Multidimensional zero-sum problems

Christian Elsholtz christian.elsholtz@rhul.ac.uk Department of Mathematics Royal Holloway, University of London Egham, Surrey, TW20 0EX UNITED KINGDOM

Abstract

For a finite Abelian group G let $\mathbf{s}(G)$ denote the smallest integer l such that every sequence S over G of length $|S| \ge l$ has a zero-sum subsequence of length $\exp(G)$. In particular, the case $G = C_n^r$ has attracted a great deal of attention. For example, Alon and Dubiner proved that for fixed $r: \mathbf{s}(C_n^r) \le c_r n$ holds, and Meshulam proved $\mathbf{s}(C_3^r) = O(3^d/d)$.

We derive new upper and lower bounds for $\mathbf{s}(G)$ and all our bounds are sharp for special types of groups. In particular, we show $\mathbf{s}(C_n^4) \ge 20n - 19$ for all odd n which is sharp if n is a power of 3. Moreover, we investigate the relationship between extremal sequences and maximal caps in finite geometry.

Joint work with Y. Edel, A. Geroldinger, S. Kubertin, and L. Rackham.