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ABSTRACT
Motivation: The biologically meaningful algorithmic study
of genome rearrangement should take into account the
distribution of sizes of the rearranged genomic fragments.
In particular, it is important to know the prevalence of short
inversions in order to understand the patterns of gene
order disruption observed in comparative genomics.
Results: We find a large excess of short inversions, es-
pecially those involving a single gene, in comparison with
a random inversion model. This is demonstrated through
comparison of four pairs of bacterial genomes, using a
specially-designed implementation of the Hannenhalli–
Pevzner theory, and validated through experimentation on
pairs of random genomes matched to the real pairs.
Availability: The main routines of the experimental soft-
ware are available through consultation with the authors.
Contact: sankoff@uottawa.ca
Keywords: short inversions, reversals, genome rear-
rangement, genome evolution, comparative genomics,
bacterial genomes, Hannenhalli–Pevzner algorithm,
experimental algorithmics.

INTRODUCTION
The algorithmic study of genome rearrangement models
(Sankoff and El-Mabrouk, 2002) has focused on minimiz-
ing the number of events in an inferred rearrangement his-
tory, without cost differentiation within the set of allowed
operations. One exception is the DERANGE methodology
(Blanchette et al., 1996) for minimizing a weighted sum of
inversions and transpositions. More recently, we proposed
a general method that allows a choice among equally op-
timal solutions (i.e. the same minimal number of opera-
tions), based on any one of many possible secondary cri-
teria (Ajana et al., 2002).

∗To whom correspondence should be addressed.

There is an increasing interest in more detailed study
of the rearrangement events, such as the proportion of
inversions and translocations (Sankoff et al., 1997, 2000),
the position of the operation in the genome (Tillier and
Collins, 2000; Ajana et al., 2002; Samonte and Eichler,
2002), or the size of the chromosomal fragment involved
(Nadeau and Sankoff, 1998; Sankoff et al., 1997). More
specifically, attention has been drawn to the prevalence
and significance of short inversions (Dalevi et al., 2002;
McLysaght et al., 2000; Sankoff, 2002; Mouse Genome
Sequencing Consortium, 1999).

The extensive non-uniqueness represented in optimal re-
constructions, as well as their tendency to be more eco-
nomical than the true history, make it difficult to infer any-
thing definitive about the individual evolutionary events,
especially in cases of substantial genomic divergence. In
this article we present a new approach to the study of short
inversions in particular, taking advantage of a greatly ele-
vated persistence that we demonstrate in their evolution-
ary signal, compared to that of longer inversions. We ap-
ply this to the reconstruction of the evolutionary diver-
gence between relatively closely-related pairs of bacterial
genomes, and discover an unexpectedly high number of
single-gene inversions.

We adapt the method and software of Ajana et al.
(2002), and show how to explore the space of optimal
reconstructed histories, to detect recurrent patterns among
the numerous alternate optima, to determine the conditions
under which the algorithm reconstructs the true history,
and to demonstrate the validity of the results via constructs
with matched simulated inversion histories.

We then discuss the competing possibilities that the
single inversions represent a particular evolutionary
mechanism with selective functional consequences,
that they are the clearest manifestation of a universal
tendency toward short inversions as the least disruptive
of the gene proximity configuration of a genome, or that
they are simply an artifact of incorrect identification of
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orthologues prior to genome comparison. In the latter
case, this methodology becomes a powerful tool for the
identification of orthologues by means of gene order
considerations, as advocated, for example, in Sankoff
(1999).

REARRANGEMENT HISTORY VIA SAFE
INVERSIONS
Given two genomes G = (1, . . . , n), H = (h1, . . . , hn)

where† H = E × �G for some permutation � of G,
and E is some n-vector of 1’s and -1’s, the Hannenhalli-
Pevzner (HP) algorithm (Hannenhalli and Pevzner, 1995)
computes the minimal number of inversions‡ required to
transform G to H , and outputs one minimal sequence of
inversions.

