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CHAPTER ELEVEN

Complex Dynamical Systems in Social and

Personality Psychology

Theory, Modeling, and Analysis

MICHAEL J. RICHARDSON, RICK DALE, AND KERRY L. MARSH

All social processes fundamentally involve change in

time: Judgments materialize quickly over milliseconds

or seconds, conversations flow over minutes, and rela-

tionships evolve across even longer time scales. Put

simply, social systems are dynamical systems. The

word “dynamical” simply means time-evolving and

thus a dynamical system is simply a system whose

behavior evolves or changes over time. Proposing

that social processes are dynamical is not new and

has a long history in social psychology (e.g., Asch,

1952; Lewin, 1936; Mead, 1934). Moreover, most

researchers in social-personality psychology would

agree that social processes and behavior are dynamical

and change over time. Traditionally, however, social-

personality psychology, like experimental psychology

in general, has focused on summary statistics, which

aggregate over time, such as in the form of magnitudes

(e.g., behavioral frequencies, emotional intensities,

and so on). This traditional approach is rooted in the

linear statistical methods developed by Fisher and oth-

ers (Meehl, 1978), and is aimed at detecting whether

treatments or manipulations, on the whole, affect the

outcome of some measured behavioral state or vari-

able. Behavioral change is therefore conceptualized as

the difference between static measures and is mod-

eled by covarying responses on such measures. Unfor-

tunately, this traditional approach merely describes

behavioral change; it does not capture true time evo-

lution and so is not always optimal for understand-

ing the process by which behavioral change occurs. To

make progress in our understanding of psychological

change and process, therefore, researchers need to con-

sider adopting new tools and methodological concepts,

namely those of dynamical systems.

The scientific study of dynamical systems is con-

cerned with understanding, modeling, and predicting

the ways in which the behavior of a system changes

over time. As a formal approach, it has a long his-

tory in applied mathematics and physics, and has

been used extensively to understand and model the

behavior of many different types of physical systems,

such as the motion (position and velocity) of planets,

mass-spring systems, swinging pendulums, and self-

sustained oscillators. In the last few decades, however,

an increasing number of researchers have begun to

investigate and understand the dynamic behavior of

more complex biological, cognitive, and social systems,

using the concepts and tools of dynamical systems.

The term “complexity” refers to the fact that

most biological, cognitive, and social systems typically

exhibit behavior that is nonlinear and involves a large

number of interacting elements or components. His-

torically, it is the nonlinearity of complex dynamical

systems that has largely hindered research on such

systems, in that the numerical techniques that enable

one to uncover the dynamics of nonlinear and com-

plex dynamical systems involve an extensive number

of computational processes that are impossible to per-

form without modern computers. This is true for both

abstract nonlinear dynamical models (covered in the

second section of this chapter) and for the analysis of

behavioral data (discussed in the third section). These

days, of course, these difficulties of computation no

longer exist, and researchers can formulate and ana-

lyze many nonlinear and complex dynamical systems

quite easily. Indeed, the fields of nonlinear dynamics

and complex systems, as well as our theoretical under-

standing of such systems, have grown in parallel with
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increases in the availability and computational power

of modern computers.

Advances in the modeling and analysis of com-

plex dynamical systems have also led to the steady

rise of dynamical systems in social-personality psy-

chology. Vallacher, Read, and Nowak (2002) offer

an excellent review of this rise and describe how

dynamical theory and models can be employed to

characterize an array of socially relevant behaviors,

such as attitude change, social judgment, and self-

perception (for reviews, see Nowak & Vallacher, 1998;

Vallacher & Nowak, 1994). This interest in dynamics

and the dynamical systems approach has continued to

expand in social-personality psychology, with numer-

ous researchers embracing a dynamical understanding

of mood (e.g., Gottschalk, Bauer, & Whybrow, 1995;

Schuldberg & Gottlieb, 2002), personality expression

(Brown & Moskowitrz, 1998; Mischel & Shoda, 1995),

conformity (Tesser & Achee, 1994), romantic relation-

ships (Gottman, Swanson, & Swanson, 2002), and

person perception and construal (Freeman & Ambady,

2011). Along with more recent advances in fractal

methods (Correll, 2008; Delignières, Fortes, & Ninot,

2004), decision dynamics (Freeman, Dale, & Farmer,

2011), cognitive dynamics (Spivey, 2007), coordina-

tion dynamics (Kelso, 1995; Schmidt & Richardson,

2008), and the behavioral dynamics of perception

and action (Warren, 2006), the concepts and tools

that have been developed for understanding com-

plex dynamical systems appear to provide a promis-

ing new method for understanding social behavior and

cognition.

Here we provide an introductory overview of the

dynamical systems approach and how the theoreti-

cal concepts, modeling techniques, and analysis tools

used to investigate complex dynamical systems can be

used to understand social behaviors that emerge and

change over time. It is by no means a comprehen-

sive review of complex dynamical systems and the

dynamical systems approach. Rather, the chapter is

aimed at providing the reader with the knowledge

needed to seek out more detailed discussions else-

where. Throughout the chapter we include key refer-

ences that provide a deeper and more detailed under-

standing of the concepts and issues discussed.

The chapter is divided into three main sections.

The first section covers the basic concepts of dynam-

ical systems theory, including their implications for

understanding human and social behavior, and how

complex ordered behavior emerges from the non-

linear interactions that exist between the compo-

nents of a behavioral system. The second section

covers the basic forms and mathematical properties of

dynamical systems models and how dynamical mod-

eling can provide insights about the organization or

reorganization of stable (or unstable) human and

social behavior. The final section addresses the basic

aspects of dynamical systems analysis and focuses on

a number of analysis techniques that can be employed

to uncover the dynamics of a behavioral system from

time-series recordings.

DYNAMICAL SYSTEMS THEORY

The keystone concept throughout this section (and

the entire chapter) is that the behavior of a complex

dynamical system can arise in a self-organized manner

from the free interplay of components and properties

of the system. To unpack what this means, we begin

by briefly defining what a complex dynamical system

is and then go on to describe the abstract properties

that underlie the behaviors that complex dynamical

systems exhibit.

What Is a Complex Dynamical System?

The term “complex dynamical system” lacks a con-

sensus definition, but many researchers agree that

complex dynamical systems exhibit three key charac-

teristics (see Gallagher & Appenzeller, 1999, and arti-

cles therein, for a discussion). First, they consist of

a large number of interacting components or agents.

This may be said about the behavior of an indi-

vidual person, as in the interacting constraints that

drive social perceptions and decisions (e.g., Read &

Miller, 2002; Smith, 1996). It may also be said about

the behavior of groups of human beings, such as in

dyadic conversation (Buder, 1991) or small work-

teams (Arrow, 1997). A second property is that these

systems exhibit emergence: Their collective behav-

ior can be difficult to anticipate from knowledge of

the individual components that make up the system,

and exhibit some coherent pattern or even, in some

cases, apparent purposiveness. For example, a person’s

social judgment may be a nonobvious consequence of

the interaction among an array of informational con-

straints (e.g., Freeman & Ambady, 2011), and group

behaviors may be a nonobvious outcome of interac-

tions among group members (Arrow, 1997). Third,

this emergent behavior is self-organized and does not

result from a central or external controlling compo-

nent process or agent. Although all three characteris-

tics are necessary for a system to be considered com-

plex, the appearance of emergent behavior that results

from self-organization is the most distinguishing
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feature of complex systems (Boccara, 2003). Accord-

ingly, we turn next to the topic of self-organization.

Self-Organization

The term “self-organization” is used to refer to

behavioral patterns that emerge from the interac-

tions that bind the components of a system (social

or otherwise) into a collective, synergistic system,

while not being dictated a priori by a centralized

controller. As mentioned earlier, self-organization is

synonymous with complex systems, and interestingly

enough, the most widely used examples of a self-

organized and emergent behavioral process are social

examples, in particular the coordinated activities of

social insects such as ants. Take a colony of harvester

ants, for example, in which different members of the

ant colony perform one of several different tasks: for-

aging, patrolling, nest maintenance, or midden work

(clearing up debris). Individual ants do not perform

the same task all the time, but transition between the

different modes of behavior as the need arises, with

the appropriate number of ants (workers) engaged in

a particular task at any given time. That is, patrollers

become foragers, foragers become nest maintenance

workers, and midden workers becoming patrollers,

and so forth, based on current conditions (e.g., Gor-

don, 2007). Task allocation, however, is not achieved

by a centralized controller or leader. The queen does

not decide who does what, nor does any other ant.

In fact, it would be impossible for any ant to over-

see the entire colony. Rather, individual ants can only

detect local tactile and chemical information, with the

coordinated behavior of the colony emerging from the

local interactions that constrain the tasks an individual

ant should perform (Boccara, 2003).

The harvester ant colony highlights how coor-

dinated social behavior can result spontaneously

from the physical and informational interactions of

perceiving-acting agents. The nest-building behavior

of other social insects, such as termites, bees, and

wasps, is similarly self-organized. So too is the coor-

dinated behavior of schools of fish, flocks of birds, and

herds of ungulate mammals: No individual animal has

precise control over the direction or behavior of the

group (e.g., Camazine, Deneubourg, Franks, Sneyd,

Theraulaz, & Bonabeau, 2001; Theraulaz & Bonabeau,

1995).

Though it is certainly different from that of humans

in numerable respects, the self-organization that ants

and other social animals promote is directly relevant

to, and sometimes motivates, the study of human

social groups (Arrow, 1997). For instance, the coor-

dinated activity observed between pedestrians walk-

ing down a crowded sidewalk is the result of self-

organizing dynamics (Sumpter, 2010). Goldstone and

colleagues have demonstrated that the human-path

systems that are created between regularly visited

destinations (say, buildings around a university cam-

pus) emerge in a self-organized manner and are often

mutually advantageous to the members of the group

that created them. Task subroles and divisions of

labor can also emerge and be spontaneously adopted

by individuals during joint action or a social cogni-

tive task (Eguı́luz, Zimmermann, Cela-Conde, & San

Miguel, 2005; Goldstone & Gureckis, 2009; Richard-

son, Marsh, & Baron, 2007; Theiner, Allen, & Gold-

stone, 2010). Even group dynamics and performance

can be self-organized by means of integrative com-

plexity, whereby the individual ideas and opinions

of group members emerge and become dynamically

integrated over time (Cummings, Schlosser, & Arrow,

1996).

Soft-Assembly

The kinds of self-organized dynamical systems

described in the preceding section, such as social

insects and sometimes groups of people, are tempo-

rary organizational structures that are put together in

a fluid and flexible manner. In the case of the har-

vester ants, it does not matter which particular ant

does which particular job; each ant is capable of tak-

ing up any job at any point in time. Though obviously

different in important ways, humans also engage in

modes of behavior flexibly throughout the course of

a single day (see Iberall & McCulloch, 1969 for clas-

sic a discussion; see Isenhower, Richardson, Marsh,

Carello, & Baron, 2010 for a task example). More-

over, although it seems individuals in a group or social

network are in complete control of their own behav-

ior and are consciously aware of their acts (and could

verbalize them if asked), we know that such cen-

tralized, conscious control is often an illusion: Classic

research in social psychology suggests that individuals

can be unaware of the “true” reasons for their actions

(Nisbett & Wilson, 1977). Indeed, the coordinated

behavior and intentions of socially situated individu-

als can be constrained and self-organized by environ-

mental and situational constraints of which we are not

aware, with the unfolding dynamics of human behav-

ior reflecting a mutuality of responsiveness between

individuals and the context in which they are embed-

ded (Reis, 2008; Richardson, Marsh, & Schmidt, 2010;
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Semin & Smith 2008; Thelen & Smith, 1994). Under-

standing and predicting the time-evolving behavior of

an individual or social system is therefore not only

dependent on identifying the environmental factors or

agents that make up the behavioral system in ques-

tion, but also on the relevant interagent and agent-

environment interactions that shape behavior. This

implies that the dynamical behavior of cognitive and

social systems is highly context dependent.

