Anderson localization for high dimensional quasi-periodic operators with long-range interactions

Wencai Liu

University of California, Irvine

Spectral Theory of Quasi-Periodic and Random Operators,
November 15, 2018
This is joint work with Svetlana Jitomirskaya and Yunfeng Shi. We study the long-range quasi-periodic operators on $\ell^2(\mathbb{Z}^d)$:

$$H = S(n, n') + \lambda \nu(x + n \otimes \omega) \delta_{nn'},$$

where S satisfies $|S(n, n')| \leq e^{-\rho |n-n'|}$, and

$$n \otimes \omega := (n_1\omega_{11}, \cdots, n_1\omega_{b_11}, \cdots, n_d\omega_{1d}, \cdots, n_d\omega_{b_dd}),$$

and ν is a real analytic function on the $b = \sum_{i=1}^{d} b_i$ dimensional torus.
\[H = S(n, n') + \lambda \nu (x + n \otimes \omega) \delta_{nn'} \]

- Discrete Schrödinger operators: \(S = \Delta \).
\[H = S(n, n') + \lambda v(x + n \otimes \omega)\delta_{nn'} \]

- Discrete Schrödinger operators: \(S = \Delta \).
- Töplitz operators: \(S(n, n') = \hat{\phi}(n - n') \) and \(\phi \) is a real analytic function on \(\mathbb{T}^d \).
$H = S(n, n') + \lambda \nu (x + n \otimes \omega) \delta_{nn'}$

- Discrete Schrödinger operators: $S = \Delta$.
- Töplitz operators: $S(n, n') = \hat{\phi}(n - n')$ and ϕ is a real analytic function on \mathbb{T}^d.
- d is the dimension of operators (\mathbb{Z}^d). b is the dimension of torus (ν is defined on \mathbb{T}^b).
Chulaevsky-Dinaburg \((b = 1) \) by KAM theory. Potential is defined on torus \(\mathbb{T} \).
- Chulaevsky-Dinaburg \((b = 1)\) by KAM theory. Potential is defined on torus \(\mathbb{T}\).

- One dimensional Schrödinger operators \((d = 1)\): the potential is given by \(V_n = \nu(x_1 + n\omega_1, x_2 + n\omega_2, \cdots, x_b + n\omega_b)\), where \(n \in \mathbb{Z}\).
Anderson localization

- Chulaevsky-Dinaburg \((b = 1)\) by KAM theory. Potential is defined on torus \(\mathbb{T}\).

- One dimensional Schrödinger operators \((d = 1)\): the potential is given by \(V_n = v(x_1 + n\omega_1, x_2 + n\omega_2, \cdots, x_b + n\omega_b)\), where \(n \in \mathbb{Z}\). Bourgain-Goldstein \((d = 1, b = 2)\), Bourgain \((d = 1, b \geq 3)\).
Anderson localization

- Chulaevsky-Dinaburg \((b = 1)\) by KAM theory. Potential is defined on torus \(\mathbb{T}\).
- One dimensional Schrödinger operators \((d = 1)\): the potential is given by \(V_n = v(x_1 + n\omega_1, x_2 + n\omega_2, \cdots, x_b + n\omega_b)\), where \(n \in \mathbb{Z}\).
- Bourgain-Goldstein \((d = 1, b = 2)\), Bourgain \((d = 1, b \geq 3)\).
- Higher dimensional cases \((d = b \geq 2)\): the potential is given by \(V_{n_1, \ldots, n_b} = v(x_1 + n_1\omega_1, x_2 + n_2\omega_2, \cdots, x_b + n_b\omega_b)\). Bourgain-Goldstein-Schlag \((b = d = 2)\) and Bourgain \((b = d \geq 3)\).
Anderson localization

- Chulaevsky-Dinaburg \((b = 1)\) by KAM theory. Potential is defined on torus \(\mathbb{T}\).

- One dimensional Schrödinger operators \((d = 1)\): the potential is given by
 \[V_n = v(x_1 + n\omega_1, x_2 + n\omega_2, \ldots, x_b + n\omega_b), \]
 where \(n \in \mathbb{Z}\). Bourgain-Goldstein \((d = 1, b = 2)\), Bourgain \((d = 1, b \geq 3)\).

- Higher dimensional cases \((d = b \geq 2)\): the potential is given by
 \[V_{n_1, \ldots, n_b} = v(x_1 + n_1\omega_1, x_2 + n_2\omega_2, \ldots, x_b + n_b\omega_b). \]
 Bourgain-Goldstein-Schlag \((b = d = 2)\) and Bourgain \((b = d \geq 3)\).

