On the structure of sets with many
 "medium-size" arithmetic progressions

György Elekes
elekes@cs.elte.hu
Department of Computer Science
Eotvos University
Pazmany setany 1/c 3-508
Budapest H-1117
HUNGARY

Abstract

For \mathcal{H} a finite subset of \mathbb{R} and any $3 \leq k \leq|\mathcal{H}|$, we write $$
\mathcal{A} \mathcal{P}(\mathcal{H}, k):=\#\{k \text {-term arithmetic progressions in } \mathcal{H}\}
$$

and study the maximum possible number of k-term AP's that a set of n well-chosen elements can contain, i.e. the quantity

$$
\mathcal{A P}(n, k):=\max _{|\mathcal{H}|=n} \mathcal{A} \mathcal{P}(\mathcal{H}, k) .
$$

The Szemerédi-Trotter theorem implies the upper bound

$$
\mathcal{A P}(n, k) \leq C \cdot \frac{n^{2}}{k}
$$

for an absolute constant $C>0$. Also, this order of magnitude can really be attained, as shown by, say, arithmetic progressions of n terms as \mathcal{H}. Our goal is to answer the following natural question:

What is the structure of \mathcal{H} if $\mathcal{A P}(\mathcal{H}, k)$ attains the (optimal) order of magnitude $|\mathcal{H}|^{2} / k$?

For small, fixed values of k the problem was first studied by Balog and Szemerédi who found that \mathcal{H} must contain a good proportion of a generalized arithmetic progression. (Some related results on the number of copies similar to a given pattern were found by Erdős-Elekes, Laczkovich-Ruzsa and Abrègo-Elekes-Fernandez.) On the other hand, for large values, say $k \geq c n$ (for a fixed positive constant c and large n), \mathcal{H} will by assumption contain a large arithmetic progression.

We completely characterize the structure of \mathcal{H} in case of "intermediate" values of k - which may not exactly coincide with what one may expect.