Dynamical systems that exhibit this kind of emer-

gent, context-dependent behavior are often referred

to as softly assembled or soft-molded systems, in that

the behavioral system reflects a temporary coalition of

coordinated entities, components, or factors. The term

“synergy” is sometimes used to refer to softly assem-

bled systems – a functional grouping of structural

elements (molecules, genes, neurons, muscles, limbs,

individuals, etc.) that are temporarily constrained to

act as a single coherent unit (Kelso, 2009). In contrast,

most nonbiological systems or machines are hard-

molded systems. A pendulum clock, for example, is

a hard-molded dynamical system, in that it is com-

posed of a series of components (parts), each of which

plays a specific, predetermined, and unchanging role

in shaping the motion of the clock’s pendulum over

time. Rigidly organized factory assembly lines, orga-

nizations, or military structures could also be con-

sidered intuitive examples of hard-molded machine-

like social systems. But even within rigid social

structures one finds differing degrees of fluidity and

soft-assembly, both within and across different lev-

els of organization. One could argue that this soft-

assembly, present to some degree, is a necessary

requirement for the ongoing existence and success of

such social systems and organizations (e.g., Dooley,

1994; Guastello, 2002).

Interaction-Dominant Dynamics

The key property of softly assembled systems

is that they exhibit interaction-dominant dynam-

ics, as opposed to component-dominant dynamics.

For component-dominant dynamical systems, system

behavior is the product of a rigidly delineated archi-

tecture of system modules, component elements, or

agents, each with predetermined functions (i.e., the

pendulum clock or a factory assembly line). As noted

earlier, however, for softly assembled interaction-

dominant dynamical systems, system behavior is

the result of interactions between system components,

agents, and situational factors, with these intercompo-

nent and interagent interactions altering the dynam-

ics of the component elements, situational factors,

and agents themselves (Anderson, Richardson, &

Chemero, 2012; Kello, Beltz, Holden, & Van Orden,

2007; Van Orden, Kloos, & Wallot, 2011).

Thus, if one were to examine the relationship

between any two levels of an interaction-dominant

dynamical system, one would observe that elements

or agents at the lower level of the system modulate

the macroscopic order of the higher level and at the

same time are structured by the macroscopic order

of the system. For example, the individuals (micro-

level) within a cultural system (macro-level) modu-

late the behavioral order of the cultural system, with

the dynamical organization of the cultural system in

turn (and at the same time) modulating and structur-

ing the behavior of the individuals within it. Accord-

ingly, for interaction-dominant systems, it is difficult –

and often impossible – to assign precise causal roles to

particular components, factors, agents, or system lev-

els. Of particular significance for the study of cognitive

and social behavior is the implication that one can-

not hope to appropriately understand behavioral orga-

nization by attempting to study systems components

or agents in isolation. For that reason, researchers

who have adopted the complex dynamical approach to

social phenomena have started to conceptualize many

domains of human behavior, from language acquisi-

tion (Van Geert, 1991) to group dynamics (Arrow,

McGrath, & Berdahl, 2000), as being guided and self-

organized by the dynamic interaction of many con-

straints, factors, and processes.

Nonlinearity

A nonlinear system is one in which the system’s

output is not directly proportional to the input, as

opposed to a linear system in which the output can be

simply represented as a weighted sum of input com-

ponents. Complex dynamical systems, most notably

biological and social systems, are nonlinear in this

sense. Our attraction to another individual or our self-

concept, for instance, may not correspond to a mere

average or sum of positive and negative attributes

(Rinaldi & Gragnani, 1998; Sprott, 2004), but rather

some form of multiplicative combination of attributes

and situational factors that results in an attraction

or self-concept that is more (or less) than the sum

of its parts. The consequence of this principle for

understanding human behavior and social systems is

equivalent to the consequence of a system exhibit-

ing interaction-dominant dynamics – a system’s

behavior cannot be reduced to a set of component
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dominant factors that interact in a simple linear

fashion (Van Orden, Holden & Turvey, 2003). Thus, in

the context of complex dynamical systems, the term

“nonlinear” also means something more than mul-

tiplicative. More generally, it is used to refer to the

non-decomposability of a complex dynamic system,

whereby a nonlinear dynamical system is a system

whose macroscopic behavioral order results from the

complex interactions of micro-scale components, but

via processes of circular causality, also modifies the

interactions between micro-scale components as well

as the behavior of the components themselves.

On the one hand, the nonlinearity of complex

dynamical systems makes them much more difficult to

understand. In fact, the effects of nonlinear processes

are typically not known or cannot be known ahead

of time. On the other hand, it is only because com-

plex dynamical systems are nonlinear that they can

exhibit complex emergent behavior. It is for these rea-

sons that an increasing number of researchers and the-

orists consider human behavior and social processes

to be predominantly nonlinear (see e.g., Guastello,

Koopmans, & Pincus, 2009; Kelso, 1995; Vallacher &

Nowak, 1994; Nowak & Vallacher, 1998 for edited col-

lections and reviews). In fact, a defining feature of

human behavior is that it is often unpredictable. It

is this aspect of human behavior that makes the sci-

ence of social-personality psychology, as well as the

many other fields of psychology (perceptual, cogni-

tive, clinical, etc.), so difficult and at the same time

so intriguing. In addition, although the word “ran-

dom” is often used in everyday speech when referring

to the unpredictability of human behavior, the gen-

eral belief that human behavior is not random, but

rather complex, is also consistent with the notion of

nonlinearity.

Chaos

The fact that nonlinear dynamical systems can

exhibit complex and unpredictable behavior is inter-

esting in and of itself and highly relevant for the study

of human behavior. Even more interesting, however,

is one of the key discoveries from the study of nonlin-

ear dynamical systems: that highly complex behavior

can even emerge from very simple rules or systems

so long as the components or agents of the sys-

tem interact in a nonlinear manner. That is, very

simple deterministic nonlinear systems can produce

extremely complex and unpredictable behavior. One

notable form of complex behavior they produce is

chaotic behavior.

A classic example of a simple nonlinear system

that results in chaotic behavior is the logistic map. The

logistic map is a discrete dynamical system, meaning

its behavior changes over discrete rather than con-

tinuous time steps (see next section for more details).

More precisely, it is simple dynamical equation of the

form

x(t+1) = r x(t)(1 − x(t)) (11.1)

where x is the behavioral variable, r is a fixed behav-

ioral parameter, and t equals time from step 0 to

step n (i.e., t = 0, 1, 2 . . . , n). To help make this

equation less abstract and easier to understand, let

us assume that this equation is used to model the

daily mood of an individual diagnosed with bipolar

disorder or manic depression, where x represents the

individual’s daily mood on a scale of 0 to 1, with

1 corresponding to a perfectly positive mood, and r

representing the severity of the individual’s diagno-

sis on a scale of 0 to 4, with 4 corresponding to a

severe diagnosis. The predicted daily mood of the indi-

vidual (i.e., x(t+1)) is therefore a simple mathemati-

cal function of the current day’s mood, x(t), multi-

plied by the severity of the diagnosis, r, multiplied by

1 minus the current day’s mood, or 1−x(t). For illus-

trative purposes, imagine that an individual’s diagno-

sis was relatively severe, that r equaled 3.8, and the

person’s initial mood of x on day zero equaled 0.6.

If we then computed or iterated the equation 100

times, we would get the time-evolving behavioral pat-

tern displayed in Figure 11.1, where the value of x,

or mood in our example, is plotted as a function of

time step from 1 to 100. The complex and unpre-

dictable nature of the behavioral pattern over time

is quite evident, with the value of x from one time

step to the next seeming to change in a way that far

exceeds the simplicity of the equation that was used to

generate it.

It is the latter feature of chaotic systems like

the logistic map (Equation 11.1) that often surprises

researchers. That is, while the behavior of such sys-

tems is completely determined by a set of simple deter-

ministic (i.e., nonrandom) equations or rules, it can

be very complex and very difficult to predict. This is

because chaotic systems exhibit a sensitive dependence

on initial conditions: minor differences in starting states

can become amplified as the system evolves over time.

Given that measuring or knowing the initial condi-

tions of any natural dynamical system with perfect

precision is impossible, it is therefore equally impossi-

ble to predict the long-term behavior of such systems

if they are chaotic.
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Figure 11.1. Behavior of the logistic map’s dependent vari-

able, x, during a chaotic regime (i.e., r = 3.8).

The implication of this principle for understanding

human social behavior is quite profound. Most obvi-

ous is that the existence of chaos forces researchers to

truly reconsider what it means for a behavioral event

to be random (Guastello & Liebovitch, 2009). Perhaps

less obvious is that the apparent randomness of vari-

able or noisy behavior (i.e., normally distributed ran-

dom noise or variance) that is traditionally assumed

in nearly all psychology studies becomes an empirical

question. Just because a variable behavior appears to

be random does not mean that one should conclude

that it is random. Chaos also highlights the nonobvi-

ous connection between past and future events, and

that even extremely trivial changes can have a signifi-

cant effect on the outcomes of time-evolving behav-

ior. It is for these reasons that chaos has found its

way into extensive theoretical discussion of social psy-

chological systems. A lucid introduction and review of

this point is found in Barton (1994). One prominent

application described in Barton’s review is in the clin-

ical realm, where chaos has enjoyed a rapid growth of

application across a range of traditions. Another popu-

lar, visual introduction to chaos and nonlinear dynam-

ics that utilizes clinical psychology is provided by Abra-

ham, Abraham, and Shaw (1990).

DYNAMICAL SYSTEMS MODELING

The goal of many research endeavors is to effectively

model a behavioral system in order to make specific

predictions about how the system will behave in the

future. In personality and social psychology, this has

typically been done using various forms of regres-

sion analysis and structural equation modeling (for

instance, see Fabrigar and Wegener, Chapter 19 in

this volume). An advantage of dynamical models is

that they can handle the time-dependence of behav-

ior and are not restricted to making linear assumptions

about behavioral organization. Accordingly, nonlinear

dynamical models can provide deep insights about the

behavior of real-world time-evolving processes and

can play a significant role in theorizing about how and

why certain behavioral processes might emerge. For

example, Meadows (2008) offers a lucid discussion of

the benefits of dynamical systems modeling for under-

standing the interactions and behavioral nonlineari-

ties that anchor social systems, from the parameters

that lead to stable sustenance of romantic relation-

ships (Gottman, Murray, Swanson, Tyson, & Swan-

son, 2003) to the way that societal rules can change

patterns of self-organization.

