Random matrices, operators and analytic functions

Benedek Valkó
(University of Wisconsin – Madison)

joint with B. Virág (Toronto)
Circular β-ensemble

Eigenvalues of a uniform $n \times n$ unitary matrix:
Circular β-ensemble

Eigenvalues of a uniform $n \times n$ unitary matrix:

joint density: $\frac{1}{Z_n} \prod_{j<k} |e^{i\lambda_j} - e^{i\lambda_k}|^2$
Circular β-ensemble

Eigenvalues of a uniform $n \times n$ unitary matrix:

Joint density: $\frac{1}{Z_n} \prod_{j < k} |e^{i\lambda_j} - e^{i\lambda_k}|^2$

Circular β-ensemble: $\frac{1}{Z_{n,\beta}} \prod_{j < k} |e^{i\lambda_j} - e^{i\lambda_k}|^\beta$
Point process limit

\[\{ e^{i \lambda_j^{(n)}}, \lambda_j^{(n)} \in (-\pi, \pi] \}, \ n \text{ points on the circle.} \]
Point process limit

\[\{ e^{i\lambda_j^{(n)}}, \lambda_j^{(n)} \in (-\pi, \pi] \}, \text{ } n \text{ points on the circle.} \]

\[\{ n\lambda_j^{(n)}, 1 \leq j \leq n \} \Rightarrow ? \]
Point process limit

\[\{ e^{i\lambda_j^{(n)}}, \lambda_j^{(n)} \in (-\pi, \pi] \}, \text{ } n \text{ points on the circle.} \]

\[\{ n\lambda_j^{(n)}, 1 \leq j \leq n \} \Rightarrow ? \]

\(\beta = 1, 2, 4: \) determinantal/Pfaffian structure.

Scaling limit is the same as the bulk limit of GOE/GUE/GSE.

Dyson-Gaudin-Mehta

Limit is described via the joint intensities.

Killip-Stoiciu '06

Nakano '14, V-Virág '16: the limit is the same as the bulk limit of the Gaussian \(\beta \)-ensemble, Sine \(\beta \).
Point process limit

\[\{ e^{i\lambda_j^{(n)}}, \lambda_j^{(n)} \in (-\pi, \pi] \}, \text{ } n \text{ points on the circle.} \]

\[\{ n\lambda_j^{(n)}, 1 \leq j \leq n \} \Rightarrow? \]

\[\beta = 1, 2, 4: \text{ determinantal/Pfaffian structure.} \]

Scaling limit is the same as the bulk limit of GOE/GUE/GSE.

Dyson-Gaudin-Mehta

Limit is described via the joint intensities.

General \(\beta > 0 \) case: Killip-Stoiciu ’06

Limit is described via the counting function (coupled system of SDEs).

Nakano ’14, V-Virág ’16: the limit is the same as the bulk limit of the Gaussian \(\beta \)-ensemble, \(\text{Sine}_\beta \)
Random operators

Dumitriu-Edelman '02:
tridiagonal representation for Gaussian and Laguerre β-ensembles

Edelman-Sutton '06:
random tridiagonal matrices \Rightarrow random differential operators

Limit processes: spectra of random differential operators

Soft edge: Ramírez-Rider-Virág '06 (Gaussian, Laguerre)

$$A_\beta = -\frac{d^2}{dx^2} + x + 2\sqrt{\beta} dB$$

Hard edge: Ramírez-Rider '08 (Laguerre)

$$B_\beta, a = -e^{(a+1)x} + 2\sqrt{\beta} B(x) \frac{d}{dx}\left\{ e^{-ax} - 2\sqrt{\beta} B(x) \frac{d}{dx}\right\}$$

B: standard Brownian motion, dB: white noise

domain: $[0, \infty) \rightarrow \mathbb{R}, L^2$ and boundary conditions
Random operators

Dumitriu-Edelman ’02:
tridiagonal representation for Gaussian and Laguerre β-ensembles

Edelman-Sutton ’06:
random tridiagonal matrices \rightsquigarrow random differential operators

Limit processes: spectra of random differential operators

\[
A_\beta = -\frac{d^2}{dx^2} + x + 2\sqrt{\beta} dB
\]

\[
B_\beta, a = -e^{(a+1)x} + 2\sqrt{\beta} B(x) \frac{d}{dx} \{e^{-ax} - 2\sqrt{\beta} B(x) \frac{d}{dx}\}
\]

B: standard Brownian motion, dB: white noise
domain: $[0, \infty) \rightarrow \mathbb{R}$, L^2 and boundary conditions
Random operators