The HP algorithm is based on a bicoloured graph
defined as follows. Replace gene xi in G by the pair xt

i xh
i ,

and similarly in H , except that if Ei = −1, then the −xi is
replaced by xh

i x t
i . The vertices of the graph are just the xt

i
and the xh

i . The adjacent vertices in G, other than xt
i and

xh
i from the same xi , are connected by a red edge, and any

two adjacent in H , by a blue edge. The key concept is the
decomposition of this graph into disjoint color-alternating
cycles, and into oriented and unoriented components
(for this and other details about the breakpoint graph and
the HP algorithm, see Setubal and Meidanis (1997)).

The problem of minimizing the number of inversions
can be reduced to the one of increasing the number of
cycles as fast as possible. As an inversion can increase
by at most one the number of cycles of a graph (a good
inversion), the problem is to perform as many good in-
versions as possible. A safe inversion is a good inversion
that does not create any new unoriented component. HP
proved that an oriented component can be transformed to a
set of cycles of size 1 (one red edge and one blue edge) by
a sequence of safe inversions. As for unoriented compo-
nents, some of them can still be solved by safe inversions,
whereas others, called hurdles, cannot.

For a graph with only oriented components, a sequence
of inversions is thus a minimal solution if and only if
it contains exclusively safe inversions. In this case, the
problem of generating all minimal solutions reduces to the
problem of generating all the safe inversions at each step
of the sorting procedure. The bottleneck of the HP theory
is to generate safe inversions. Different methods have been
developed (Hannenhalli and Pevzner, 1995; Berman and
Hannenhalli, 1996; Kaplan et al., 1999; Bergeron, 2001;
Ajana et al., 2002) that output one or few safe inversions
at each step of the HP algorithm, the most efficient one
being of linear time complexity (Kaplan et al., 1999).

† The × symbol indicates component-wise multiplication
‡ An inversion transforms (i1, . . . , in) to (i1, . . . , −i j , −i j−1, . . . , −ih+1,

−ih , . . . , in) for some 1 ≤ h ≤ j ≤ n.

However, there is yet no efficient method to characterize
the whole set of safe inversions. In our method, the total
time required to find all safe inversions at each step of the
HP procedure is in O(n3).

If, on the other hand, the graph contains hurdles, these
have to be transformed into oriented components. This
is done by inversions that merge and cut hurdles in a
particular way, described in the HP procedure for clearing
hurdles (Hannenhalli and Pevzner, 1995). This procedure
allows some flexibility in choosing which hurdles should
be treated first, and how. To find all possible sequences
of inversions transforming genome G into H , all ways
of clearing hurdles must be considered (Siepel, 2002). In
this worst case, this could be prohibitive. However, there
may be reasonable constraints on the inversions to be
considered. In this paper, for example, we are interested
in finding the shortest inversions, which dramatically cuts
down on the effort required to clear the hurdles. Moreover,
in real genomes and even in systematic simulations,
hurdles are almost never encountered.

Our algorithm has two major steps:

1. If the graph contains hurdles, perform a set of
inversions clearing the hurdles.

2. Solve each oriented component independently, by
choosing safe inversions.

The versatility of this method lies in the many possible
strategies for carrying out the second step. For example, if
there is a criterion for weighting inversions, we can find a
solution of minimal cost.

If we have no particular weighting scheme, we might
wish to search for inversions or kinds of inversion that
recur in all or most solutions, as in the next section.
For this, a set of minimal solutions can be obtained by
selecting, at random, one possible safe inversion at each
step of the HP procedure. Running the algorithm several
times gives rise to several possible solutions. We can then
tabulate how many times particular inversions recur in the
set of solutions.

Finally, as in the section dedicated to short inversions,
we may be motivated to favor inversions of a given size.

PAIRS OF BACTERIAL GENOMES
We chose four pairs of related bacterial genomes with
a range of gene sequence and gene order divergence.
The protein sequences were obtained from NCBI
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ for the following
genomes: Chlamydia trachomatis (NC 000117) and
Chlamydophila pneumoniae AR39 (NC 002179), Bacillus
halodurans (NC 002570) and Bacillus subtilis (NC
000964), Escherichia coli K12 (NC 000913 and Vibrio
cholerae chromosome I (NC 002505), Streptococcus
pyogenes MGAS8232 (NC 003485) and Staphylococcus
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Fig. 1. Frequency (vertical axis) of inversion sizes (horizontal axis) inferred in comparisons of bacterial genomes. The solid line indicates the
result of analyzing real genomes, the dotted line the genomes generated by randomly-placed inversions (reversals) of random size. For each
pairwise comparison, the number of inversions (reversal distance, RD) and the length of the genomes (total genes as counted in both genomes
and genes in common) are given. The left-hand diagrams focuses on small inversions, the right one the whole range. Results averaged over
ten runs of the algorithm.
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Fig. 2. Frequency (vertical axis) of inversion sizes (horizontal
axis) inferred by the algorithm for random genomes obtained by
performing i inversions of size l = 50. The figure on the top is for
i = 80 and the bottom one is for i = 200.