It is important to keep in mind that any model

of a biological, psychological or social system is at

best an idealization (this is just as true for dynam-

ical models as for non-dynamical models) and that

the goal of a dynamical model is to capture the most
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important features of a system or process (Bertuglia

& Vaio, 2005). Dynamical modeling involves describ-

ing how the behavioral state of a system changes over

time. Here the term “state” refers to the current value

of a variable (or variables) that are used to capture the

system in question. A state variable could be any prop-

erty of a system that might change over time, such

as the movements of the body, limb, or eyes dur-

ing social interaction, or the mood, attitudes, or per-

sonality characteristics of a child or adult. One could

even model the change in state of two people, such

as the quality of a romantic relationship. Essentially,

a dynamical model describes how the state variables

of a system evolve over time through rules or equa-

tions that determine the system’s future state given its

current state.

Difference Equations

A difference equation is a recursive function some-

times called an iterative map and can be used to model

the behavior of a system at discrete time steps (1, 2,

3 . . . t, where t equals the number of time steps), with

the state of the system at each time step defined as a

function of the preceding state. The logistic map, intro-

duced in Equation 11.1 in the previous section, is an

example of a difference equation. More precisely, the

logistic map is a one-dimensional nonlinear1 differ-

ence equation – the dimension of a dynamical system

equals the number of state variables needed to com-

pletely describe the system (i.e., one-, two-, three-, . . .

to n-dimensions) – and is one of the most well-known

and studied difference equations in the field of non-

linear dynamics. This is because despite the simplicity

of Equation 11.1, it exhibits a wide variety of dynamic

behaviors for different values of the system parame-

ter r (specifically for 0 < r < 4). This includes various

types of stable fixed point and periodic behaviors, and,

as we have already seen, even chaotic behavior (see

Figure 11.2).

Of more relevance to understanding social behav-

ior, Nowak and Vallacher have demonstrated how two

coupled logistic equations can be used to model the

behavioral synchronization of two individuals in social

interaction (e.g., Nowak & Vallacher, 1998; Nowak,

Vallacher, & Borkowski, 2002; Vallacher, Nowak &

Zochowski, 2005; also see Buder, 1991). Their model

1 It is a nonlinear equation because if we expand r x(t)(1 −

x(t)), we get r(x(t) − x2
(t)), such that the state of the system

is the product of a constant and the state variable to a power

greater than one (e.g., x2
, x3

, x4 . . . ), in this case x2
(t).

takes the form,

x1(t+1) =
r1x1(t)(1 − x1(t)) + αr2x2(t) (1 − x2(t))

1 + α
(11.2)

x2(t+1) =
r2x2(t)(1 − x2(t)) + αr1x1(t)(1 − x1(t))

1 + α

where x is a generic variable representing the intensity

of some observable, communicative behavior, such as

approach (or avoidance), and r corresponds to inter-

nal states, such as personality traits, moods, attitudes,

and values, that shape an individual’s behavior over

time. This is a two-dimensional model, in that there

are two state variables, x1 and x2, one state variable

and equation for each individual’s behavior. The equa-

tions are also coupled, in that the behavioral state of

each individual is dependent on his or her own pre-

vious state, as well as the previous state of his or

her partner, with the parameter α (alpha) determin-

ing the strength of the coupling (i.e., mutual influ-

ence). Although a detailed discussion of this model

and the behaviors it generates is beyond the scope of

the chapter, its significance is that it predicts increased

social monitoring and mutual influence (i.e., commu-

nication, mutual reinforcement and self- and other-

monitoring) when individuals with different internal

states (e.g., personality traits, moods, attitudes) are

required to synchronize their behavior. This increase

in social monitoring and mutual influence is then pre-

sumed to put greater stress on the interactional sys-

tem by reducing the executive resources. In contrast,

when partners have similar internal states, behavioral

synchronization can occur with little social monitoring

or mutual influence, leaving more energy and cogni-

tive resources available for the coupled individuals to

pursue common goals.

Differential Equations

In contrast to difference equations, which model

the behavior of state variables across discrete time

steps, a differential equation is a mathematical equation

that models the continuous time evolution of a system

in terms of the rate of change of state variables over

time. As a starting example, consider the simple one-

dimensional nonlinear differential equation

ẋ = r x(1 − x) (11.3)

where x is the state variable, ẋ is the rate of change of

the x over time, and r is a state parameter. This equa-

tion is very similar to Equation 11.2 and is the logistic

equation in differential form. However, because Equa-

tion 11.3 models the rate and direction in which x
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Figure 11.2. Examples of how x changes over time for the

logistic map (Equation 11.1) for different values of r, but

the same initial condition of x(0) = .6. (top left) monotonic

approach towards a fixed value of x for r = 1.2. (top right)

oscillatory approach towards a fixed value of x for r = 2.7.

(bottom left) periodical oscillates between 4 values of x for

r = 3.2. (bottom right) chaotic behavior for r = 3.8.

changes over continuous time, the way the value of

x changes is quite different from that determined by

Equation 11.2. Imagine that x represents some observ-

able behavior, such as attraction – in the context of

social interaction, attraction could refer to the pull

toward another person, affiliation, or liking – and r

corresponds to the number of positive attributes. If we

restrict our consideration to initial conditions, x(0) > 0,

and r > 0, then x always approaches x = 1, no mat-

ter what initial condition we choose. In other words,

setting the parameter r > 0 would always predict the

same eventual level of attraction. This can be seen

from an inspection of Figure 11.3, in which the change

in x over time is presented for four different initial con-

ditions (x(0) = .1, .8, 1.6, 3.9). Notice also that increas-

ing r only changes the rate at which x approaches 1.

It does not change the dynamics qualitatively, as it

did for the logistic map in Equation 11.1. Because x is

always attracted toward 1, irrespective of initial condi-

tion, x = 1 is the stable fixed point for Equation 11.3.

We describe stable fixed point attractors, as well as other

types of attractors, in more detail later in the chapter.

At this stage it is sufficient to say that a stable fixed

point is a state toward which the variables of a dynam-

ical system move over time.

Although the simplicity of Equation 11.3 provides

a good introduction to differential equations, the fact

that its state variable, x, is always attracted toward 1

means that the degree to which this equation could be

used to model complex human and social behavior is

https://doi.org/10.1017/CBO9780511996481.015
Downloaded from https://www.cambridge.org/core. BCI, on 03 May 2021 at 01:40:19, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/CBO9780511996481.015
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


COMPLEX DYNAMICAL SYSTEMS IN SOCIAL AND PERSONALITY PSYCHOLOGY 261

3

2

1

0

x

3

2

1

0

x

3

2

1

0

x

�me �me �me

Figure 11.3. Examples of how x changes over time for Equa-

tion 11.3, using four different initial conditions (x(0) = .1,

.8, 1.6, 3.9). For the left, middle, and right graphs, r = .5, 1,

and 2, respectively.

extremely limited. An example of a differential equa-

tion that is more relevant to understanding human

and social behavior is

ẋ = k + x − x3 (11.4)

where x might represent an individual’s attitude

toward a certain political or racial group X and k is

a state parameter that captures the amount of positive

or negative experiences or information an individual

has about group X. What is interesting about this sys-

tem is that the number and location of its stable fixed

points change as we change the parameter k. This is

best illustrated by plotting Equation 11.4 as a potential

function where the fixed points of the system are rep-

resented as wells in a one-dimensional landscape, with

the depth of the well corresponding to the strength or

stability of the stable fixed points or system attractors

(see Figure 11.4).

Of particular relevance is that Equation 11.4 pre-

dicts that an individual’s attitude toward group X

would remain relatively stable, either negative or pos-

itive, across a range of k values and then at certain val-

ues of k suddenly transition from a negative to a pos-

itive state or from a positive to a negative state. More

specifically, if an individual starts out with a negative

attitude toward group X, and then k is increased from

–1 to 1 (i.e., an individual starts to have more and

more positive experiences with group X or receive

more and more positive information about group X),

the individual’s attitude will be predicted to remain

negative even beyond the point (i.e., k > 0) at which

the individual has more positive than negative experi-

ences with group X. The individual will finally tran-

sition to having a positive attitude toward group X

after a critical number of positive experiences have

occurred, that is, at k = .35. Conversely, if k is

decreased from 1 to –1, a transition from a positive

to a negative attitude will occur at k = –.35.

The kind of sudden transition predicted by Equa-

tion 11.4 is called a phase transition, where phase

refers to a qualitative state of the system (i.e., a nega-

tive state or phase vs. a positive state or phase). Such

Figure 11.4. Potential functions for Equation 11.4, demon-

strating how the system’s stable fixed points change as k is

scaled from –1 to 1 (left to right, respectively). In these plots,

the x-axis corresponds to the possible values of the state vari-

able, x, and the y-axis corresponds to the potential (Vx) of the

system state to move to another state. Wells in the potential

function or local minima (minimal potentials) correspond to

stable fixed points, such that the state of the system (i.e., illus-

trated as a small grey ball) is trapped at the bottom of the well

until that state is no longer stable (no longer a minima).

x - x+
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Figure 11.5. Prototypical examples of (left) a stable fixed

point attractor, (middle) a limit cycle attractor, and (right) a

strange attractor (see text for details).

transitions are a prominent characteristic of complex

dynamical systems, and the fact that nonlinear differ-

ential equation models can be used to capture such

behavior is part of their appeal. As the attitude exam-

ple suggests, systems like Equation 11.4 are well suited

for modeling qualitative changes in human cognition

and social behavior. For instance, similar nonlinear

systems can be employed to model transitions in cat-

egorical speech perception (Tuller, 2004; Tuller et al.,

1994) and between conciliation and aggression dur-

ing conflict situations (Colman, Vallacher, Nowak, &

Bui-Wrzosinska, 2007).

Equations 11.2 and 11.3 are examples of one-

dimensional differential equations because they have

one state variable. Like difference equations, differen-

tial systems might also require more than one state

variable to describe the behavior of the system. For

instance, the motion of a pendulum requires a two-

dimensional or second-order model that determines

both its position and velocity over time. Differential

systems with two or more state variables can also be

coupled. For example, a two-dimensional system of

coupled differential equations could be used to rep-

resent the population of two codependent species of

animal (i.e., rabbits and foxes). With respect to per-

sonality and social psychology, two-dimensional sys-

tems have been used to model the coordinated behav-

ior of interacting individuals (e.g., Baron et al., 1994;

Schmidt &; Richardson, 2008; Tesser & Achee, 1994)

and the long-term marital success of a husband and

wife (Gottman et al., 2002; Gottman et al., 2003).

Attractors

One of the key aims of dynamical modeling is

to effectively capture the attractors of a system. An

attractor is a state or subset of states toward which

the dynamical system moves over time (i.e., corre-

sponds to a final future state or set of states). Attractors

are often described geometrically, such as a point or a

closed curve, and can be intuitively visualized by plot-

ting the time-evolving behavior of a dynamical system

in its phase space. A phase space is the set of all possible

states of a dynamical system, with each state corre-

sponding to a unique point in phase space. A graph-

ical depiction of a system’s attractors and the set of

possible trajectories that can be exhibited by a system

given its attractor layout is called a phase portrait (see

Figure 11.5).

The attractor concept has been fruitfully applied

in many social contexts. For example, Gottman et al.