Dumitriu-Edelman ’02:
tridiagonal representation for Gaussian and Laguerre β-ensembles

Edelman-Sutton ’06:
random tridiagonal matrices \leadsto random differential operators

Limit processes: spectra of random differential operators

Soft edge: Ramírez-Rider-Virág ’06 (Gaussian, Laguerre)

$$A_{\beta} = -\frac{d^2}{dx^2} + x + \frac{2}{\sqrt{\beta}} dB$$

Hard edge: Ramírez-Rider ’08 (Laguerre)

$$B_{\beta,a} = -e^{(a+1)x + \frac{2}{\sqrt{\beta}} B(x)} \frac{d}{dx} \left\{ e^{-ax - \frac{2}{\sqrt{\beta}} B(x)} \frac{d}{dx} \right\}$$

B: standard Brownian motion, dB: white noise
domain: $[0, \infty) \to \mathbb{R}$, L^2 and boundary conditions
The Sine$_\beta$ operator - operator in the bulk

There is a self-adjoint differential operator (Dirac-operator) τ: $f \rightarrow 2\mathbb{R} - 1 \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t)$, $f: [0, 1) \rightarrow \mathbb{R}^2$. With spectrum given by the Sine$_\beta$ process. $R_t: [0, 1) \rightarrow \mathbb{R}^2 \times \mathbb{R}^2$ is a simple function of a hyperbolic Brownian motion. Also: Several finite classical random matrix models, β-generalizations and scaling limits can be represented in this form.
The Sine_β operator - operator in the bulk

Thm (V-Virág '16):
There is a self-adjoint differential operator (Dirac-operator)

$$\tau : f \mapsto 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \to \mathbb{R}^2.$$

with spectrum given by the Sine_β process.
The Sine$_\beta$ operator - operator in the bulk

Thm (V-Virág '16):
There is a self-adjoint differential operator (Dirac-operator)

$$
\tau : f \rightarrow 2 R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2.
$$

with spectrum given by the Sine$_\beta$ process.

$R_t : [0, 1) \rightarrow \mathbb{R}^{2\times2}$ is a simple function of a hyperbolic Brownian motion.
The Sine$_\beta$ operator - operator in the bulk

Thm (V-Virág ’16):
There is a self-adjoint differential operator (Dirac-operator)

$$\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2.$$

with spectrum given by the Sine$_\beta$ process.

$R_t : [0, 1) \rightarrow \mathbb{R}^{2\times2}$ is a simple function of a hyperbolic Brownian motion.

Also: Several finite classical random matrix models, β-generalizations and scaling limits can be represented in this form.
Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

\(R_t \): positive definite matrix valued function
Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

\(R_t\): positive definite matrix valued function

Ingredients: a path \(x_t + iy_t : [0, 1) \rightarrow \mathbb{H}\) in the hyperbolic plane, two boundary points in \(\mathbb{H}\).

\[X_t = \frac{1}{\sqrt{y_t}} \begin{bmatrix} 1 & -x_t \\ 0 & y_t \end{bmatrix}, \quad R_t = X_t^T X_t.\]
Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

\(R_t \): positive definite matrix valued function

Ingredients: a path \(x_t + iy_t : [0, 1) \rightarrow \mathbb{H} \) in the hyperbolic plane, two boundary points in \(\mathbb{H} \).

\[X_t = \frac{1}{\sqrt{y_t}} \begin{bmatrix} 1 & -x_t \\ 0 & y_t \end{bmatrix}, \quad R_t = X_t^T X_t. \]

Domain: differentiability, \(L^2 \) and boundary conditions
Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

R_t: positive definite matrix valued function

Ingredients: a path \(x_t + iy_t : [0, 1) \rightarrow \mathbb{H} \) in the hyperbolic plane, two boundary points in \(\mathbb{H} \).

\[X_t = \frac{1}{\sqrt{y_t}} \begin{bmatrix} 1 & -x_t \\ 0 & y_t \end{bmatrix}, \quad R_t = X_t^T X_t. \]

Domain: differentiability, \(L^2 \) and boundary conditions

Two boundary points \(\sim \) boundary conditions for \(\tau \)
Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \]

\[R = X_t^T X_t, \quad X_t = \frac{1}{\sqrt{y_t}} \begin{bmatrix} 1 & -x_t \\ 0 & y_t \end{bmatrix}. \]

