Prediction and identification of secondary structures

Nadia El-Mabrouk

University of Montreal, Canada

1

Introduction

Challenge: Decode and interpret data of complete genomes.
Essential to develop algorithmic tools.

For linear genetic sequences \longrightarrow BLAST, FASTA

RNA fundamental for the cell function. Function determined by secondary and tertiary structure

Problematics:

1. What is the structure of a given genetic element?
2. How to identify a gene characterized by its structure?

Plan

1. Introduction to RNAs
2. Secondary structure prediction

- Energy minimization;
- General dynamic algorithm;
- Ignoring multiple loops;

3. Secondary structure identification

- Approximate matching of context free grammar;
- Approximate matching of secondary expression by pushdown automata

```
I.Introduction / RNAs
```

- Ribosomal RNAs (rRNA)
- Small nuclear RNAs (snRNA);
- Messenger RNAs (mRNA);
- Transfert RNAs (tRNA);
- RNA component of ribonuclease P (RNase P RNA);

Primary structure

A sequence of 4 ribonucleic acids: A,C,G,U. In DNA, U is T.
GCGUGGGUGAUCUAGUGGUUAUGAUGUCUGCUUUACACGCAGAACGUCGCGGGUUCGAA...

4

07/22/

Watson-Crick base pairs: $G-C, A-U$
Wobble base pair: $G-U$

Secondary structure - Definition

1. Pairings: Watson-Crick, Wobble
2. No overlap of pairs: Each base paired with at most one base
3. No sharp turns: at least 3 bases in a loop
$\begin{array}{cccccc} & \text { U } & \text { G } & \text { C } & \text { C } & \text { C } \\ & \text { I } & \text { | } \\ \text { U } & \text { A } & \text { C } & \text { G } & \text { G } & \text { G }\end{array}$
C U
${ }^{\text {A }}$
U U
4. No pseudoknots
u v u' v'

7

Homologous RNAs have common secondary structure BUT no significant sequence similarity

Region III of mitochondrial 5S RNAs:

8

II. RNA structure prediction

One sequence \longrightarrow Many possible foldings

- Multiple alignments: Identify covarying residues (Woese \mathcal{E}

Pace, 1993)

- Stable structure $=$ Structure minimizing the free energy

Energy minimization

Prevalent method: Dymanic programming

Sankoff 1976; Nussinov 1978; Waterman 1978; Zuker \mathcal{G} Steigler 1981; Zuker 8 Sankoff 1984; Sankoff 1985
$O\left(N^{3}\right)$ time; $O\left(N^{2}\right)$ space

ViennaRNA software, Schuster et. al., 1994
MFOLD software, Zuker \mathfrak{E} al., 1989

A structure S, loops and stacked pairs $s_{1}, s_{2}, \cdots s_{t}$.

Tinoco-Uhlenbeck hypothesis:

$$
E(S)=e\left(s_{1}\right)+e\left(s_{2}\right)+\cdots e\left(s_{t}\right)
$$

$e\left(s_{i}\right)$ experimentaly estimated. Depends on the cycle type.

General dynamic programming algorithm

s : multiple loop from i to j.

$$
E\left(S_{i j}\right)=\left\{\begin{aligned}
\sum_{h=1}^{k-1} E\left(S_{p_{h}, q_{h}}\right) & \text { if }[i, j] \text { is not closed } \\
e(s)+\sum_{h=1}^{k-1} E\left(S_{p_{h}, q_{h}}\right) & \text { if }[i, j] \text { is closed }
\end{aligned}\right.
$$

Key observation: S is optimal if any sub-structure of S is optimal.
$E(i, j)$: Optimal folding of $[i, j]$. Find $E(1, n)$

$$
\begin{aligned}
& E(i, j)=\min \begin{cases}0 & (j-i<4) \\
C(i, j) & (\text { optimal structure with }(i, j) \text { closed }) \\
\min _{i \leq h \leq j}[E(i, h)+E(h+1, j)]\end{cases} \\
& C(i, j)=\min _{k \geq 1} \min _{\substack{s: k-c y c l e \\
\text { fromito } j}}\left[e(s)+\sum_{\left(p_{h}, q_{h}\right)} C\left(p_{h}, q_{h}\right)\right]
\end{aligned}
$$