(2002) have developed models in which the stabilities

of intimate relationships can be captured using fixed

point attractors. As defined earlier, a fixed point attrac-

tor, commonly referred to as a stable fixed point (some-

times called a stable node, equilibrium point, or point

attractor), is a location in phase space that system tra-

jectories converge toward as time increases (Figure

11.5 left). A system may have two or more stable

fixed points, in which case the system is considered to

be multistable. The models developed by Gottman and

colleagues often have two fixed point attractors: sus-

tained marriage or divorce. The authors design differ-

ential equations much like Equation 11.4 and explore

the parameters that govern the dynamic regimes of

a married couple into one of these two equilibrium

states. Although linear models can be applied in mar-

riage research, the goal of the Gottman and colleagues’

research agenda is to articulate the dynamic change –

the trajectory that a couple may take – into one or

another stable attractor (divorce, marital misery, hap-

piness, etc.).

Space limits our discussion of all of the different

types of attractors, but it is important to note two

other types of attractor often featured in dynami-

cal systems research, namely limit cycle and strange

https://doi.org/10.1017/CBO9780511996481.015
Downloaded from https://www.cambridge.org/core. BCI, on 03 May 2021 at 01:40:19, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/CBO9780511996481.015
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


COMPLEX DYNAMICAL SYSTEMS IN SOCIAL AND PERSONALITY PSYCHOLOGY 263

attractors. A limit cycle attractor is a subset of states

within a system’s phase space that make up a closed

orbit that system trajectories converge toward as time

increases (see Figure 11.5, middle). Limit cycles are

paths that the system revisits with great regularity –

such that, after a time, the system’s behavior is fixed

along the path (it is limited within that cycle). This

kind of attractor is characteristic of periodic behav-

iors that exhibit the same stable spatial-temporal pat-

tern over time (e.g., cycle with a stable frequency

and amplitude over time) and, moreover, return to

the same stable spatial-temporal pattern when per-

turbed. Rhythmic body and gestural movements pro-

vide classic examples and researchers have modeled

interlimb (Haken, Kelso & Bunz, 1985) and inter-

personal movement dynamics (Schmidt, Carello, &

Turvey, 1990), and even complex social behavior,

such as speech turns (Buder, 1991), using limit cycle

models.

A strange attractor is a complex subset of states

within a system’s phase space that the state vari-

able(s) of a dynamical system evolve toward over time.

The term “complex” refers to the fact that strange

attractors have a non-integer or fractal dimension.

That is, the spatial dimension of the subset of states

that make up the attractor does not equal the stan-

dard Euclidean integer dimensions of one, two or

three (e.g., a fractal attractor might live in a two-

or three-dimensional state space, but is neither two-

dimensional nor three-dimensional, but something

in between). Strange attractors are characteristic of

chaotic systems (although not exclusively) and in such

cases are sometimes referred to as chaotic attractors.

The strange attractor displayed on the right of Figure

11.5 is the chaotic attractor of the Lorenz system.

The Lorenz attractor is made up of a complex subset

of states within a three-dimensional space and has a

fractal dimension of approximately 2.05. The set of

differential equations that make up the Lorenz sys-

tem was originally formulated by Edward Lorenz to

model atmospheric convection, but it is the strange,

butterfly-like structure of its chaotic attractor that has

made it so famous.

Order and Control Parameters

Most of the models we have discussed so far have

involved state variables that represent an individual

behavioral quantity or element. For many complex

systems, however, it would be impossible or unfeasi-

ble to have a different state variable and equation for

every element, agent, or behavioral quantity entailed

by the system. For example, if one were trying to

model the behavior of gas molecules within a sealed

container, it would be impossible to have a set of

equations specifying the position and velocity of every

molecule. Likewise, if one were attempting to model

the movement synchronization that occurs between

the members of an audience at a rock concert, it would

be impractical to describe the position and velocity

of each individual’s postural and gestural movements

over time. In these and other much simpler cases,

it is often better to devise a dynamical model that

effectively describes the macroscopic behavior of the

system as a whole. This involves identifying a state

variable that is able to capture the global or collective

organization of the system. Such variables are referred

to as collective variables or order parameters.

Identifying an appropriate order parameter is not

always easy and often requires a significant amount

of theoretical and empirical work, as well as model

testing and assessment (for more details see Kelso,

1995; Nowak & Vallacher, 1998). Once an appropri-

ate order parameter is identified, however, modeling

and understanding the dynamics of a complex system

is typically much simpler. For example, in the work of

Vallacher and colleagues reviewed earlier, where the

behavioral synchronization of two individuals is mod-

eled using coupled logistic equations (Equation 11.2),

the researchers chose a generic variable they called

observable-communicative behavior, and conceived of

this as a general patterning of behavior of one person

relative to another in interaction. This order parameter

is simply the intensity of overall behavior during inter-

action, which the authors suppose can be modeled

as the magnitude of a single dynamical system’s state

variable. In reality, the social agents in this model are

surely employing a whole range of observable behav-

iors, but by distilling these behaviors into one pro-

posed order parameter, the model is not only more

tractable and understandable but also more generaliz-

able.

Another common example of an order parameter

is relative phase, which captures the location of one

periodic or rhythmic behavior in its cycle relative to

another. For example, two people walking down the

street have the swaying of their arms and legs in a rela-

tionship of relative phase. Relative phase is an order

parameter because it quantifies in a single measure

the spatial-temporal relationship between two peri-

odic or rhythmic behaviors using a single variable.

First employed to capture the stable patterns of syn-

chrony that occur between two mechanical oscilla-

tors (e.g., coupled pendulum clocks), it has since been
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Figure 11.6. Bifurcation diagram for the logistic map, Equa-

tion 11.1.

employed to describe numerous biological phenom-

ena, including the behavioral synchrony and social

coordination that occurs between the bodily move-

ments of two interacting individuals (see Schmidt &

Richardson, 2008 for a review).

A control parameter is a system parameter that, when

changed, can significantly influence the dynamical

regime exhibited by a system. These parameters typ-

ically represent some external force, condition, or fac-

tor that plays an important role in constraining how

a system can evolve over time, and sometimes even

the attractors of a system. This is in contrast to other

system parameters that are typically fixed and repre-

sent non-changing constraints or forces. In the dis-

cussion of how an individual’s attitude toward group

X might be modeled using Equation 11.4, parameter

k operated as a control parameter. k represented the

amount of positive or negative experiences or infor-

mation an individual had about group X and increas-

ing or decreasing k influenced attitude strength, with

the attitude of individuals toward group X eventually

transitioning from negative to positive or vice versa as

k was scaled past some critical value.

Bifurcations

Bifurcations are changes in the number and/or type

of fixed points or attractors that constrain a system’s

time evolution and take place when a system’s control

parameter reaches a particular critical value. Many of

the systems described earlier exhibit bifurcations. For

instance, the logistic map (Equation 11.2) exhibits a

series of bifurcations as the parameter r is increased

from 0 to 4. The differential system defined by Equa-

tion 11.4 has two bifurcation points, one when k =

+.35 and one at k = –.35. In fact, nearly every sys-

tem described previously exhibits one or more bifur-

cations as the values of certain control parameters are

increased or decreased.

The possible attractors of a dynamical system that

emerge or are destroyed as a control parameter is

scaled can be visualized using a bifurcation diagram.

The bifurcation diagram for the logistic map (Equation

11.2) as a function of the parameter r scaled from 2.5

to 4 is displayed in Figure 11.6. The y-axis corresponds

to the possible long-term values of x(t), with r plotted

along the x-axis. It is easy to see from this diagram that

the logistic map has a single fixed point for r < 3, with

the long-term behavior of x(t) equaling a single value

of x. At r = 3, however, a bifurcation occurs with the

possible long-term behavior equaling two fixed point

values of x. The number of fixed points then continues

to fork or double as r is further increased (e.g., from 2

to 4, to 8 to 16 . . . fixed points) and eventually exhibits

chaotic behavior, with the possible long-term behavior

of x(t) equaling all possible values of x.

There are numerous types of bifurcations and not

all of them need to be described here (for more

information about the different types of bifurcations,
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Figure 11.7. Behavioral manifold for the cusp catastrophe.

Each point on the grey surface correspond to the stable fixed

points (behavioral attractors) for different a and b values. The

dashed lines illustrate to the different types of behavioral tran-

sitions that are possible when b is fixed at some value and a is

scaled up or down.

see Strogatz, 1994). One theoretical class of bifurca-

tions that are important to mention here are known

as catastrophes. They are called so because they reflect

a qualitatively dramatic change in the behavior of a

system. What is particularly interesting about catas-

trophes and the models used to describe them is that

they have proven to be theoretically useful for under-

standing the sudden emergence and or destruction of

a range of social phenomena, including attitudes, self-

evaluation, conformity, social relationships, and other

catastrophic social transitions (e.g., Guastello, 1995;

Latane & Nowak, 1994; van der Mass, Kolstein, & van

der Pligt, 2003; Vallacher & Nowak, 1998).

Many of the catastrophic social transitions just

mentioned have been modeled using the cusp catas-

trophe. The cusp model is a two-parameter version of

Equation 11.4, namely

ẋ = a + bx − x3 (11.5)

where x is the state variable and a and b are systems

parameters. The benefit of this model over Equation

11.4 is that it can be used to model how the interaction

of two different external forces can influence behav-

ior. For instance, this model can be used to describe

the sudden changes in the dating behavior of couples

given two interacting forces: a = love and b = social

pressure (Tesser, 1980; Tesser & Achee, 1994). Here,

social pressure refers to any family or societal pressure

on an individual “not to date” a certain type of indi-

vidual or group of individuals. For instance, an indi-

vidual who has a conservative upbringing and whose

friends and family are socially and politically conserva-

tive might be pressured not to date an individual who

has had a very liberal upbringing and whose friends

and family are all very liberal. Thus, social pressure

is known as a splitting factor or parameter in Equa-

tion 11.5.

The bifurcation diagram for Equation 11.5 is

displayed in Figure 11.7. The diagram is three-

dimensional, with dating behavior, x, on the vertical

axis and the control parameters for love, a, and social

pressure, b, defining a control surface on the horizon-

tal plane. The folded manifold plotted across the three

axis is a manifold of the fixed points that exist for dif-

ferent settings of a and b. That is, each point on the

manifold represents a fixed point, with the points on

the non-folded (light grey) area of the manifold corre-

sponding to stable fixed points and the points on the

folded (dark) area corresponding to unstable (repul-

sive) fixed points. A close inspection of Figure 11.7

reveals when the model predicts that a catastrophic

change in the dating behavior of a coupled would

or would not occur. With respect to the latter case,

in which social pressure, b, is low or zero, the pre-

diction (and expectation) is that dating behavior will

change almost linearly with changes in love. The more
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a couple loves each other – the higher the value of

a – the more likely a couple is to date. If social pres-

sure is high, however, increases or decreases in love

have little effect on the likelihood that a couple will

date, unless love increases or decreases past some crit-

ical value. At this point the couple will either sud-

denly enter into a strong dating relationship – if love

is increased above a critical value – or suddenly stop

dating altogether – if love is deceased below a critical

value.

Cellular Automata, Agent-Based, and

Artificial Neural Network Models

Modeling complex nonlinear dynamical systems

using difference and differential equations is a power-

ful way of investigating the stability, dynamic patterns,

and self-organization of systems. Using simple deter-

ministic rules, with well-conceived variables and well-

grounded parameters, can lead to a meaningful and

generalizable theoretical understanding of the dynam-

ics of various types of social behavior. There is, how-

ever, another set of methods for modeling the self-

organizing dynamics of complex social systems, which

starts from a microscopic level, focusing on how phe-

nomena emerge from interacting elements or agents

that behave according to simple rules. Such models are

cellular automata and agent-based models.

