Additive Combinatorics

March 30 - April 12, 2006

Multidimensional zero-sum problems

Christian Elsholtz
christian.elsholtz@rhul.ac.uk
Department of Mathematics
Royal Holloway, University of London
Egham, Surrey, TW20 0EX
UNITED KINGDOM

Abstract

For a finite Abelian group G let $s(G)$ denote the smallest integer l such that every sequence S over G of length $|S| \geq l$ has a zero-sum subsequence of length $\exp (G)$. In particular, the case $G=C_{n}^{r}$ has attracted a great deal of attention. For example, Alon and Dubiner proved that for fixed $r: \mathrm{s}\left(C_{n}^{r}\right) \leq c_{r} n$ holds, and Meshulam proved $\mathrm{s}\left(C_{3}^{r}\right)=O\left(3^{d} / d\right)$.

We derive new upper and lower bounds for $s(G)$ and all our bounds are sharp for special types of groups. In particular, we show $s\left(C_{n}^{4}\right) \geq$ $20 n-19$ for all odd n which is sharp if n is a power of 3 . Moreover, we investigate the relationship between extremal sequences and maximal caps in finite geometry.

Joint work with Y. Edel, A. Geroldinger, S. Kubertin, and L. Rackham.