Basic algorithm

Square array, each cell (i, j) containing $F(i, j)$ and $C(i, j)$

Calculate each diagonal; Begin by the main diagonal
Keep pointers to retrace optimal structures
Complexity: Each cell $(j-i)^{2 k} \Longrightarrow n^{2 k}$

Ignoring multiple loops

s multiple loop $\longrightarrow e(s)=0$

Experimental evaluation of $e(s)$ for simple loops and stacked pairs

$$
\begin{aligned}
& \begin{array}{c|ccc}
\begin{array}{l}
4 \text { nt loop } \\
+5.9
\end{array} & \mathrm{U} & \mathrm{U} \\
\mathrm{~A} & \mathrm{C} \quad \mathrm{t} \\
\mathrm{G}-\mathrm{C}
\end{array} \\
& \begin{array}{c}
\begin{array}{c}
1 \text { nt bulge } \\
+3.3
\end{array} \mathrm{~A}-\mathrm{C} \longrightarrow \text { stack }-2.9 \\
\end{array} \\
& \mathrm{U}-\mathrm{A} \longrightarrow \text { stack }-1.8 \\
& \mathrm{~A}-\mathrm{U} \longrightarrow \text { stack }-0.9
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5' dangle-0.3 } \frac{\mathrm{A}}{} \mathrm{~A}-\mathrm{U} \longrightarrow \text { stack }-2.1 \\
& \text { External region } 0.0 \underset{A}{-} \text { A } \quad{ }_{3} \text {, } \\
& \text { 5, Overall } \Delta \mathrm{G}=-4.6 \mathrm{kcal} / \mathrm{mol}
\end{aligned}
$$

Freir rules (1986) at $37^{\circ} \mathrm{C}$. Example from Durbin, Eddy et. al. book.

$$
E\left(S_{i, j}\right)=\min \left\{\begin{array}{l}
E\left(S_{i+1, j}\right) \\
E\left(S_{i, j-1}\right) \\
\min _{i<k<j}\left\{E\left(S_{i, k}\right)+E\left(S_{k+1}, j\right)\right\} \\
E\left(L_{i, j}\right)
\end{array}\right.
$$

$$
\begin{array}{cc}
E\left(S_{i, j}\right): & \alpha(i, j)+\xi(j-i-1) \\
\quad \text { loop } \\
\alpha(i, j)+\mu+E\left(S_{i+1, j-1}\right) & \text { helical region } \\
\min _{k \geq 1}\left\{\alpha(i, j)+\beta(k)+E\left(S_{i+k+1, j-1}\right)\right\} \quad \text { bulge at } i \\
\min _{k \geq 1}\left\{\alpha(i, j)+\beta(k)+E\left(S_{i+1, j-k-1}\right)\right\} & \text { bulge at } j \\
\min _{k_{1}, k_{2} \geq 1}\left\{\alpha(i, j)+\gamma\left(k_{1}+k_{2}\right)+E\left(S_{i+1+k_{1}, j-1-k_{2}}\right)\right\} \quad \text { internal loop } \\
\min _{i+1<k<j-2}\{E(i+1, k)+E(k+1, j-1)\} \quad \text { multiple loop }
\end{array}
$$

Basic algorithm
Square array, each cell (i, j) containing $E\left(S_{i, j}\right)$

i		$j-1$	$j-2$
$i+1$		μ	β
$i+2$		β	γ

Complexity:

- Loop or helical region: Constant time for each $(i, j) \Longrightarrow O\left(n^{2}\right)$
- Bulge: $O(n)$ for each $(i, j) \Longrightarrow O\left(n^{3}\right)$
- Internal loop: $O\left(n^{2}\right)$ for each $(i, j) \Longrightarrow O\left(n^{4}\right)$

III. Secondary structure identification

Input: A characterization of the secondary structure of an RNA
family.
Goal: Identify such RNAs in a genome.