A cellular automaton is a collection of individual cells

that form an n-dimensional grid of a specified size and

shape, although they are typically restricted to either

a one-dimensional line (array) or a two-dimensional

square lattice of cells.2 Although these cells could rep-

resent any component or element, in many social psy-

chological applications a cell represents a person. The

cells that make up a cellular automaton represent indi-

vidual elements of the collective system (e.g., a com-

munity of individuals), with the behavior or state of

each cell at any point in time determined by a set of

simple rules that define its state based on the state

of neighboring cells. In a two-dimensional cellular

automaton, for example, a cell might be influenced by

the four cells directly adjacent to its location (i.e., the

cells above and below and to the left and right) or it

might be influenced by all eight cells that surround it

(i.e., the previous four, plus those on the diagonal).

Cellular automata, including one-dimensional

automata, can exhibit a wide variety of complex

2 A cellular automaton could also be a three-dimensional cube

of cells, for instance.

behavioral patterns with emergent properties char-

acteristic of complex dynamical systems (Wolfram,

2002). The rules that produce such patterns are

usually deceptively simple given the complexity of

consequences that can follow from them. Within

social psychology, cellular automata have been used

most notably to model the effects of social influence

and public-opinion change based on Latané’s social

impact theory (for reviews, see Nowak & Lewenstein,

1996; Nowak & Vallacher, 1998). In these models,

a two-dimensional cellular automaton is used with

cells representing different individuals who possess

an attitude of a certain strength toward a topic. The

dynamics of an individual’s attitudes are determined

as a function of the attitude of near neighbors. After

a number of iterations, this model eventually results

in a stable pattern of attitudes across individuals (i.e.,

cells). Of particular interest is that the time-evolving

patterns that result from this cellular automaton

illustrate how key hypotheses from social impact

theory play out, such as how pockets of minority

opinion emerge over time.

Consider an example. In the models presented

by Nowak and Lewenstein (1996), local interaction

among cells of a cellular automaton can render small

pockets or “walls” of resistance, where a cluster of

cells is mutually supportive in sustaining their opin-

ion, despite the onslaught of surrounding opinion. In

additional simulations, they show that such minor-

ity opinion can grow to become the dominant one.

For this to happen, the minority opinion is sparsely

distributed in a social environment – weak and scat-

tered. Yet, with a small bias to favor that minority

opinion, things quickly change. What emerges in this

model are “clusters” or “bubbles” of minority influ-

ence that, as they grow, come to interconnect with

each other, thus growing in force and slowly domi-

nating the once-majority opinion. Importantly, all of

these simulations depend on simple, local interactions

among cells, stretching across space and time.

An extension of classic cellular automata just

described, which involve a collection of fixed cells

whose state changes over time, is to have cells rep-

resent elemental locations, with the state of a cell cor-

responding to whether it is occupied or not. One of

the earliest applications of cellular automata in the

social sciences (Shelling, 1971) used this form of cellu-

lar automata and demonstrated how social segregation

can result from individuals who are more dissimilar to

those around them moving to a different location.

Agent-based modeling is another extension of cellular

automata models. Such models have more potential

https://doi.org/10.1017/CBO9780511996481.015
Downloaded from https://www.cambridge.org/core. BCI, on 03 May 2021 at 01:40:19, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/CBO9780511996481.015
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


COMPLEX DYNAMICAL SYSTEMS IN SOCIAL AND PERSONALITY PSYCHOLOGY 267

for complexity, as agents in these models are not con-

fined to a matrix of cells but are able to move around.

One prominent use of agent-based modeling comes

from the work of Axelrod (1984; Axelrod & Dion,

1988; Axelrod & Hamilton, 1981) on the emergence

of cooperative behavior in games like the prisoner’s

dilemma. Axelrod’s work demonstrates that strategies

that are cooperative but punish defections (e.g., the

tit-for-tat strategy) are most successful in computer

simulation tournaments in the long run when pitted

against agents using other strategies. Moreover, if the

program increases the likelihood of an agent taking on

the strategy of an interactant who is more successful

in their game, the tit-for-tat strategy spreads in a pop-

ulation. Intriguingly for a dynamical perspective, his-

tory is crucial for learning such a strategy. If there is a

reshuffling of agents after each trial so that they have

no continuity in whom they interact with, then there

is no means for an agent to learn personally the nega-

tive consequences of defecting when the other cooper-

ates (punishment on the next trial) – the agents have

by then moved on to the next partner. As a result,

lacking history with an interactant cooperative strate-

gies are not learned (Axelrod, Riolo, & Cohen, 2002)

– the tit-for-tat strategy does not spread.

One interesting aspect of cellular automaton and

agent-based models more broadly is the emergent

phenomena that result from the structure of linkages

between agents. Traditional social psychological meth-

ods do not account well for how being in contact with

multiple individuals, repeatedly and over time, affects

behavior (Mason, Conrey, & Smith, 2007). Because

agent-based models do, they allow a researcher to see

how novel phenomena may emerge as a consequence

of the interdependencies among agents (Smith & Con-

rey, 2007). A recent agent-based simulation of impres-

sion formation capitalizes on the unique potential for

such models to examine the consequences of flow of

information across different types of linkages (Smith

& Collins, 2009). In Smith and Collins’s model, par-

ticipants can sample information about another per-

son directly or indirectly (e.g., through gossip). They

used Kenny’s Social Relations Model (1994) to ana-

lyze key features of impressions – for example, the

degree to which impressions do in fact reflect com-

monalities (across perceivers) attributable to the tar-

get, versus how much variance is owing to perceiver

and specific target-perceiver relationships. The results

of their simulations indicate that the ways of obtain-

ing information matter. The most negative impres-

sion came from one-sided elicitation (because people

are likely to cease seeking information if their initial

impression is negative). Sampling information socially

led to more positive impressions on average, as well

as reduced perceiver effects and relationship effects.

Moreover, the authors found emergent phenomena

that had to do with dyadic reciprocity and the relative

accuracy of generalized versus dyadic accuracy (Smith

& Collins, 2009).

In the Smith and Collins’s (2009) model, although

the model is directed toward understanding cognitive

processes through transmission of information about

a person (directly or third-person), the interacting

agents in the model are individuals. It is important

to realize, however, that the agents in agent-based

modeling can be the cognitive elements themselves

(e.g., the interaction between visual perception, infer-

ences, judgments, etc.). Thus, there is a close link

between such models and dynamic models of mem-

ory. A brand of modeling that has focused entirely

on exploration of the dynamics of social cognitive

processes is artificial neural network models (also called

connectionist models in the late 1990s). In a classic

work in social psychology, Smith and DeCoster (1998)

used a basic associationist neural network model to

explore a wide range of phenomena, including stereo-

typing and person perception. They argued that neu-

ral network models of memory and social judgment –

which function by integration of basic informational

cues (much like interaction among agents) – can more

parsimoniously account for a range of social phenom-

ena than traditional models of memory (e.g., Wyer &

Srull,1989). Modern neural network models can also

be used to model cognitive dynamics, including the

dynamics of social cognition; see Smith (1996) for an

excellent early introduction to use of neural network

(connectionist) models in social psychology.

Such models have also been applied to social

interactive phenomena. Nowak and Vallacher (1998)

review early models of interpersonal dynamics using

neural network models. Perhaps the best illustration of

such models is a very recent model meant to tap into

the fast-time-scale dynamics of person perception and

judgment by Freeman and Ambady (2011). They pro-

posed that person construal (such as identifying the

gender of a person) is constrained by a constellation of

information sources in the environment, such as hair

cues, skin cues, facial configural cues, and so on. They

developed an interaction-activation framework (see

collection of papers in Rumelhart & McClelland, 1985)

in which cues are integrated incrementally and proba-

bilistically in time. This provides an array of predictions

about how personal construal dynamics is shaped and

guided by different combinations of cues. The authors
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have explored such dynamics in a variety of exper-

iments on the behavioral dynamics of these percep-

tions using, for example, mouse-tracking methods. In

this behavioral approach, researchers can track par-

ticipants as they move their computer mouse toward

varying options on a screen (e.g., during person con-

strual). These mouse movement trajectories can then

be mapped directly onto a computational neural net-

work model: The evolution of the computer cursor on

the screen toward a response box can be captured by a

neural network state, achieving some stable response

activation over choices. Accordingly, the dynamical

model, together with behavioral recordings, makes a

tidy dynamical package for exploring the dynamics of

social decision making, perception, and judgment. For

a review of the behavioral results, see Freeman et al.

(2011); for software that allows dynamic tracking of

these social processes, see MouseTracker (Freeman &

Ambady, 2010).

DYNAMICAL SYSTEMS ANALYSIS

Dynamical modeling is important because it provides

researchers with a set of tools for understanding in

an abstract and often extremely general way how

human and social behavior can emerge. As many of

the examples provided earlier highlight, the power of

a dynamical model does not always rest on its ability

to simulate real-world behavior, but rather whether

it can generate testable predictions, enhance theoret-

ical development, and motivate research questions.

Unfortunately, there is no step-by-step guide that

one can follow when developing dynamical models

of human and social behavior. Building an effective

model requires good understanding of the many dif-

ferent types of models and mathematical functions

that can be employed to capture differing types of

dynamics, as well as a significant amount of theo-

rizing and lots of trial and error. A researcher inter-

ested in modeling the dynamics of a behavioral system

also needs to have a good understanding of the sys-

tem’s underlying stabilities and its relevant state vari-

ables and parameters. In many instances, however,

researchers in social-personality psychology do not

start with sets of state variables, parameters, or mathe-

matical functions or equations, and may not know the

nature of a behavioral system’s underlying dynamics.

In such cases, research typically starts with a tempo-

ral sequence of behavioral measurements or observa-

tions – a behavioral time series – recorded during exper-

imental, nonexperimental, or observational research.

A researcher then attempts to uncover the dynamics

of a behavior using various forms of time-series anal-

ysis. Accordingly, in this final section of the chapter

we review some of the tools that can be employed for

dynamical analysis of behavioral time series.

Before introducing various methods of dynamical

time-series analysis, it is important to appreciate that

empirical research and the analysis of behavioral time-

series data can be, but is not always, a precursor to

modeling. Rather, research and modeling are best con-

ceptualized as complementary methods of dynami-

cal analysis, with researchers often moving back and

forth between both forms of research (i.e., behavioral

research and dynamical modeling), using experimen-

tation and time-series analysis to identify key state

variables, attractors states, and control parameters,

and mathematical modeling to better understand and

test empirical findings and make future predictions. A

detailed description of the nuances of how one goes

from the dynamical analysis of behavioral time-series

data to a dynamical model is well beyond the scope

of this chapter. We do wish to emphasize, however,

that building a dynamical model is not always neces-

sary for understanding the dynamics of behavior. In

many cases, building a model to simulate the dynam-

ics uncovered via behavioral time-series analysis will

not necessarily provide more insights or additional

information about a system’s underlying dynamics.

Accordingly, many dynamical systems researchers are

less concerned with building dynamical models and

instead focus more of their efforts on uncovering the

dynamics of behavioral systems via experimentation

and the kinds of dynamical time-series analysis tech-

niques outlined in the following sections.3

Behavioral Measurement

As with any research study, determining valid and

reliable dependent variables is fundamental. What the

right dependent variable is when investigating the

dynamics of social phenomena will of course depend

on what behavior is measurable in a given con-

text, along with a researcher’s theoretical interests.

