1} denotes lowest positive integer such that $x_i^{-1}x_i \equiv 1 \pmod{p}$.

We will prove following theorem, using similar techniques:

Theorem 2. Let A be subset of \mathbb{F}_p such that multiplicative subgroup, generated by set $A - A + A - A/A - A + A - A \setminus \{0\}$ is all the group \mathbb{F}_p^* . Then

$$k\underbrace{A\cdot A\cdots A}_{f+1} = \mathbb{F}_p,$$

where $f = 4[\log p/2 \log |A|] + 2$ and k depends only on $\log p/\log |A|$.

This result are interesting because one can deduce many corrolaries from this theorem.