Partion regularity of linear equations

Jacob Fox
licht@mit.edu
Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue, Building 2
Cambridge, MA 02139
USA

Abstract

In this talk, we will discuss several results and conjectures on partition regularity of linear equations. A linear homogeneous equation E is called r-regular if, for every r-coloring of the positive integers, there is a monochromatic solution to E. A linear homogeneous equation is called regular if it is r-regular for all positive integers r. In 1933, Rado conjectured that for each positive integer n, there is another positive integer $k(n)$ such that every linear homogeneous equation in n variables that is $k(n)$-regular is regular. Kleitman and I recently settled this conjecture in the case $n=3$ by proving that every linear homogeneous equation in 3 variables that is 24 -regular is regular.

A coloring of the nonzero rational numbers is minimal for an equation E if there are no monochromatic solutions to E and the coloring uses as few colors as possible. Let $E(n)$ denote the equation $x_{0}+2 x_{1}+\cdots+$ $2^{n-2} x_{n-2}=2^{n-1} x_{n-1}$. Alexeev, Graham, and I conjecture that for $n>2$, there is a unique n-coloring that is minimal for $E(n)$, and we have verified this conjecture for $n \in\{3,4,5,6\}$. Our conjecture would imply that for $n>1$, the equation $E(n+1)$ is n-regular but not ($n+1$)-regular, which would imply another conjecture of Rado.

Radoičić and I recently proved that for each number $q \in \mathbb{Q} \backslash\{-1,0,1\}$, the following statement is independent of ZermeloFraenkel set theory: every 3 -coloring of the nonzero real numbers has a monochromatic solution to $x_{0}+q x_{1}=q^{2} x_{2}$.

A system L of linear homogeneous equations is called countably regular if, for every countable coloring of the real numbers, there is a monochromatic solution to L in distinct variables. I will present the classification in ZFC of countably regular systems of linear homogeneous equations. As a corollary, for each positive integer s, the equation $x_{1}+s x_{2}=x_{3}+\cdots+x_{s+3}$ is countably regular if and only if $2^{\aleph_{0}}>\aleph_{s}$. This generalizes the case $s=1$ due to Erdős and Kakutani.