3 The converse is also true, with some researchers focus-

ing primarily on building abstract dynamical models like

those described in the previous section without collect-

ing real behavioral data (time-series or otherwise). Just as

valid as empirical research, this latter “research by model-

ing” approach is less concerned with simulating real-world

behavior and is more concerned with developing a formal yet

highly generalizable understanding of how organized behav-

ior can emerge, change, and dissolve over time.
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Obviously, the dependent variable should capture the

state of the agent or system at the time of measure-

ment. As we outlined previously, a behavioral state

represents a wide array of measures. For example,

socially relevant measures may come in the form

of self-esteem, personality characteristics, attitude, or

social dominance measured over time. A measured

behavioral state could also be a mode or type of

behavior, such as whether an individual carries an

object alone or together with another person, or exclu-

sionary acts of a pair of individuals with respect

to some third (perhaps out-group) individual dur-

ing an interactional game. In social-personality psy-

chology, it is also common for researchers to record

other more indirect or implicit measures of a behav-

ioral state, including physiological measures such as

heart rate, cortisol level (Dickerson & Kemeny, 2004),

muscle activity, skin conductance, and neurophysi-

ological measurement techniques (e.g., using EMG,

EEG, or fMRI; see Berkman, Cunningham, & Lieber-

man, Chapter 7 in this volume; Cacioppo, Tassi-

nary, & Berntson, 2007; Stam, 2005). Overt behaviors

that have social relevance also include body posi-

tion and movement (for reviews, see Fowler, Richard-

son, Marsh, & Shockley, 2008; Schmidt & Richardson,

2008) and eye gaze (Richardson & Dale, 2005). Any

social process likely has a behavioral proxy that can be

tracked, semi-continuously, in time.

No matter what dependent variable one chooses,

there are several important requirements when inves-

tigating the dynamics of social behavior. First, and

most obviously, the dependent variable must corre-

spond to a behavioral state measurement that can

be recorded repeatedly over time. This results in

a sequence of measurements over time, or more

specifically, a behavioral time series. Here, the term

“time” could refer to “clock” time such as second,

minute, hour, day, month, etc., or it could refer to

some other time scale, such as trials, sessions, or

events. That is, a researcher could record a behavior

almost continuously, making measurements several

times a second or after some longer time interval.

For instance, a researcher could record an individ-

ual’s postural position 50 times a second during the

course of a 2-minute conversation (e.g., Schmidt, Fitz-

patrick, Caron, & Mergeche, 2011; Shockley, Santana,

& Folwer, 2003), the heart rates of an infant and

mother sampled 1,000 times a second during a three-

minute face-to-face interaction (Feldman, Magori-

Cohen, Galili, Singer, & Louzoun, 2011), vocal activ-

ity assessed at fractions of a second (Warlaumont,

Oller, Dale, Richards, Gilkerson, & Dongxin, 2010),

respiration patterns assessed at each breath intake

for dyads involved in lengthy casual conversations

(McGarva & Warner, 2003; Warner, 1992; Warner,

Waggener, & Kronauer, 1983), an individual’s emo-

tional expression twice a minute while watching an

emotive film (e.g., Mauss, Levenson, McCarter, Wil-

helm, & Gross, 2005), or an individual’s self-esteem

or mood every day over the course of two years (e.g.,

Delignières, Fortes, & Ninot, 2004).

Behavioral time series can also be sequences of dis-

crete behavioral events (e.g., occurrence of categorical

events or coded behaviors) that could be dichotomous

(a single action occurs or not, such that the time series

is a sequence of 1s and 0s) or that involve several dif-

ferent discrete states recorded on a nominal unit scale.

For instance, a researcher could record which object

is being looked at and in what sequence during a

joint task (Richardson & Dale, 2005), which words and

sequences of words are used by an individual or group

of individuals during a conversation (Louwerse, Dale,

Bard, & Jeuniaux, 2012), or a dichotomous coding of

when individuals vocalize or not during interactions

with someone they believe to be attitudinally simi-

lar or dissimilar to themselves (McGarva & Warner,

2003).

Irrespective of the type or time scale of the behavior

being measured or recorded, the ordering of observa-

tions or measurements in the behavioral time series

must be recorded sequentially in time. Extracting the

emerging patterns or stable states of behavior from

data requires historical information about the state of

the system preceding its current state. If future obser-

vations depend on observations that preceded it in

time – in other words, that are sequentially dependent

– then data recorded nonsequentially will prevent

identification of trends, stable states, or reoccurring

patterns that may exist. In many dynamic analy-

ses, an additional constraint is that the time intervals

between sequential measurements must be the same.

This is because the dynamic regimes that character-

ize many continuous behaviors have specific tempo-

ral properties that can only be determined if the time

between measurements is known and equivalent.4 For

instance, many human and social behaviors are char-

acterized by periodic patterns, from the intrinsic peri-

odicity of brain-wave patterns (e.g., Tognoli, Lagarde,

DeGuzman, & Kelso, 2007), to the leg and arm move-

ments of an individual while walking (e.g., Moussaı̈d,

4 Subtle variations in time interval are not always catastrophic,

especially for longer intervals (i.e., hour or day), but should

be minimized as much as possible.
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Perozo, Garnier, Helbing, & Theraulaz, 2010), to the

day-to-day mood of an entire population of people

(Dodds, Harris, Kloumann, Bliss, & Danforth, 2011).

In each case, the same or similar behavioral states

recur again and again after a certain period of time

(i.e., with a certain temporal frequency).

It is also crucial that the measurement device has

enough resolution to reliably capture whether the

behavioral state has changed across repeated measure-

ments. In many instances, traditional methods of mea-

surement, such as obtaining self-evaluations on a 7- or

9-point Likert scale, or simply coding whether or not a

certain behavior or action occurred (i.e., 1 for yes and

0 for no), can provide the resolution needed. In other

cases, such as when recording the subtle gestures, pos-

tures, or eye movements of conversing individuals,

or the subtle changes in the body language, emotion,

and anxiety of an individual during an interpersonal

confrontation, more advanced methods of measure-

ment might be required. Thankfully, recent technical

progress has facilitated collection of such behavioral

time series. For instance, modern video processing

technology enables researchers to acquire objective

whole-body activity time series of one or more indi-

viduals from synchronized multiview video recordings

(e.g., Kupper et al, 2010; Schmidt, Morr, Fitzpatrick,

& Richardson, 2012). There are also technologies for

continuously recording an individual’s movements in

space and time, such as Polhemus tracking systems

(e.g., Polhemus Liberty and Latus systems, Polhemus,

Ltd, Virginaia) and NDI Optorack (Northern Digital

Inc., Ontario, Canada). There are also now a num-

ber of low-cost off-the-shelf gaming systems (e.g.,

Nintendo Wii remotes and force plates, and the MS

Kinect) that can be used to wirelessly record the

movements of interacting individuals in real time. As

for physiological measures, Biopac systems are now

widely used for tracking one or more signals, and

can be used as both an electroencephalogram and

electromyogram (Biopac Systems, Inc., Aero Camino

Goleta, CA). Blascovich (Chapter 6 in this volume) pro-

vides more details about physiological measurement.

With regard to recording more discrete behav-

ior, even for eye movements and gestures, as well

as language analysis, there are now hardware and

software applications that can automatically catego-

rize the behaviors being emitted. For language anal-

ysis, researchers relied on well-developed schemes

in the psychological sciences for coding or transcrib-

ing social interaction, involving time-intensive prac-

tices that require careful selection of units of analy-

sis, guided by research goals (Bakeman, Deckman, &

Quera, 2005; Heyman, Lorber, Eddy, & West, Chap-

ter 14 in this volume; Kreuz & Riordan, 2011).

Such research can be facilitated by powerful anno-

tation software (Loehr & Harper, 2003). Eye move-

ment technologies can use “areas of interest” (AOI)

to transform a sequence of x,y-coordinates on a com-

puter screen to a set of looked-to objects. Researchers

have also used continuously recorded body move-

ments and speech to infer discretely labeled states. For

example, in the domain of human-computer interac-

tion, machine-learning algorithms have been applied

to extract meaningful states (Castellano, Kessous, &

Caridakis, 2008), such as which emotion is being expe-

rienced by a person, given multimodal cues such as

speech, and face and body movements. In addition,

gesture recognition algorithms allow hand gesture pat-

terns (discrete categories) to be obtained by learning

algorithms applied to body movement data (see Mitra

& Acharya, 2007 for a review).

Methods of Dynamical Analysis

So what do you do after you have obtained a

time-series recording of a behavioral phenomenon?

How do you investigate the dynamics present in a

recorded time series? In general, the dynamical analy-

sis of a behavioral time series involves qualitative and

graphical assessment of the time-evolving pattern of

behavior and then quantitative linear and/or nonlin-

ear time-series analysis.

Qualitative and graphical assessment. For any research

study, knowing what the recorded data “look” like

is essential for appropriate understanding and anal-

ysis. Although visual inspection alone does not typi-

cally reveal what the underlying dynamics are, it does

provide a general understanding of the kinds of anal-

ysis techniques that will be needed to uncover the

dynamics. For dynamical analysis, this first and fore-

most involves graphing the behavioral time series on a

time-series plot and visually inspecting the patterns it

contains. For illustrative purposes, hypothetical exam-

ples of some of the different kinds of time series that

might be obtained in social-personality psychology are

displayed in Figure 11.8 (consult sources cited later

in this paragraph for data examples). An inspection

of different time series highlights just a few of the

many different types of behavioral time-series patterns

that could be recorded. In some cases the patterns of

change over time are relatively simple and regular: the

monotonic decrease of an individual’s anxiety level

over the course of 50 therapy session (Heath, 2000)

and the oscillatory movements of an individual’s right
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Figure 11.8. Hypothetical examples of several types of behav-

ioral time series. (top left) Change in anxiety level for an indi-

vidual over 50 therapy sessions. (middle left) An individual’s

self-esteem recorded on a 9-point Likert-scale twice a day for

512 days. (bottom left) An individual’s daily hedonic (mood)

level recorded over 12 weeks. (top right) Motion sensor record-

ing of an individual’s right arm movements while walking.

(middle right) Reaction times of a participant completing a 512

trial lexical decision task. (bottom right) A time series repre-

senting categorical data obtained from eye movement behav-

ior while a person views an array of 6 images. An eye-tracking

system records a numeric identifier 1–6 reflecting which par-

ticular image is being fixated over time (see text for more

details).

arm while walking (Harrison & Richardson, 2009). In

other cases the patterns of change over time are highly

complex and appear to be nondeterministic or stochas-

tic (i.e., random): an individual’s self-esteem over the

course of 1.5 years (see Delignières et al., 2004) and

the trial-by-trial RT of an individual completing a 512

trial lexical decision task (see Holden, 2005). Others

seem to fall somewhere in between, containing semi-

periodic patterns or other complex regularities. Two

examples are the daily hedonic level or mood of indi-

viduals over the course of twelve weeks (see Larsen

& Kasimatis, 1990) and the eye fixations that occur

when an individual scans the world during a conver-

sation (see Richardson & Dale, 2005).

