Conférence « ARTA III : Avancées en théorie des représentations des algèbres » 16-20 juin 2014

> Meeting "ARTA III. Advances in Representation Theory of Algebras" June 16–20, 2014

Varieties of invariant subspaces given by Littlewood–Richardson tableaux

Justyna Kosakowska^{*}

Given partitions α , β , γ , the short exact sequences

$$0 \to N_{\alpha} \to N_{\beta} \to N_{\gamma} \to 0$$

of nilpotent linear operators of Jordan types α , β , γ , respectively, define a constructible subset $\mathbb{V}^{\beta}_{\alpha,\gamma}$ of an affine variety.

Geometrically, the varieties $\mathbb{V}_{\alpha,\gamma}^{\beta}$ are of particular interest as they occur naturally and since they typically consist of several irreducible components. In fact, each Littlewood–Richardson tableaux Γ of shape (α, β, γ) contributes one irreducible component $\overline{\mathbb{W}}_{\Gamma}$.

We consider the partial order $\Gamma \leq_{\text{bound}}^* \tilde{\Gamma}$ on LR-tableaux which is the transitive closure of the relation given by $\mathbb{V}_{\tilde{\Gamma}} \cap \overline{\mathbb{V}}_{\Gamma} \neq \emptyset$. In this paper we compare the boundary-relation with partial orders given by algebraic, combinatorial and geometric conditions. In the case where the parts of α are at most two, all those partial orders are equivalent. We prove that those partial orders are also equivalent in the case where $\beta \setminus \gamma$ is a horizontal and vertical strip. Moreover, we discuss how the orders differ in general.

Joint work with Markus Schmidmeier from Florida Atlantic University.

^{*}Faculty of Mathematics and Computer Sciences Nicolaus Copernicus University, Chopina 12/18, Toru, Kujawsko-Pomorskie 87-100, POLAND.