- The general \(b, d\) and long-range case is particularly important because it appears as Aubry-dual of general quasiperiodic Schrödinger operators.
In order to simplify the talk, we assume \(d = 2 \) and \(b = 2 + 1 = 3 \). It says that

\[
V_{n_1, n_2} = v(x_1 + n_1\omega_1, x_2 + n_1\omega_2, x_3 + n_2\omega_3).
\]

- Denote by \(x^1 = (x_1, x_2) \) and \(x^2 = x_3 \). Assume the functions \(v(x^1, \cdot), v(\cdot, x^2) \) are nonconstant for any \(x^1, x^2 \).
- We call \(u \) a generalized eigenfunction (\(E \) corresponding generalized eigenvalue) of \(H \) if \(Hu = Eu \) and

\[
|u(n)| \leq C(1 + |n|^C).
\]
Theorem 1 (Jitomirskaya-L-Shi)

For any $\delta > 0$, there is some $\lambda_0 = \lambda_0(\delta, v, b, d, \rho) > 0$ such that, for $|\lambda| \geq \lambda_0$ and $x \in T^b$, there exists some $\Omega \subset T^b$ with $\text{Leb}(T^b \setminus \Omega) \leq \delta$ such that, for $\omega \in \Omega$, all the generalized eigenfunctions of H decay exponentially.
Theorem 1 (Jitomirskaya-L-Shi)

For any $\delta > 0$, there is some $\lambda_0 = \lambda_0(\delta, v, b, d, \rho) > 0$ such that, for $|\lambda| \geq \lambda_0$ and $x \in \mathbb{T}^b$, there exists some $\Omega \subset \mathbb{T}^b$ with \(\text{Leb}(\mathbb{T}^b \setminus \Omega) \leq \delta \) such that, for $\omega \in \Omega$, all the generalized eigenfunctions of H decay exponentially.

Corollary 2 (Jitomirskaya-L-Shi)

Suppose S is a Töplitz operator. Then under the assumption of above Theorem, H exhibits Anderson localization.
Remark:

- The assumption of ν in 1D and multi-frequencies case (Bourgain and Bourgain-Goldstein) is ν is not constant.
- The assumption of ν in higher dimension cases-$d \geq 2$ (Bourgain-Goldstein-Schlag and Bourgain) is ν is not constant in each variable.
- Two dimensions: Bourgain-Kachkovskiy and Bourgain-Jitomirskaya-Kachkovskiy.
- Applications in PDEs: Wang
General strategy

Two key steps:

- Large deviation theorem. It was done by delicate estimates on the Green’s function for fixed energy, which relies on subharmonicity and the arithmetic conditions on the frequencies.

- Elimination of the energy and proof of Anderson localization. It was done by the semi-algebraic set theory (steep lemma).

As a result, it is necessary to remove some extra frequencies.
General strategy

Two key steps:

- Large deviation theorem. It was done by delicate estimates on the Green’s function for fixed energy, which relies on subharmonicity and the arithmetic conditions on the frequencies.

- Elimination of the energy and proof of Anderson localization. It was done by the semi-algebraic set theory (steep lemma). As a result, it is necessary to remove some extra frequencies.
Large deviation theorem. Under some arithmetic assumption of frequencies, the Green’s functions are good except an exponentially small set of x (say e^{-N^γ}).

- Green’s functions: $G_N = (R_\Lambda (H - E) R_\Lambda)^{-1}$, where Λ is an elementary regime ($\Lambda = [-N, N]^2$)

- “Good”:

\[
\| G_N \| \leq e^{N^\kappa},
\]

\[
| G_N(n, n') | \leq e^{-\frac{\rho}{2}|n-n'|} \text{ for } |n - n'| \geq \frac{N}{10}.
\]
Two remarks:

- The exceptional sets of x depend on energy E and frequencies ω.
- The goal is to remove frequencies such that the Anderson localization holds for fixed x.
Pick a generalized eigenvalue E and corresponding eigenfunction ϕ.

- For some $\sigma > 0$,
 \[\text{dist}(E, \sigma(H_{[-N,N]^2})) \leq e^{-\sigma N}. \]

- Localization: Resolvent identity arguments + multi-scale analysis; Removing frequencies by steep Lemma.
Suppose $G_N(\omega, x + n\omega)$ is good for all $N_1^{c_2} \leq |n| \leq N_1$, where $N_1 = e^{N_1}$. Then generalized eigenfunction is localized in regime $2N_1^{c_2} \leq |n| \leq \frac{1}{2} N_1$. (resolvent identity, multi-scale analysis)

We expect to show that by removing a small set of ω, $G_N(\omega, x + n\omega)$ is good for all $N_1^{c_2} \leq |n| \leq N_1$.