Claim: if \(x_t + iy_t \) does not converge too fast towards \(\partial \bar{\mathbb{H}} \) then \(\tau \) is a self-adjoint operator on the appropriate domain and its inverse is Hilbert-Schmidt in \(L^2_R \).
Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \]

\[R = X_t^T X_t, \quad X_t = \frac{1}{\sqrt{y_t}} \begin{bmatrix} 1 & -x_t \\ 0 & y_t \end{bmatrix}. \]

Claim: if \(x_t + iy_t \) does not converge too fast towards \(\partial\mathcal{H} \) then \(\tau \) is a self-adjoint operator on the appropriate domain and its inverse is Hilbert-Schmidt in \(L^2_R \). \(\sim \) pure point spectrum
Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \]

\[R = X_t^T X_t, \quad X_t = \frac{1}{\sqrt{y_t}} \begin{bmatrix} 1 & -x_t \\ 0 & y_t \end{bmatrix}. \]

Claim: if \(x_t + iy_t \) does not converge too fast towards \(\partial \mathbb{H} \) then \(\tau \) is a self-adjoint operator on the appropriate domain and its inverse is Hilbert-Schmidt in \(L^2_R \). \(\leadsto \) pure point spectrum

The integral kernel in \(L^2_R \) is

\[\mathcal{K}(s, t) = u_0 u_1^T \mathbf{1}(s < t) + u_1 u_0^T \mathbf{1}(s \geq t) \]

\(u_0, u_1 \): boundary conditions in \(\tau \)
Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \]

\[R = X_t^T X_t, \quad X_t = \frac{1}{\sqrt{y_t}} \begin{bmatrix} 1 & -x_t \\ 0 & y_t \end{bmatrix}. \]

Claim: if \(x_t + iy_t \) does not converge too fast towards \(\partial \mathbb{H} \) then \(\tau \) is a self-adjoint operator on the appropriate domain and its inverse is Hilbert-Schmidt in \(L^2_{\mathbb{R}} \). \(\leadsto \) pure point spectrum

The integral kernel in \(L^2_{\mathbb{R}} \) is

\[\mathcal{K}(s, t) = u_0 u_1^T \mathbf{1}(s < t) + u_1 u_0^T \mathbf{1}(s \geq t) \]

\(u_0, u_1 \): boundary conditions in \(\tau \)

Conjugation with \(X^{-1} \): self-adjoint integral operator on \(L^2 \).
Random Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]
Random Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

Examples:

- Sine_\beta (time-changed hyperbolic BM in \(\mathbb{H} \))
Random Dirac operators

\[\tau : f \to 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \to \mathbb{R}^2. \]

Examples:

- Sine_\beta (time-changed hyperbolic BM in \(\mathbb{H} \))
- hard edge limits (time-changed BM with drift embedded in \(\mathbb{H} \))
Random Dirac operators

\[\tau : f \to 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \to \mathbb{R}^2. \]

Examples:

- Sine_\beta (time-changed hyperbolic BM in \(\mathbb{H} \))
- hard edge limits (time-changed BM with drift embedded in \(\mathbb{H} \))

 time-change: \(-\frac{4}{\beta} \log(1 - t) \)
Random Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

Examples:

- Sine_\beta (time-changed hyperbolic BM in \(\mathbb{H} \))
- hard edge limits (time-changed BM with drift embedded in \(\mathbb{H} \))

 time-change: \(-\frac{4}{\beta} \log(1 - t) \)

- limits of certain one dimensional random Schrödinger operators (hyperbolic BM up to a fixed time)
Random Dirac operators

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

Examples:

- Sine_\beta (time-changed hyperbolic BM in \(\mathbb{H} \))
- hard edge limits (time-changed BM with drift embedded in \(\mathbb{H} \))

 time-change: \(-\frac{4}{\beta} \log(1 - t) \)

- limits of certain one dimensional random Schrödinger operators (hyperbolic BM up to a fixed time)
- finite circular \(\beta \)-ensemble and circular Jacobi ensembles (random walk in \(\mathbb{H} \))
Dirac operators for unitary matrices

Thm: V is an $n \times n$ unitary matrix with distinct eigenvalues $e^{i\lambda_j}$
Dirac operators for unitary matrices

Thm: V is an $n \times n$ unitary matrix with distinct eigenvalues $e^{i\lambda_j}$

\leadsto Dirac operator with spectrum $\{n\lambda_j + 2\pi kn, k \in \mathbb{Z}\}$
Dirac operators for unitary matrices

Thm: V is an $n \times n$ unitary matrix with distinct eigenvalues $e^{i\lambda_j}$

\leadsto Dirac operator with spectrum \(\{ n\lambda_j + 2\pi kn, k \in \mathbb{Z} \} \)

e: a cyclic unit vector
Dirac operators for unitary matrices

Thm: V is an $n \times n$ unitary matrix with distinct eigenvalues $e^{i\lambda_j}$