Use weights, scores or number of errors.

Characterization of an RNA structure

A possible characterization of a tRNA:

Tailor-made:

- FAStRNA for tRNAs (N. El-Mabrouk and F. Lisacek, 1996),
- CITRON for group I introns (F. Lisacek and Y. Diaz and F. Michel, 1994),
- SNOSCAN for snoRNAs (T. Lowe and S. Eddy, 1999),

General:

- RNAMOTIF (T. Macke et al., 2001),
- SCFG-based RNA models (S. Eddy and R. Durbin, 1994, Sakakibara et al. 1994)
- BioSmatch (N. El-Mabrouk and M. Raffinot, 2003)

A genome T
A secondary structure S
\longrightarrow all positions in T corresponding to occurrences of S, with at most k errors, or with a minimum score

T: CACCUCAGGAAU CUCGCTGGGATAC NG* ${ }^{*}$ NA ${ }^{*}$ CCUCN
I. Approximate matching of a context-free grammar

$$
\begin{aligned}
S & \rightarrow A W_{1} U\left|C W_{1} G\right| G W_{1} C \mid U W_{1} A \\
W_{1} & \rightarrow G W_{2} C \\
W_{2} & \rightarrow A W_{3} U \\
W_{3} & \rightarrow A A C C|C A C C| G A C C \mid U A C C
\end{aligned}
$$

S, W_{1}, W_{2}, W_{3} : non-terminals
A, C, G, T : terminals

Parse Tree

$$
\begin{aligned}
S & \rightarrow A W_{1} U\left|C W_{1} G\right| G W_{1} C \mid U W_{1} A \\
W_{1} & \rightarrow G W_{2} C \\
W_{2} & \rightarrow A W_{3} U \\
W_{3} & \rightarrow A A C C|C A C C| G A C C \mid U A C C
\end{aligned}
$$

Restriction of G. Myers 1995 to acyclic grammars of form:

$$
X \rightarrow a Y \bar{a}, \quad X \rightarrow a Y, \quad X \rightarrow Y a, \quad X \rightarrow a
$$

Goal: Given a DNA sequence, find an alignment of the grammar with maximum score.

- $\delta(a, b)$: Score of aligning a with b
- $\delta(a)$: Score of deleting or inserting a
- $\rho(a)$: Score of a correct pairing $(a \bullet \bar{a})$

Dynamic programming algorithm

A matrix $M_{k} n \times n$ for each non-terminal X_{k}
$\left(M_{k}\right)_{i, j}:$ Max score of an alignment of X_{k} with $[i, j]$. Find $\left(M_{S}\right)_{1, n}$.
Example: $X_{k} \rightarrow a X_{h}$
$\left(M_{k}\right)_{i, j}$: Max over all X_{h} of three values

Complexity: $s n^{2}, s$ number of non-terminals.
II. Secondary expression
N. El-Mabrouk and M. Raffinot, 2003

Network expression

1. Any character (A, C, G, T),
2. $E_{1} \mid E_{2}$ and $E_{1} E_{2}$

$$
(A \mid C)(A \mid G) \longrightarrow\{A A, A G, C A, C G\}
$$

Complement $($ of $E): \bar{A}=T, \bar{T}=A, \bar{C}=G$ and $\bar{G}=C$,

$(A \mid G) G A \longrightarrow U C(T \mid C)$

Secondary expression (of E)

1. E network expression $\rightarrow S=(E, p)$ is a secondary expression,
2. $E_{1}, E_{2}, E_{3} \rightarrow$

$$
S=\left(E_{1}, p\right)\left(E_{2}, s l\right) S^{\prime}\left(\overline{E_{2}}, s r\right)\left(E_{3}, p\right) \text { is a secondary expression. }
$$