aureus subsp.aureus Mu50 (NC 002758). Orthologous
gene pairs were identified as respective significant
E < 0.01 best hits in all-by-all FASTA analysis.

In comparing genomes by rearrangement distances, the
two genomes must first be reduced by removing all genes
that are not in common. In calculating inversion lengths,
however, we restore the genes previously removed from
G, i.e. only one of the genomes. This introduces some
arbitrary asymmetry into the comparison, but has no
statistical effect in this study.

Applying our algorithm to the four pairs of bacterial
genomes, repeating each comparison ten times with dif-
ferent random choices of safe inversion, we arrive at the
distribution of inversion sizes summarized in Figure 1.

To control for possible biases in our algorithm, we also
show in Figure 1 the analogous results based on simulated
pairs of genomes, generated by inversions of random
size, positioned randomly along the genome length. The
number of inversions were chosen to give approximately
the same number of inferred inversions as in the real
genome pair.

We note that in three of the four comparisons, there
is a distinct surfeit of short inversions in the pairs of
real genomes, particularly of inversions of single genes.
From simple probabilistic arguments, we can predict about

Fig. 3. The solid line corresponds to the plots for s, and the dotted
line to the plots for r (see text above).

one single-gene inversion per genome comparison, if
the genomes are randomly permuted, though this is not
entirely the case here. Note as well the apparently uniform
distribution of inversion length, as can be predicted for
random genomes.

DECAY OF EVOLUTIONARY SIGNAL AS A
FUNCTION OF INVERSION SIZE
We may ask to what extent the optimal reconstructed
histories actually reflect the true evolutionary history. It
is well-known that past a threshold of θn, where n is
the number of genes and θ is in the range of 1

3 to 2
3 , the

number of operations begins to be underestimated by edit
operation-based inferences. Whether any signal is con-
served as to the actual individual operations themselves,
and which ones, is a different question.

We carried out the following test: For a genome of
size n = 1000, we generated i inversions of size
l = 5, 10, 15, 20, 50, 100, 200 at random, and then
reconstructed the optimal inversion history, for a range of
values of i . Typically, for small enough values of i , the
algorithm reconstructs the true inversion history, although
inversions that do not overlap may be reconstructed in any
order. There are other sources of non-uniqueness that do
not obscure the i generating inversions, either. Depending
on l, however, above a certain value of i , the reconstructed
inversions manifest a range of sizes, as illustrated in
Figure 2, reflecting the decay of the ‘evolutionary’ signal.

For each l, we calculated

rl = min{i |reconstruction has at least 5% error}
and

sl = max{i |reconstruction has at most 95% error},
where any inversion having length different from l is con-
sidered to be an error. Figure 3 plots r and s as a function

i193



J.F.Lefebvre et al.

of l and shows how quickly the detailed evolutionary sig-
nal decays for large inversions. Nevertheless, we note that
for very small inversions, there is a clear signal preserved
long after longer ones have been completely obscured, at
least in this experimental context.

IMPOSING A BIAS TOWARDS SHORT
INVERSIONS
The possibility of more accurately reconstructing small in-
versions suggests that we learn something by incorporat-
ing a bias in our algorithm towards the choice of small
inversions. We may thus over-estimate the frequency of
such inversions, but this can be controlled by using the
same technique on pairs of randomly generated genomes
differing by the same number of inversions. The results are
shown in Figure 4. Note that the forced choice of smallest
inversion removes most of the non-uniqueness of the solu-
tion, so that multiple runs do not add any information.

