Self-similar and branch groups

Volodymyr Nekrashevych

October 4, 2010, Montreal

V. Nekrashevych (Texas A&M)

Self-similar groups

October 4, 2010, Montreal 1 / 14

A rooted tree is a tree T with a fixed vertex v_0 called the root. (All our trees are locally finite and do not have vertices of degree 1.)

An *automorphism* of a rooted tree T is an automorphism of the tree T that fixes the root.

A level number n is the set of vertices on distance n from v_0 . A group $G \leq \operatorname{Aut}(T)$ is level-transitive if it is transitive on every level. T is level-transitive if $\operatorname{Aut}(T)$ is level-transitive.

Boundary of a rooted tree

The boundary ∂T is the set of simple paths in T starting at the root. Basis of topology of ∂T consists of sets $\partial T_v \subset \partial T$ of paths passing through a vertex $v \in T$.

If T is level-transitive, then we also have a measure μ on ∂T given by

$$\mu(\partial T_{\mathbf{v}})=\frac{1}{|L_n|},$$

where $v \in L_n$. Aut(T) acts on ∂T by (measure preserving) homeomorphisms.

V. Nekrashevych (Texas A&M)

Let $G \leq \operatorname{Aut}(T)$. For $v \in T$ denote by G_v the stabilizer of v. The *n*th *level stabilizer* G_n is $\bigcap_{v \in L_n} G_v$, where L_n is the *n*th level.

 G_v and G_n are subgroups of finite index, and $\bigcap_n G_n = \{1\}$, hence G is residually finite.

For any H and a decreasing sequence of finite index subgroups H_n such that $\bigcap H_n = \{1\}$ we have $H \hookrightarrow Aut(T)$ for

$$T=\bigcup H/H_n$$

of cosets.

The *rigid stabilizer* G[v] is the set of automorphisms acting trivially outside of T_v .

The *n*th level rigid stabilizer is $\operatorname{Rist}_n = \prod_{v \in L_n} G[v]$. A level-transitive group $G \in \operatorname{Aut}(T)$ is weakly branch if Rist_n are non-trivial (equivalently, infinite). It is branch if Rist_n are of finite index. Let $G \leq \operatorname{Aut}(T)$ be generated by finite set S. Denote by $\Gamma_n(G, S)$ the graph with the vertex set L_n in which two vertices are connected by an edge if they are v and s(v) for $s \in S$.

For $w \in \partial T$ define $\Gamma_w(G, S)$ as the graph with the set of vertices G(w) with the same adjacency rule.

- Let X be a finite alphabet. The tree rooted tree X^{*} is the free monoid generated by X were v is connected to vx for $v \in X^*$ and $x \in X$, i.e., it is the right Cayley graph of the monoid.
- The *n*th level is then X^{*n*}. The boundary is naturally identified with the space X^{ω} of right-infinite sequences with the product topology and the product μ of uniform distributions. Automorphisms of X^{*} are interpreted as *automata-transducers*, since beginning of length |v| of g(vw) does not depend on w.

Self-similar groups

For every $g \in Aut(X^*)$ and $v \in X^*$ there exists $h \in Aut(X^*)$ such that

g(vw) = g(v)h(w)

for all $w \in X^*$. We denote $h = g|_v$.

Definition

A group $G \leq Aut(X^*)$ is *self-similar* if for all $g \in G$ and $x \in X$ we have $g|_x \in G$.

Self-similar groups can be interpreted as automata. When in state $g \in G$ it reads a letter $x \in X$ then it goes to state $g|_x$ and gives g(x) on output:

$$g(xw) = g(x)g|_{x}(w).$$

Examples

Consider $a \in Aut(X^*)$ for $X = \{0, 1\}$ defined by

$$a(0w) = 1w, \qquad a(1w) = 0a(w).$$

This transformation (of X^{*} and of X^{ω}) is called the *(binary)* adding machine. It generates a self-similar action of \mathbb{Z} .

"Interlaced" adding machines

Consider $a, b \in Aut(X^*)$ for $X = \{O, I, J\}$ defined by

$$a(Ow) = Iw,$$
 $a(Iw) = Oa(w),$ $a(Jw) = Jw,$
 $b(Ow) = Jw,$ $b(Iw) = Iw,$ $b(Jw) = Ob(w).$

Grigorchuk group

V. Nekrashevych (Texas A&M)

Hanoi towers group

Schreier graphs of self-similar groups

For any f.g. group $G \leq Aut(X^*)$ the map $vx \mapsto v$ induces a covering

$$\Gamma_{n+1}(G,S) \longrightarrow \Gamma_n(G,S).$$

The inverse limit w.r.t. these maps is the profinite graph of the action of G on X^{ω} . Its connected components are the Schreier graphs $\Gamma_w(G, S)$ for $w \in X^{\omega}$.

If S is a *self-similar* generating set, (i.e., if $s|_x \in S$ for all $s \in S$ and $x \in X$) then $xv \mapsto v$ induces a map

$$\Gamma_{n+1}(G,S) \longrightarrow \Gamma_n(G,S).$$

Examples

1. Adding machine. The Schreier graphs $\Gamma_n(G, \{a\})$ are cycles of length 2^n . The maps $vx \mapsto v$ are the natural coverings. The maps $xv \mapsto v$ collapses every other edge.

2. Interlaced adding machines

