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What is DNA ?

Polynucleotide :
polymer (ie, chain) of [deoxyribo-]nucleotides

b1 b2 b3 bN
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Nucleotides

sugar

phosphate
group base

4 bases :
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Base pairing

hydrogen bonds between A-T and G-C

DNA is formed by two polynucleotide strands
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CRM Summer School, 2003 DNA sequence assembly 4



Watson et Crick : double helix
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Genome

nuclear genome : in cell nucleus, arranged in chromosomes : every chro-
mosome contains one DNA molecule

humans : 22 diploid chromosomes (1–22) +2 sex chromosomes (X and Y)
sizes between 50 and 250 million base pairs, total length 3 · 109 bp
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The Problem

the longest piece of DNA we can determine the sequence of : cca. 1000
nucleotides (600 is more typical) — put together the whole HG from these
short sequences

puzzle :

size of the HG : 3000 characters per page : book of a million pages (cca 6
cm per 1000 pages : 60 m)

pieces of 9–10 lines

⇒ It is impossible.

The End.
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Completion of the human genome

draft : June 2000

For Immediate Release June 25, 2000

PRESIDENT CLINTON ANNOUNCES THE COMPLETION OF THE FIRST
SURVEY OF THE ENTIRE HUMAN GENOME

Hails Public and Private Efforts Leading to This Historic Achievement

Today, we are learning the language in which God created life. We are gaining
ever more awe for the complexity, the beauty, the wonder of God’s most divine
and sacred gift.

finished : April 2003 (no press conf at White House)
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How to do it

algorithms and biotechnology
: boundaries between often become blurred
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CRM Summer School, 2003 DNA sequence assembly 9



Outline

- technologies : restriction enzymes, PCR, cloning, shotgun sequencing

- hierarchical and whole-genome shotgun approaches

- physical maps : fingerprints and STS

- assembly : overlap-layout-consensus

- SBH and Euler-path assembly

- pooling
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Playing with strands

– double → single : break the hydrogen bonds [eg, heat]
– single → double :

1. hybridization attaching 2 complementary ssDNA
2. enzymes (polymerase) to complement a ssDNA template
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How to cut DNA into smaller pieces

1. randomly (eg, sonication)

2. less randomly : restriction enzymes— cut DNA at a specific site

Name Site
AluI AG.CT
EcoRI G.AATTC
HindIII A.AGCTT
hundreds more . . .
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Restriction enzymes

RE site is often a palindrome (“Eva, can I stack cats in a cave ?”)

— its inverse complement is the same

----->

5’ GAATTC

CTTAAG 3’

<-----

sticky ends when cut is not in the middle
⇒ different pieces hybridize
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Cloning

Idea :
1. fragments after cutting with RE
2. insert in a vector of a host (bacterium or virus)
3. let them grow

vectors : plasmids, phages ; BAC (Bacterial Artificial Chromosome), . . .

Miklós Csűrös
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Cloning : animation
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Polymerase Chain Reaction

another method of copying DNA
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Chain termination sequencing

(aka Sanger sequencing) for fragments between about 50 and 1000 (typi-
cally 600) bp
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Electrophoresis

measures the size of a DNA fragment
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Electrophoresis in sequencing

http ://www.megabace.com/
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Sequencing a genome

hierarchical (clone-by-clone) method

genome copies vector inserts clone library

150 kbp

chromosome

clone physical mapshotgun library

acgtttc
ttcaagg

aggaacc
ccttgg

ACGTTTCAAGGAACC

sequence assembly

500 bp
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Sequencing a genome

Clone-by-clone Whole-genome shotgun

E. Green. Nature Reviews Genetics 2:573 (2001)
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Sequencing a BAC clone

BAC insert length : around 150 thousand bp
(around 50 pages in the book)

random shotgun sequences from the BAC :
put them together based on overlaps

s1: AATGCC

s2: GCCTTACAC

s3: ACACTG

s4: CTGAAGG

---------------------

B : AATGCCTTACACTGAAGG
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Shortest superstring

Def. T of length |T | = m is a substring of S iff for some j,

T [1] = S[j], T [2] = S[j + 1], . . . , T [m] = S[j + m− 1].

