Actions of Lie groups and
Lie algebras on manifolds

Morris W. Hirsch
Department of Mathematics
University of California, Berkeley
970 Evans Hall #3840
Berkeley, CA 94720-3840
USA

mwhirsch@chorus.net; hirsch@math.berkeley.edu

Abstract

This talk continues on a theme of Lie and later Mostow: Which Lie groups act effectively on which manifolds?

A C^r action α of a finite dimensional real Lie algebra \mathfrak{g} on an n-dimensional manifold M means a linear map α from \mathfrak{g} to the space of C^r vector fields on M which commutes with brackets if $r \geq 1$. When $r = 0$ it means a local action on M of some Lie group having Lie algebra \mathfrak{g}. When $\dim M = n$ we write $M = M^n$ and call α an n-action.

The Epstein–Thurston Theorem says that if \mathfrak{g} is solvable (respectively, nilpotent) and has an effective n-action then \mathfrak{g} has derived length $\ell(\mathfrak{g}) \leq n + 1$ (resp., $\leq n$). This condition turns out to be far from sufficient for the existence of effective n-actions.

Theorem: For every $n \geq 2$ there is a nilpotent \mathfrak{g} with $\ell(\mathfrak{g}) = 2$ having an effective affine action on \mathbb{R}^{n+1}. But every n-action of \mathfrak{g} annihilates the center.

\mathfrak{g} is nonsupersoluble if some element has a nonreal eigenvalue under the adjoint representation. All nonsolvable Lie algebras (and many solvable ones) have this property.

Generalized Turiel Theorem: Let β be an effective of the direct product of $k \geq 1$ nonsupersoluble algebras on a compact manifold N^{2k}. If β is real analytic then the Euler characteristic of N^{2k} satisfies $\chi(N^{2k}) \geq \#\text{Fix}(\beta) \geq 0$. But this is false for C^∞ actions.

Spectral Rigidity Theorem: Assume $X \in \mathfrak{g}$ and $\text{ad } X$ has n eigenvalues that are linearly independent over the rationals. Let α be an effective analytic action of \mathfrak{g} on M^n and suppose X^α vanishes at $p \in M^n$. Given a neighborhood U of p, there is a neighborhood N of α in the space
of C^1 actions of \mathfrak{g} on M^n, with the following property: If $\beta \in \mathcal{N}$ then X^β vanishes at a unique $q \in U$, and $dX^\beta(q)$ has the same spectrum as $dX^\alpha(p)$.