Figure 4 shows that the discrepancy between the real
data and the simulated genomes becomes much clearer
under the shortest inversion regime, and shows up even
in the Staphylococcus-Streptococcus comparison.

The fact that random comparisons, despite the bias
away from long inversions, do not show any appreciable
increase in inversions of size 1, or short inversions (l <

20) in general§, whereas the comparisons of real genomes
do, suggests that the additional single-gene and other short
inversions we have picked up through the introduction of
the bias in our algorithm do in general reflect genuine
events.

INFERRED VERSUS ‘OBSERVED’
INVERSIONS
Some inversions are predictable through examination of
the two genomes: if · · · abcde · · · appears in one genome
and · · · ab -cde · · · in the other, then no analysis is
necessary to show that there has been a single-gene
inversion. Table 1 contains an analysis of the contexts
of the genes inferred to have occurred in single-gene
inversions.

In the case of inversions that are not immediately evident
by direct comparison of the two genomes, there are at least
two kinds of explanation.

One possibility is that they represent genes that are not
only inverted, but also moved by some other mechanism
(called transposition or translocation) to completely dif-
ferent contexts in at least one of the two genomes. Since
our algorithm uses inversions only, to invert and move a
gene to a new position without disrupting its original con-
text requires two inversions, the first to move the gene (and
one side of its context) to the new position, and the second

§ with the exception of the relatively highly scrambled Staphylococcus-
Streptococcus comparison

Table 1. Genomic context of genes undergoing single-gene inversions

Genomes single-gene b -c d b I -c I d u -c v u I -c I v

inversions

C.p - C.t 21 14 4 1 2
B.h - B.s 29 8 4 7 10
V.c - E.c 29 8 8 6 7
S.a - S.p 25 2 4 12 7

The inverted gene is denoted by c. The context b -c d indicates that c has
changed sign from G to H but retains at least one immediate neighbour.
The context u -c v indicates that c is not adjacent to any of the same genes
in G and H . I indicates genes present in G but not in H

to restore the the original context, minus the gene in ques-
tion. To the extent that this explanation is valid, it does not
detract from our discovery of high rates of single-gene in-
version. That single genes are so frequently displaced from
their transcriptional context is the biologically interesting
aspect of the rearrangement phenomenon we are studying.

The second possibility is that some of the genes that
must be inverted in transforming G to H may have
been identified as orthologues erroneously. It would not
require a high rate of error to produce an artifactual result
of this magnitude. While this possibility merits further
examination on a gene-by-gene basis, it could account
for only a fraction of the inversions we identified. First,
it is only applicable to genes in the last two columns
of Table 1. Second, of all the 104 single-gene inversions
we studied, only 14 cases had a secondary hit in the
FASTA identification of orthologs with sequence identity
within 5% of that for the best hit, of which only 10 cases
were in the last two columns of Table 1. Thus at worst,
as many as 10% of the apparent inversions were due to
potentially mistaken ortholog identification. Finally, the
results in the previous section show that the excess of
single-gene inversions is but the extreme case of a general
tendency towards shorter inversions in the comparison of
real genomes.

CONCLUSIONS
The single-gene inversions may represent a particular
evolutionary mechanism with selective functional conse-
quences. They may allow a gene to obtain transcriptional
independence from its erstwhile operon, to take advantage
of new or altered functionality, or to participate in a
different pathway through a more appropriate genomic
positioning.

Alternatively, single-gene inversions may simply
be the clearest manifestation of a universal tendency
towards short inversions as the least disruptive of the
gene proximity configuration, and attendant functionality,
of a genome. In Sankoff (2002), we argued that a pre-
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Fig. 4. Results from the same analysis as in Figure 1, but where at each step of the algorithm, the shortest safe inversion is chosen.

disposition for such inversions in small genomes might
explain the prevalence of ‘gene clusters’ found across
many sequenced genomes in microorganisms, in contrast
to the shuffled ‘conserved segments’ pattern characteristic
of the higher eukaryotes.

Finally, some apparent single-gene inversions may be
artifacts of incorrect identification of orthologues prior to
genome comparison. In this case, our methodology be-
comes a powerful tool for the identification of orthologues
by means of gene order considerations, as advocated, for
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example, in Sankoff (1999). Gene-by-gene study is under-
way to investigate this question.
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