In addition to inspecting time-series plots of one’s

data, plotting a behavioral time series as a trajectory in

phase space can also provide researchers with a clear

qualitative understanding of the attractor(s) that con-

strain the time-evolving behavior. If the state space of

a behavioral systems is known a priori (and contains

no more than three dimensions), this is often quite

easy. It is more often the case, however, that the phase

space of a behavioral system is not known a priori.

In such cases, the process of plotting behavioral time

series and a trajectory in phase space requires that

one uncover – or more precisely, recover – the phase

space of a behavioral system analytically. Phase space

reconstruction involves a number of steps that enable

a researcher to recover a phase space isomorphic to

the system’s real phase space. In short, phase space

reconstruction involves extracting the entire multi-

dimensional dynamics of a system, in all its com-

plexity, from a one-dimensional time-series recording.

Although a detailed description of the steps required to

complete phase space reconstruction is too involved to

be unpacked here (for a more detailed description and

tutorial, see Abarbanel, 1996 and Kantz & Schreiber,

1997), the method itself is powerfully intuitive. For

systems that have a phase space with more than

three dimensions, phase space reconstruction also

provides a quantifiable measure of a system’s dimen-

sion – an indication of the number of the state vari-

ables required to model the system effectively. Exam-

ples of phase space reconstruction applied to a socially

relevant phenomenon are described in Shockley

et al. (2003) and Richardson, Schmidt and Kay (2007),
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who study behavioral synchrony between interacting

partners. In this research, a single bodily movement

measure – such as postural change – is recorded as a

signature of the fluctuations of the total mind/body

system. To gain access to the higher dimensions of the

system from the (single) one-dimensional time-series

measure (i.e., change in posture sway over time),

researchers use phase space reconstruction to discern

how many dimensions best capture the fluctuations

observed in the movement time series (often as many

as 10 dimensions). Once phase space is reconstructed,

researchers can then mathematically compare how

two people’s movements change in relation to each

other in this higher-dimensional space.

Linear and nonlinear time-series analysis. One of the

key decisions a researcher must make when inspect-

ing time-series plots is whether the dynamic regime

that characterizes the behavior of interest is simple or

regular enough to be analyzed using linear methods,

or whether the behavioral dynamics are sufficiently

complex that one must employ nonlinear methods.

Unfortunately, there is no definitive rule as to when

one should employ linear or nonlinear methods and in

many instances, especially when performing a dynam-

ical analysis on new phenomena or on behavioral time

series that have not previously been examined, it is

prudent to employ a range of linear and nonlinear

methods in order to determine different aspects of the

behavioral dynamics recorded.

In general terms, however, linear methods of anal-

ysis are preferable when the patterning of movement

or behavior being investigated is highly regular and

stationary. That is, the mean and dispersion of sam-

pled values in the time series have a regular pat-

tern and remain more or less the same across the

interval of recorded time. The anxiety, daily hedo-

nic level, and limb movement time series in Figure

11.8 all meet this criteria, as does the RT time series

(although see section on fractal analysis later in the

chapter). For time series data that is nonstationary – the

mean and dispersion of sampled values vary markedly

across the time-series recording – or for behavioral

time-series that contain a high degree of stochastic

variability or involve highly complex or aperiodic pat-

terns of change over time, nonlinear methods may be

more effective. What follows is a brief description of

several common and generally applicable linear and

nonlinear time-series methods for research in social-

personality psychology (for more detailed discussion

and tutorials, see Abarbanel, 1996; Boker & Wenger,

2007; Gottman, 1981; Heath, 2000; Kantz & Schreiber

1997; Riley & Van Orden, 2005).

Spectral analysis and cross-spectral coherence. One of

the first questions commonly asked when analyzing

time-series data is whether the data contains any peri-

odic or temporal structure. Consider the limb move-

ment and daily hedonic time series in Figure 11.8. Do

the up and down fluctuations occur in a stable peri-

odic manner? If so, after what period of time (i.e., at

what frequency) does the pattern repeat itself? Con-

ducting a spectral analysis enables one to answer these

questions by decomposing a time series into its peri-

odic components by estimating how well a set of sine

or cosine functions of different frequencies and ampli-

tudes fit the data. Performing a spectral analysis is

much like conducting a regression analysis in that

you are attempting to decompose the major sources

of variation in the data, in this case trying to deter-

mine which component frequencies account for sig-

nificant amounts of variability in the signal. For highly

stable periodic behavior, like the rhythmic limb move-

ments displayed in Figure 11.8, there is usually only

one dominant or fundamental frequency component.

For less stable periodic data, like the daily hedonic time

series displayed in Figure 11.8, individual frequency

components will be less powerful. There might also be

more than one frequency component in a time series

(i.e., multiple frequency components). This is partic-

ular true for highly complex or semi-periodic time

series.

Spectral analysis can also be employed to determine

how correlated two time series are by examining,

essentially, the similarity of their frequency patterns.

This comparison is called cross-spectral coherence

and indexes the correlation between two time series

on scale of 0 to 1, and is analogous to calcula-

tions of the squared correlation coefficient (Gottman,

1981; Porges et al., 1980; Warner, 1988). In social-

personality research, cross-spectral coherence is com-

monly employed to examine mutual influence and

behavioral coordination, that is, the degree to which

one individual’s behavior is influenced by and/or

coordinated with the behavior of another. For exam-

ple, Sadler et al. (2009) used cross-spectral methods

to explore the rhythmic relationships between two

people’s dominance and affiliative dynamics during

interaction. In this study, coders dynamically tracked

interaction partners using a joystick, thus producing

dominance/affiliation time series. The authors found

that, indeed, pairs of interaction partners exhibit sim-

ilar affiliation amplitude-frequency patterns. Put dif-

ferently, they shared behavioral cycles.

Autocorrelation and cross-correlation. Dynamic human

and social behavior is usually correlated over time. In
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other words, how an individual behaves at any given

moment is typically correlated with how the individ-

ual behaved sometime recently. The dependence or

correlation between future and past behavior can be

determined using autocorrelation. Sometimes called

lagged correlation, autocorrelation identifies if future

states are correlated with past states by determining

the correlation between points in a time series at dif-

ferent time lags. A positive autocorrelation indicates

persistence of behavior after some time lag; the behav-

ioral change is similar from one observation to the

next (e.g., positive changes or state values in both past

and future states). A negative autocorrelation indi-

cates anti-persistence of behavior after some time lag;

opposite behavioral change occurs from one observa-

tion to the next (e.g., positive changes or values in the

past state correspond to negative changes or values in

the future states).

Cross-correlation is a simple extension of autocor-

relation and examines the dependence or correlation

between future and past values of different time series.

It is also commonly used to examine mutual influence

and behavioral coordination, and yields similar results

to coherence analysis (described earlier), except that

one can also look at the correlation between individ-

uals’ behaviors at time lags other than zero. Accord-

ingly, it can be employed to determine if two behav-

iors are attracted toward each other, and also whether

one behavior leads or follows another behavior at

some specific time lag.

Relative phase analysis. Another technique for exam-

ining mutual influence and behavioral coordination

is relative phase analysis. This technique has been

employed most extensively in research examining

behavioral synchrony – the rhythmic movement coor-

dination that occurs between the limb or body move-

ments of interacting individuals (e.g., Marsh, Richard-

son, & Schmidt, 2009; Miles, Lumsden, Richardson,

& Macrae, 2011; Schmidt & Richardson, 2008). It can

also be employed to investigate the patterns of coordi-

nation that occur between any set of rhythmic or peri-

odic behavior (e.g., the coordinated changes in day-to-

day mood of husband and wife or mother and child).

In short, the technique involves calculating the dif-

ference in the “phase” of two (or more) rhythmic or

periodic behaviors over time (for details on multivari-

ate relative phase analysis, see Frank and Richardson,

2010; Richardson, Garcia, Frank, Gregor, & Marsh,

2012). Here the term “phase” refers to the location

of a system or behavior within its cycle. The relative

phase or “difference in phase” between two rhyth-

mic or periodic behaviors therefore corresponds to the

location of one behavior within its cycle relative to the

location of the other within its cycle. Thus, if the rela-

tive phase between two behavioral time series remains

the same over time, the behavior is said to be coor-

dinated at that relative phase relation. For example,

consider two people coordinating their rhythmic gait

while walking down the street together – their leg

cycles are in the same place and are cycling together.

Typically, behavioral synchrony is constrained to

two stable patterns of behavioral coordination over

time, commonly referred to as inphase and antiphase

coordination (Haken, Kelso & Bunz, 1985; Schmidt,

Carello, & Turvey, 1990). Inphase coordination corre-

sponds to rhythmic or periodic movements or behav-

iors that move or change in the same direction at the

same time (such as the walkers we just mentioned).

Antiphase coordination corresponds to rhythmic or

periodic movements or behaviors that move or change

in the opposite direction at the same time. To use the

walking example again, this would mean that indi-

viduals would be continuously moving their legs in

opposite patterns – as one person swings her right leg

forward, the other would be swinging her right leg

back. It is worth noting that these latter descriptions of

inphase and antiphase coordination characterize per-

fect or absolute synchrony. During natural social inter-

action, however, the movements or behavior individ-

uals do not usually become coordinated in a perfect

inphase or antiphase manner, but rather exhibit inter-

mittent periods of inphase and/or antiphase coordina-

tion (e.g., Richardson, Schmidt, & Kay, 2007; Schmidt

& O’Brien, 1997).

Recurrence analysis. The analysis methods discussed

so far are based primarily on assumptions of linear

relations that underlie most analyses commonly used

in psychology (e.g., ANOVA). Accordingly, they are

only able to capture the linear dynamics of station-

ary time-series data. Recurrence analysis, however,

is a nonlinear analysis method and can be employed

to analyze both stationary and nonstationary data.

Indeed, the beauty of recurrence analysis, in com-

parison to other linear time-series methods, is that

it does not require assumptions about the structure

of the time series being investigated or the underly-

ing dynamics that shape the recorded structure: The

behavior can be periodic, nonperiodic, or stochastic,

even discrete or categorical.