\rightsquigarrow Dirac operator with spectrum $\{n\lambda_j + 2\pi kn, k \in \mathbb{Z}\}$

e: a cyclic unit vector

Apply G-S to $e, Ve, \ldots, V^{n-1}e \rightsquigarrow \Phi_0(z), \ldots, \Phi_{n-1}(z)$ OPUC
Dirac operators for unitary matrices

Thm: V is an $n \times n$ unitary matrix with distinct eigenvalues $e^{i\lambda_j}$

\leadsto Dirac operator with spectrum $\{n\lambda_j + 2\pi kn, k \in \mathbb{Z}\}$

e: a cyclic unit vector

Apply G-S to $e, Ve, \dotsc, V^{n-1}e \leadsto \Phi_0(z), \dotsc, \Phi_{n-1}(z)$ OPUC

$\Phi_k^*(z) := z^k\overline{\Phi_k(1/\bar{z})}$ conjugate polynomials
Dirac operators for unitary matrices

Thm: V is an $n \times n$ unitary matrix with distinct eigenvalues $e^{i\lambda_j}$

\sim Dirac operator with spectrum $\{ n\lambda_j + 2\pi kn, k \in \mathbb{Z} \}$

e: a cyclic unit vector

Apply G-S to $e, Ve, \ldots, V^{n-1}e \sim \Phi_0(z), \ldots, \Phi_{n-1}(z)$ OPUC

$\Phi^*_k(z) := z^k\Phi_k(1/\bar{z})$ conjugate polynomials

Szegő recursion:
Dirac operators for unitary matrices

Thm: V is an $n \times n$ unitary matrix with distinct eigenvalues $e^{i\lambda_j}$

\rightsquigarrow Dirac operator with spectrum $\{n\lambda_j + 2\pi kn, k \in \mathbb{Z}\}$

e: a cyclic unit vector

Apply G-S to $e, Ve, \ldots, V^{n-1}e \rightsquigarrow \Phi_0(z), \ldots, \Phi_{n-1}(z)$ OPUC

$\Phi_k^*(z) := z^k \overline{\Phi_k(1/\bar{z})}$ conjugate polynomials

Szegő recursion:

$$
\begin{bmatrix}
\Phi_{k+1}(z) \\
\Phi_{k+1}^*(z)
\end{bmatrix} =
\begin{bmatrix}
1 & -\bar{\alpha}_k \\
-\alpha_k & 1
\end{bmatrix}
\begin{bmatrix}
z & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\Phi_k(z) \\
\Phi_k^*(z)
\end{bmatrix},
\begin{bmatrix}
\Phi_0(z) \\
\Phi_0^*(z)
\end{bmatrix} =
\begin{bmatrix}
1 \\
1
\end{bmatrix}
$$

α_k: Verblunsky coefficients, $|\alpha_k| < 1$

Can be extended with a final step with $|\alpha_{n-1}| = 1$,

$\Phi_n(z)$: characteristic polynomial
Dirac operators for unitary matrices

\[
\begin{bmatrix}
\Phi_{k+1}(z) \\
\Phi^*_{k+1}(z)
\end{bmatrix} = \begin{bmatrix}
1 & -\bar{\alpha}_k \\
-\alpha_k & 1
\end{bmatrix} \begin{bmatrix}
z & 0 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
\Phi_k(z) \\
\Phi^*_k(z)
\end{bmatrix}, \quad \begin{bmatrix}
\Phi^*_0(z) \\
\Phi_0(z)
\end{bmatrix} = \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]
Dirac operators for unitary matrices

\[
\begin{bmatrix}
\Phi_{k+1}(z) \\
\Phi^*_{k+1}(z)
\end{bmatrix} =
\begin{bmatrix}
1 & -\bar{\alpha}_k \\
-\alpha_k & 1
\end{bmatrix}
\begin{bmatrix}
z & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\Phi_k(z) \\
\Phi^*_k(z)
\end{bmatrix}, \quad \begin{bmatrix}
\Phi^*_0(z) \\
\Phi_0(z)
\end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