Shortest Supersting Problem (SSP) :
Given sequences F = {s1, s2, . . . , sn}, find the shortest string S such
that every si is a substring of S.

SSP is NP-hard, and even APX-hard.

Greedy algorithm is at most 3 (2 ?) optimal
Best [provable] algorithm is at most 2.5 times optimal
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How many sequences are needed ?

number of fragments : n

length of each fragment : `

length of BAC : L

coverage : c = n`/L

minimum overlap for joining fragments : θ` where 0 < θ < 1
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Terminology

BAC of length L

island gap
observed
island

observed 
island

fragment

contig 1

contig 2

contig 3
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Coverage model — cont.

Thm. The probability that a particular position in the BAC is covered by at
least one fragment is cca. (1− e−c).

Proof. Probability that a fixed fragment covers the position : `/(L−`+1) ≈
`/L

Probability that none of them does :
(
1− `

L

)n
.

Approximation : (1− a/x)x ≈ e−a.
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CRM Summer School, 2003 DNA sequence assembly 26



Model — cont.

Thm. The number of gaps is cca. ne−c(1−θ) = `
Lce−c(1−θ).

Proof. Probability that a fixed fragment is the rightmost fragment of an
observed island :

p =
(
1−

(1− θ)`

L

)n−1
.

+approximation as before
Expected number of gaps= np.
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Model — cont.

Position of fragments defined by their right-hand end on BAC : random
variables X1, X2, . . . , Xn.

Set h == 1− θ.

Let’s fix a fragment (X1). What is the position Y1 of the first fragment after
X1 ? Probability that Y1 > X1 + h` equals

J(h) =
(
1−

h`

L

)n−1
≈

(
1−

ch

n

)n
≈ e−ch.
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Model — cont.

Thm. The number of fragments in an observed island is cca. ec(1−θ).

Proof. Let M be the number of fragments in the island.
Consider the first fragment in the island. Probability that the island is a
singleton (M = 1) : p1 = J(1− θ).

Probability that M = k : pk =
(
1− J(1− θ)

)k−1
J(1− θ) — geometric

distribution. Expectation of M is 1/J(1− θ).

Modelization by Poisson process.
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Model — cont.

62 4
c

0.6

0.4

0.2

0.8

10% overlap

25% overlap

50% overlap

number of gaps

typical coverages : 5 (“half shotgun”) 10 (“full shotgun”)
for ` = 500, L = 150000, n = 1500 or n = 3000.
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Physical maps

Given a random BAC library, select a minimal overlapping set for complete
sequencing.

15-fold coverage for human genome ≈ 300 thousand clones.

How can you do the selection without sequencing each BAC ?
⇒ physical mapping : BAC overlaps detected based on shared features

features :
1. restriction maps : fingerprint consisting of fragment sizes after digestion
with a restriction enzyme

2. STS maps : containing specific substrings : Sequence Tagged Site
(verified through hybridization)
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Physical maps

Map characteristics (in increasing order of difficulty)

1. clone ordering by physical locations

2. clone coordinates (in base pairs)

3. links to chromosome locations

STS map : clones can be linked to chromosome locations
(STS can be located on the chromosome, eg by FISH : fluorescent in-situ
hybridization)

Miklós Csűrös
CRM Summer School, 2003 DNA sequence assembly 32



A resolved map
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CRM Summer School, 2003 DNA sequence assembly 33



STS map

Probes P = {p1, p2, · · · , pn},
clones C = {c1, . . . , cm}

Hybridization matrix : binary matrix M of size m×n such that M[i, j] = 1

iff clone ci hybridizes with probe pj.
(Ie, clone ci contains the substring corresponding to pj.)

Problem : find correct permutation for the clones and probes.
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STS map — no errors

The correct row and column permutation of M corresponds to a matrix with
the consecutive ones property.

Consecutive ones [in a row] : for every row i there exists a, b such that
M[i, j] = 1 iff a ≤ j ≤ b.

Why ?

Permutaion found in linear time (PQ-tree).
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STS map — errors

Hybridization errors in the matrix. Best permutation minimizes the number
of implied errors.