It relies on the geometric structure of the exceptional set $(e^{-N\gamma})$.
We use $d = b = 1$ as an example.

Lemma 3

Let $A = \{(\omega, x) \in \mathbb{T}^2 : G_N(\omega, x) \text{ is bad}\} \leq e^{-N\gamma}$. Suppose A has “nice” geometric structure. Then after removing a small set of frequencies $(N_1^{c_3})$, the Green’s function $G_N(\omega, x + n\omega)$ is good for all $N_1^{c_2} \leq |n| \leq N_1$.

Wencai Liu Anderson Localization
Semi-algebraic set
Let \(\{P_1, \cdots, P_s\} \subset \mathbb{P}[x_1, \cdots, x_n] \) be a family of real polynomials whose degrees are bounded by \(q \). A (closed) semi-algebraic set \(S \) is given by an expression

\[
S = \bigcup_{j} \bigcap_{\ell \in \mathcal{L}_j} \{x \in \mathbb{R}^n : P_\ell(x) s_{j\ell} 0\},
\]

(1)

where \(\mathcal{L}_j \subset \{1, \cdots, s\} \) and \(s_{j\ell} \in \{\geq, \leq, =\} \). The degree of \(S \), denoted by \(\text{deg}(S) \), is the smallest \(sq \) over all representations as in (1).
In higher dimensions, everything becomes complicate.

- For $d = b \geq 3$, Bourgain uses semi-algebraic set to obtain large deviation theorem even in the first step.
- For $d \geq 3$, there are a lot of resonances.
- We can not use steep lemma directly to remove frequencies.
Elementary regimes
Theorem 4 (Jitomirskaya-L-Shi)

There exist constants $\gamma, \kappa \in (0, 1)$ and large N_0 such that if $\log \log \lambda \geq N_0$ and $N \geq N_0$, there is some semi-algebraic set $\Omega_N \subset \mathbb{T}^3$ with $\deg(\Omega_N) \leq N^C$ such that the following holds: $\text{Leb}(\mathbb{T}^3 \setminus \Omega_N) \leq \delta(\lambda)$ ($\delta(\lambda) \to 0$ as $\lambda \to \infty$). For any $\omega \in \Omega_N, E \in \mathbb{R}$, there exists some set $X_N = X_N(\omega, E) \subset \mathbb{T}^3$ such that

\[
\text{Leb}\{\theta \in \mathbb{T} : (x^1, \theta) \in X_N\} \leq e^{-N^\gamma},
\]

\[
\text{Leb}\{\theta \in \mathbb{T}^2 : (\theta, x^2) \in X_N\} \leq e^{-N^\gamma}
\]

and for $x \notin X_N$, the Green’s function G_N is good.
For $d = 1$ and $d = b = 2$, Ω_N does not depend on N. It has full Lebesgue measure, which is given by arithmetic conditions. For example, ω satisfies Diophantine condition for $d = 1$.

Our proof is inspired by Bourgain ($d = b \geq 3$). We need to use semi-algebraic set (steep lemma) to prove LDT.

The energy elimination is easier than LDT.
Proof of LDT

- Starting scale N_0.
- Increase the scale from N_0 to $N_1 = e^{N_0 c_1}$ with a hole for all x and E: Resolvent identity arguments + multi-scale analysis; Removing frequencies by steep Lemma.
For all $(E, x) \in \mathbb{R} \times \mathbb{T}^3$, there is N satisfying $N_1^{c_4} < N < N_1^{c_5}$ such that if we let

$$U = [-N, N]^2 \setminus [-N^{1/c}, N^{1/c}]^2,$$

then

$$\|G_U(E; x)\| \leq e^{N\kappa},$$

$$\|G_U(E; x)(n, n')\| \leq e^{-\frac{\rho}{2}|n-n'|} \text{ for } |n - n'| > \frac{N}{10}.$$
Except a small set of $x \left(e^{-N_1^\gamma} \right)$, for any $n_0 \in [-N_1, N_1]^2$, there is N (depends on n_0) satisfying $N_1^{c_4} < N < N_1^{c_5}$ such that

$$\| G_{E_N}(E; x) \| \leq e^{N\kappa},$$

$$\| G_{E_N}(E; x)(n, n') \| \leq e^{-\frac{\rho}{2}|n-n'|} \text{ for } |n-n'| > \frac{N}{10},$$

where E_N has center n_0.
The Green's function at scale N_1 is good based on scale N.

Difficulty: the size N changes as the center n_0 changes. We need extra work to deal with boundary cases.

- Modify the definition of semi-algebraic set (“good” of Green’s function).
- Modify the “holes”.

\[\text{Diagram showing changes in size and center.}\]
Thank you