Although recurrence analysis is still relatively new,

particularly in psychology (e.g., Riley, Balasubrama-

niam, & Turvey, 1999; Shockley, Santana, & Fowler,

2003), there is now substantial evidence that suggests

it is potentially one of the most robust and generally

https://doi.org/10.1017/CBO9780511996481.015
Downloaded from https://www.cambridge.org/core. BCI, on 03 May 2021 at 01:40:19, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/CBO9780511996481.015
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


274 MICHAEL J. RICHARDSON, RICK DALE, AND KERRY L. MARSH

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

i, time (word)

j,
 t

im
e

 (
w

o
rd

)

you say yes i say no you say stopand i say go go go oh no

y
o
u

s
a
y

y
e
s

i
s
a
y

n
o

y
o
u

s
a
y

s
to

p
a
n
d

i
s
a
y

g
o

g
o

g
o

o
h

n
o

Recurrence Plot

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25
Word sequence of Hello Goodbye lyrics

N
u
m

e
ri
c
 c

o
d
e
 (

w
o
rd

)

Time (word)
0 500 1000 1500

0

0.2

0.4

0.6

0.8

1

Time (points)

X(i) points

Y
(j
) 

p
o
in

ts

Figure 11.9. (top left) The full time series of words extracted

from the lyrics of “Hello, Goodbye” by the Beatles. The y-axis

represents the numeric identifier to which a word is assigned,

and the x-axis represents word-by-word unfolding of this “lex-

ical” time series. (bottom left) A recurrence plot of the first 20

words in the lyrics. Each point on the plot represent a relative

point (i,j) in the lyrics at which a word is recurring. The “go go

go” usage appears as a particular “texture” on the plot, along

with the two-word sequence “you say” appearing as a diago-

nal line structure. (top right) The anterior-posterior postural

sway movements of single individual standing and listening

to another person speak for 30 seconds, recorded at 50 sam-

ples a second. (bottom right) A recurrence plot of the first 10

seconds of postural data. Despite the nonperiodic and nonsta-

tionary pattern of the postural sway movement, the recurrence

plot reveals a significant degree of recurrent and deterministic

structure, with the patterns of postural behavior reoccurring

over time.

applicable methods for assessing the dynamics of bio-

logical and human behavior (e.g., Marwan & Meinke,

2002; Zbilut, Thomasson, & Webber, 2002), including

social behavior (e.g., Dale & Spivey, 2005; Richard-

son et al., 2008; ; Shockley et al., 2003). Essentially,

recurrence analysis identifies the dynamics of a sys-

tem by discerning (1) whether the states of the system

behavior recur over time and, if states are recurrent

over time, (2) the degree to which the patterning of

recurrences are highly regular or repetitive (i.e., deter-

ministic). Conceptually, performing recurrence analy-

sis on behavioral data is relatively easy to understand;

one simply plots whether the recorded points, states,

events, or categories in a time series or behavioral tra-

jectory are revisited or reoccur over time on a two-

dimensional plot, called a recurrence plot. This plot

provides a visualization of the patterns of revisitations

in a system’s behavioral state space and can be quan-

tified in various ways – a process known as recurrence

quantification – in order to identify the structure of the

dynamics that exist (see Marwan, 2008 and ; Weber &

Zbliut, 2005 for more detailed reviews). The plots in

Figure 11.9 are examples of what recurrence plots look

like for a categorical (left plot) and continuous (right

plot) behavioral time series.

Like spectral analysis and autocorrelation, recur-

rence analysis can also be extended to uncover the
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dynamic similarity, mutual influence, or coordinated

structure that exists between two different behav-

ioral time series or sequences of behavioral events.

This latter form of recurrence analysis is termed cross-

recurrence analysis and is performed in much the same

way as standard (auto) recurrence analysis. The key

difference is that recurrent points in a cross-recurrence

plot correspond to states, events, or categories in two

time series or behavioral trajectories that are recurrent

with each other. Cross-recurrence analysis can there-

fore be employed to capture and then quantify the co-

occurring or coordination dynamics of two behavioral

time series or discrete behavioral sequences. Accord-

ingly, some researchers have adopted cross-recurrence

analysis to investigate semantic similarity in conver-

sation (Angus, Smith, & Wiles, 2011), perceptual-

motor synchrony between people interacting (Shock-

ley et al., 2003; Richardson & Dale, 2005), and vocal

dynamics during development (Warlaumont et al.,

2010).

Fractal analysis. Researchers in social-personality

psychology (or in any other field of psychology) com-

monly collapse repeated measurements into summary

variables, such as the mean and standard deviation,

under the assumption that the measured data contains

uncorrelated variance or random fluctuations that are

normally distributed. With respect to dynamic behav-

ioral time-series data, however, this is rarely true, and

thus summary statistics such as the mean and stan-

dard deviation often reveal little about how a sys-

tem evolves over time. Indeed, time-series record-

ings of human performance and behavior typically

contain various levels of correlated variance or data

fluctuations (i.e., nonrandom fluctuations) that are

not normally distributed (Stephen & Mirman, 2010)

and, moreover, are structured in a fractal or self-similar

manner (Gilden, 2001, 2009; Van Orden, Holden, &

Turvey, 2003; Van Orden, Kloos, & Wallot, 2011).

A fractal or self-similar pattern is simply a pat-

tern that is composed of copies of itself nested within

itself. As a result, the structure looks similar at differ-

ent scales of observation (i.e., magnification). Concep-

tually similar to geometric fractal patterns (Mandel-

brot, 1982), a fractal time series is therefore a time

series that contains nested patterns of variability (see

Figure 11.10). That is, the patterns of fluctuation and

change over time look similar at different scales of

magnification or measurement resolution (i.e., as one

zooms in and out).5 The self-esteem time series in

5 In actuality, only ideal mathematical or geometric fractals

are truly self-similar, with real-world fractals considered

Figure 11.8 is a good example of a fractal or self-similar

time-series pattern. This time series is displayed again

in Figure 11.10, with the self-similarity of its temporal

fluctuations revealed by zooming in on smaller and

smaller sections. At each level of magnification the

temporal pattern looks similar (see Bassingthwaighte,

Liebovitch, & West, 1994 or Holden, 2005 for a more

detailed tutorial).

A fractal time-series pattern is characterized by an

inverse proportional relationship between the power

(P) and frequency (f) of observed variation in a time

series of measurements.6 That is, for a fractal time-

series, there exists a proportional relationship between

the size of a change and how frequently changes of

that size occur, with this relationship remaining stable

across changes in scale. It is in this sense that the pat-

tern of variability in a repeatedly measured behavior

is self-similar; large-scale changes occur with the same

relative frequency as small-scale changes. The degree

to which a dataset approximates this ideal relationship

between power and frequency, P = 1�f α, is summa-

rized in the scaling exponent, α, with P = power, and

f = frequency. If one plots the power of the differ-

ent spectral frequencies that make up a time series on

double-logarithmic axes, α is equivalent to the slope

of the line that best fits the data (see Figure 11.11).

That is, α captures the relationship between size and

frequency of fluctuations in the time series of behav-

ior. Random fluctuations (i.e., white noise) produce

a flat line in a log-log spectral plot with a slope close

to 0, which indicates that changes of all different sizes

occur with approximately the same frequency in the

time series. Alternatively, fractal fluctuations, often

referred to as pink or 1�f noise, produce a line in a log-

log spectral plot that has a slope closer to –1, which

indicates the self-similar and scale-invariant scaling

relationship characteristic of fractal patterns.

It is becoming increasingly clear that the behav-

ior of most natural systems, including human and

social systems, exhibit varying degrees of fractal struc-

ture (Delignières et al., 2006; Gilden, 2009; Holden,

2005). Moreover, the degree to which the fluctua-

tions in a behavioral time series are fractal (i.e., pink)

or not (i.e., white) provides evidence that a system

self-similar in a statistical sense. Statistical self-similarity sim-

ply means that a pattern is composed of statistically similar

copies of itself (looks, on average, similar at different scales

of observation).
6 For an introductory review of the various methods that can

be employed to measures the fractal structure of time-series

data, see Delignières et al. (2006).
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Figure 11.10. Example geometric and temporal fractal pat-

terns. (left) Koch Snowflake at three levels of magnifica-

tion. (right) The repeated self-esteem measurements presented

in Figure 11.9 at three levels of magnification. The factual

nature of these patterns is revealed by self-similar patterns

being observed at smaller and larger magnitudes of observa-

tion (adapted from Holden, 2005).

is nonlinear and that its behavior is a consequence

of interaction-dominant dynamics (Van Orden et al.,

2003). To this extent, fractal patterns of behavior can

also be a sign of emergence and self-organization.

Although these ideas may seem foreign and irrelevant

to the uninitiated, these analyses of fractal fluctua-

tions have been applied fruitfully in the social domain.

For example, the behavioral waves or periodic flow

of social interaction has a fractal structure (Newtson,

1994), as do the dynamics of self-esteem (Delignières

et al., 2004). More recently, Correll (2008) has shown

that participants who are trying to avoid racial bias

show a lesser fractal signature in their response laten-

cies in a video game. Correll discusses these findings

in light of characterizing social perception and other

processes as a system of many intertwined depen-

dencies – as processes of a complex dynamical sys-

tem. So the behavioral fluctuations a person gives off

may hint at social judgment events, such as stereotyp-

ing or racial bias. This avenue of research still seems

relatively unexplored, and surprisingly so, if Correll’s

(2008) results are robust in multiple contexts.

Further Reading

Finally, we should note that there are a num-

ber of reviews of this material that can be consulted

in social psychology (e.g., Nowak & Vallacher, 1998;

Vallacher & Nowak, 1994) or within cognitive sci-

ence more broadly (e.g., Port & Van Gelder, 1995;

Spivey, 2007; Warren, 2006). Note as well that there

are, of course, different levels of theoretical commit-

ment to this agenda. For example, many dynamical

systems approaches explicitly avoid the use of men-

tal representations, and instead focus on perception-

action couplings as a basis for understanding social and

human behavior (e.g., Marsh et al., 2009; Richard-

son et al., 2009). Others focus more on the dynam-

ics of internal mental processes or cognitive dynam-

ics (e.g., Spivey, 2007). This leads to theoretical

subtleties that cannot be conveyed here. If readers

are intrigued to look further, we would encourage
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Figure 11.11. Examples of time series composed of random

variation (top left) and fractal variation (top right) and the

associated spectral plots with logarithmic axes (bottom left and

right, respectively).

them to decide whether the theory, modeling, or

analysis of dynamical systems motivates their inter-

est. If it is deeply theoretical, for example, then much

of the work we review would help tease apart those

theoretical nuances. We also encourage readers to

read the books of Kelso (1995), Nowak and Val-

lacher (1998), and Thelen and Smith (1994) for a

more thorough, but still easy-to-read, introduction to

dynamical systems theory and practice. If one is more

interested in mathematical modeling, a review of the

primary modeling papers cited will help the researcher

jump straight into the concepts and their practicality

in modeling. Reviews by Kaplan and Glass (1995) and

Strogatz (1994) also provide a good introduction to the

mathematical details of dynamical systems modeling.

With respect to dynamical systems analysis, direct con-

sultation with research that has previously employed

a method of interest is always the best place to start.

Throughout this chapter we have therefore included a

range of relevant research articles that will enable any

interested reader to gain a foothold on the relevant

literature.

CONCLUSION

We had three key goals in this chapter. The first was

to lay out some of the basic concepts behind com-

plex dynamical systems. These concepts motivate the-

orists as they seek to understand social and cognitive

systems as systems sustained by self-organization,

bringing about soft-assembled processes, through non-

linear interaction-dominant dynamics. Our second

key goal was to demonstrate how the dynamics of

social processes and behavior can be explored directly

using mathematical models. By laying out some of

the mathematical modeling techniques that can be

employed to understand dynamical systems, we show-

cased how the relatively new concepts of dynamical

systems gain concrete manifestation in these explicit

models. Our third goal was to provide a brief descrip-

tion of how the dynamics of behavior can be explored

via the dynamical analyses of recorded data. Thus, in

the third section of this chapter we described just a

few of the many linear and nonlinear time-series anal-

yses techniques that a social researcher could employ

to investigate the dynamics inherent to his or her own

behavioral (time-series) data.

Collectively, these sections urge social-personality

psychologists to think of behavior as something that

continually changes and, therefore, that must be stud-

ied and modeled as time-evolving. It is often challenging

for a researcher to conceptualize his or her context of

study in such a way that time series can be collected
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(see, for example, Correll’s 2008 clever use of video

games), or to adapt the perhaps unfamiliar concepts

of self-organization or soft-assembly to their theories.

Doing so, however, can help us understand the pro-

cesses by which social behaviors come about in day-to-

day activities and, thus, the approach will no doubt

pay significant dividends for researchers interested in

unveiling new domains of inquiry.
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