Traveling salesman formulation (for ordering the rows) :
vertices u, v1, . . . , vm, where vi corresponds to row i.

Weighted edges : edge weight between vi and vi′ equals the number of
columnes in which they differ ;
edge weight between u and vi equals the number of “1” entries in row i.

Now a Hamiltonian path with smallest weight (Traveling salesman) gives
the best ordering :
it minimizes the number of gaps within rows.

Why ?
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STS map — errors

Maximum likelihood formulation : probabilistic model with
- model for probe locations (Poisson process)
- probability of false negatives (missed hybridization)
- probability of false positives (false hybridization)

Probability for a given permutation and clone placement.

Find best permutation and clone placement that minimizes the likelihood.

(Not very easy but works well.)
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Pooling

Combinatorial group testing : 1940s

Wasserman-test for n = k2 individuals, at most one of them is infected.

Arrange the blood samples in a k × k matrix, test samples in rows and
columns together.

Positive in row i and column j ⇒ the sample in cell [i, j] is positive.

→ 2
√

n tests instead of n.

(Minimum number of tests : dlog2 ne)
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Pooling 2

Testing a clone (or set of clones) : array probes and pool them by rows and
columns. If clone hybridizes with row i and column j, then it contains the
substring for probe in cell [i, j].

C1 C2
R1 B11 B12
R2 B21 B22

if hits from R1, R2, C1, and C2 : B11 and B22 or B12 and B21 ?
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Transversal design

Let q be a prime. A transversal design for q2 elements is the following :

Number the items as Ba,b : a, b = 0, . . . , q − 1.
Define pools Px,y : x, y = 0, . . . , q − 1.

Pool Px,y contains Ba,b iff y ≡ a + bx (mod q) holds.

For an array layout : define pool sets Pi = {Pi,y : y = 0, . . . , q − 1} for
i = 0, . . . q − 1.
Assign the pool sets as rows and columns.
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CRM Summer School, 2003 DNA sequence assembly 40



Transversal design 3

1 6 11 16 21

22 2 7 12 17

18 23 3 8 13

14 19 24 4 9

10 15 20 25 5

1 9 12 20 23

24 2 10 13 16

17 25 3 6 14

15 18 21 4 7

8 11 19 22 5
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Transversal design 4

Thm. For two different pools Px1,y1 ∩ Px2,y2 has exactly one element if
x1 6= x2 and is empty if x1 = x2.

Proof An item Ba,b is included in both iff

y1 = ax1 + b and y2 = ax2 + b.

Now if x1 = x2 then y1 = y2, otherwise there is exactly one solution for
(a, b).

Other properties : every item is included in exactly once in every pool set
two items appear in the same row or column at most once

⇒ every item is identifiable by two of the pools it’s included in ; up to (q−2)
items are identifiable by the set of pools they are included in.
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Random shuffling

method : random shuffling

rectangle : two rows and two columns
preserved rectangle : 4 items in a rectangle after and before shuffling
with the same items on the diagonals

1 2
3 4

1 3
2 4

4 3
2 1

4 2
3 1

2 1
4 3

2 4
1 3

3 4
1 2

3 1
4 2

Theorem. Expected number of preserved rectangles is approximately 1/2.
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Random shuffling

Proof. Probability that a particular rectangle is preserved :

p =
8

(
m
2

)2

(m2)(m2 − 1)(m2 − 2)(m2 − 3)
.

Expected number of preserved rectangles :
(
m
2

)2
p = 1

2 + 2
m(1 + o(1)).

works also if non-square array (unlike transversal designs)

expected number of preserved rectangles on shuffled m×m′ array

1

2
+

m + m′

mm′ (1 + o(1))
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A more practical view of assembly

- sequencing errors

- repeats

- unknown orientation
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Sequencing errors

Phred : base quality values

q = −10 · log10 p

where p is the error probability.

Calculated from trace taking intoo account various specifics of the sequen-
cing machine.

Sequences are then typically trimmed at the beginning and the end (where
low quality values are).
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Errors

Def. T is an ε-approximate substring of S iff S has a substring S′ such that
the edit distance b/w T and S′ is less than ε|T |.