Group II intron's domain V:

$$
\begin{gathered}
1 \\
R A
\end{gathered} 4^{2}
$$

Thompson construction (1968)

Black states: ε labeled states

$$
E_{1}=((A C) \mid G)(A \mid C) \longrightarrow\{A C A, A C C, G A, G C\}
$$

$$
S=\left(E_{1}, s l\right)\left(E_{2}, p\right)\left(\overline{E_{1}}, s r\right), \text { with } E_{1}=((A C) \mid G)(A \mid C), E_{2}=U
$$

$$
E=E_{1} E_{2} \overline{E_{1}}
$$

Non-deterministic, state-labeled pushdown automaton ε-NFPA:
$\mathcal{A}=<N, \Gamma, V, E, \lambda, \gamma, \theta, \phi, I>$,

1. an input alphabet $N=\{A, C, G, T\}$
2. a stack alphabet Γ : all possible marks
3. a set V of vertices called states
4. a set E of directed edges between states
5. a fonction λ assigning a label in $N \cup\{\varepsilon\}$ to each state
6. a transition function γ

Our Pushdown automaton transition rules (1)

Notation:

a should be equal to $\lambda(s)$.
$T r_{1}$ If s is a p-state or an unmarked state, $\gamma(t, \lambda(s), Z)=(s, Z)$

Our Pushdown automaton transition rules (2)
$T r_{2}$ If s is a marked $s l$-state, $\gamma(t, \lambda(s), Z)=(s, m Z)$

$T r_{3}$ If s is an $s r$-state such that $m=Z, \gamma(t, \lambda(s), Z)=(s, \varepsilon)$

Alignment graph 1
Alignment of a network exp. E with a text T. Weighted directed graph: $n+1$ copies of the automaton recognizing E.

Best alignment of E with $T \rightarrow$ least cost path

Alignment graph 2
$S=\{(A \mid C), s l\}\{T, p\}\{(T \mid G), s r\}$, reading AT.
At most $k=1$ error.
Blue stacks for $k=1$; Green stacks for $k=0$.

A binary tree for each error level
Node P: integer P.val, (P.left, P.right).

- INSERT $(P$, num $)$, new node;
- REMOVE (P) removes the top element.
- COMBINE $\left(P_{1}, P_{2}\right)$, new node P.val $=0$, P.left $=P_{1}$ and P.right $=P_{2}$.
- MERGE $\left(P_{1}, P_{2}\right)$ recursively merges the two trees.

37

Complexity

n : Text, p : Secondary expression E, r : Number of OR "" in E.

INSERT, REMOVE, COMBINE are $O(1)$, and MERGE is $O(r)$ in the worst case

\longrightarrow Upgrading one tree is $O(r)$.
For each node, at most $k+1$ trees $\longrightarrow O(k r)$.
$O(p n)$ nodes in the alignment graph
Final complexity: $O(k r p n)$

Definition: A pseudo-knot is an expression of the form $S_{l}^{1} S_{l}^{2} S_{r}^{1} S_{r}^{2}$, where S^{1} and S^{2} are two secondary expressions.

Two blocks of stacks: one for $S_{l}^{1} S_{r}^{1}$, and one for , $S_{l}^{2} S_{r}^{2}$

At a node (i, s), if s belongs to $S_{l}^{1} S_{r}^{1}$, update the block of $S_{l}^{1} S_{r}^{1}$ only; otherwise update the block of $S_{l}^{2} S_{r}^{2}$ only

Extension 2: Generalized secondary expressions

Each helix has its own left and right strand in the automaton representing a GSE.

Conclusion

Approximate matching of secondary expressions:

- Worst-time complexity: $O(k r p n)$
- Extendable to pseudo-knots and multi-loops structures.

Approximate matching of a context free grammar:

- Worst-time complexity $O(\operatorname{sln})$
- Not extendable to pseudo-knots

Practical problems:

- Stack management is practically time-costly
- Big variable loop