RECONSTRUCTION Problem :
Given error rate ε and sequences F = {s1, s2, . . . , sn}, find the shortest
string S such that every si is an ε-approximate substring of S.

NP-hard (take ε = 0 to get SSP).

Miklós Csűrös
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Overlaps

Comparing a large number of shotgun sequences to find overlaps :

Hashtable of k-long sequences appearing in sequences : quick location of
seeds for alignment

Extension of alignments in a greedy fashion or by banded dynamic pro-
gramming.

Build overlap graph : vertices correspond to sequences, edges indicate
overlap.

Grow a path in the graph in a greedy fahsion.
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Repeats

Double-barreled shotgun : mate-pair sequences
pairs of shotgun sequences with a “known” distance between them.

WGA assembler : scaffolds (contigs with known orientation and disatance
between them)
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Hybrid assembly

Orienting BAC sequences using a set of (WGS) mate pair reads.

Overlap graph : BAC endpoint vertices. Goal : assign integer values to
vertices.

Directed edges :

1. edge between BAC endpoint vertices with known length

2. if sequences of a mate pair match two different BACs (implies orienta-
tion and distance), then add mate link edge between BAC endpoints : has
length and standard deviation σ.
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Hybrid assembly 2

Edge bundling : collapse edges between the same BACs (length and stdev
calculated as weighted sums) ; weights assigned to bundled edges.

Path bundling : similar but eliminates longer edges.

Happy edge : when its constraints are satisfied.

Problem : maximize the weight of happy edges — NP-hard.
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Clone-array pooled shotgun
sequencing

clone-linked contig

shotgun sequences from 
the row pool

shotgun sequences from 
the column pool

arrayed BACs
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Pooling advantage

⇒ much fewer shotgun libraries

Example : human genome

N clones (N ≈ 20 thousand)

shotgun libraries
CAPSS 2

√
N ≈ 300

BAC-based sequencing N ≈ 20000
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CAPS-MAP : physical mapping

contig indicating 

clone overlap

pools containing the same clone
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Physical map of honeybee

135Mb genome :
3312 clones, 135kbp clone length : 3.3X clone coverage
six 24× 24 array pairs [transversal design for each pair]
1X pooled reads, 5X whole-genome shotgun reads

908070605040302010 100
clone overlap (kbp)

1e-8

1e-7

1e-6

1e-5

1e-4

.001

.01

.1

1e-9

5X WGS, 1X pooled

2X WGS, 1X pooled

2X WGS, 0.5X pooled

Probability of failing overlap detection
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CAPS-MAP simulation

Simulated assembly of Drosophila melanogaster genome.

2880 BACs, 1.4X pooled shotgun, 4X whole-genome shotgun reads.

Example BAC ordering.

2226
1044

1348
1994

509
1021

1996
1420

1329
58 783

789
2011

805
650

302
2418

2669
874

1964
1439

2042
2116

801
2462

768
177

1361
1925

1466
1200

2058
2359

2659
2075

2745
2300

911
1011

2788
792

2522
2174

1845
993

1734
1570

1746
644

957
94 1382

1835
2400

1014
2773

313
1262

799
2015

1676
2603

1775
663

531
1243

470
222

703
2777

600
466

150kbp

True

Loc

TSP/r

Bactig 23 (72 BACs)
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Sequencing by hybridization

Set of probes : all length-k sequences (4k of them). Hybridize target se-
quence to probes : get spectrum.

Def. Spectrum Fk(S) of a string S : set of all of its substrings with length k.

SBH Problem :
Given a set of k-length sequences F = {s1, · · · , sn}, find a sequence S

for which the spectrum equals F .

Euler path formulation : vertices of (k − 1)-length strings, edges corres-
pond to si.

Miklós Csűrös
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Another look at shotgun assembly

Euler-path formulation for shotgun assembly : cut shotgun sequences into
smaller pieces. Use mate pair information to untangle paths.

(Waterman & Idury, Pevzner)
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Finishing

Use pooling (Beigel et al.)
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