With \(z = e^{i\lambda/n} \) and a simple transformation of \(\begin{bmatrix} \Phi_k(z) \\ \Phi^*_k(z) \end{bmatrix} \) we can turn the Szegő recursion into the ev equation of a Dirac operator:

\[
2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t) = \lambda f(t)
\]
Dirac operators for unitary matrices

\[
\begin{pmatrix}
\Phi_{k+1}(z) \\
\Phi^*_{k+1}(z)
\end{pmatrix}
= \begin{pmatrix}
1 & -\bar{\alpha}_k \\
-\alpha_k & 1
\end{pmatrix}
\begin{pmatrix}
z & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
\Phi_k(z) \\
\Phi^*_k(z)
\end{pmatrix},
\begin{pmatrix}
\Phi^*_0(z) \\
\Phi_0(z)
\end{pmatrix}
= \begin{pmatrix}1 \\ 1\end{pmatrix}
\]

With \(z = e^{i\lambda/n}\) and a simple transformation of \(\begin{pmatrix}
\Phi_k(z) \\
\Phi^*_k(z)
\end{pmatrix}\) we can turn the Szegő recursion into the ev equation of a Dirac operator:

\[
2R^{-1}_t \begin{pmatrix}0 & -1 \\ 1 & 0\end{pmatrix} f'(t) = \lambda f(t)
\]

The function \(R_t\) and the corresponding path \(x_t + iy_t\) are constant on each \(\left[\frac{k}{n}, \frac{k+1}{n}\right]\). The path is built from the \(\alpha_k\).
Dirac operators for unitary matrices

\[
\begin{bmatrix}
\Phi_{k+1}(z) \\
\Phi^*_k(z)
\end{bmatrix}
= \begin{bmatrix}
1 & -\bar{\alpha}_k \\
-\alpha_k & 1
\end{bmatrix}
\begin{bmatrix}
z & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\Phi_k(z) \\
\Phi^*_k(z)
\end{bmatrix},
\begin{bmatrix}
\Phi^*_0(z) \\
\Phi_0(z)
\end{bmatrix}
= \begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

With \(z = e^{i\lambda/n}\) and a simple transformation of \(\begin{bmatrix}
\Phi_k(z) \\
\Phi^*_k(z)
\end{bmatrix}\) we can turn the Szegő recursion into the ev equation of a Dirac operator:

\[
2R_t^{-1} \begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix} f'(t) = \lambda f(t)
\]

The function \(R_t\) and the corresponding path \(x_t + iy_t\) are constant on each \([\frac{k}{n}, \frac{k+1}{n})\). The path is built from \(\alpha_k\).

Similar construction starting from the recursion for \(\frac{\Phi_k(z)}{\Phi_k(1)}\). In that case the path itself satisfies a linear recursion.
Circular ensembles

Thm (Killip-Nenciu '04) If V is a uniformly chosen $n \times n$ unitary matrix then the Verblunsky coefficients $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ are independent with nice distributions.
Circular ensembles

Thm (Killip-Nenciu ’04) If V is a uniformly chosen $n \times n$ unitary matrix then the Verblunsky coefficients $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ are independent with nice distributions.

Similar construction for the β generalization.
Thm (Killip-Nenciu ’04) If V is a uniformly chosen $n \times n$ unitary matrix then the Verblunsky coefficients $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ are independent with nice distributions.

Similar construction for the β generalization.

∽ Dirac operator representation for the finite circular β-ensembles ($x + iy$ is a random walk)
Circular ensembles

Thm (Killip-Nenciu '04) If V is a uniformly chosen $n \times n$ unitary matrix then the Verblunsky coefficients $\alpha_0, \alpha_1, \ldots, \alpha_{n-1}$ are independent with nice distributions.

Similar construction for the β generalization.

\rightsquigarrow Dirac operator representation for the finite circular β-ensembles ($x + iy$ is a random walk)

Construction of the hyperbolic RW: $b_0 = i, \ldots, b_{n-1} \in \mathbb{H}, b_n \in \partial \mathbb{H}$

Given b_k we choose b_{k+1} uniformly on a hyperbolic circle with random radius ξ_k. In the Poincaré disk with center b_k we have $\xi_k^2 \sim \text{Beta}(1, \frac{\beta}{2}(n - k - 1))$. The last step is chosen uniformly on $\partial \mathbb{H}$ as viewed from b_{n-1}.
Operator level bulk limit

The previous methods required the derivation of a one-parameter family of SDE system. Here we need to understand the limit of the integral kernel (convergence of a RW to a BM).
Operator level bulk limit

finite model
 ↓
 differential operator built from RW
 ↓
 integral operator built from RW
 ↓
 integral operator built from BM
The previous methods required the derivation of a one-parameter family of SDE system.

Here we need to understand the limit of the integral kernel (convergence of a RW to a BM)
Operator level bulk limit

Thm (V-Virág, ‘17):
One can couple the finite n circular β-ensembles to Sine_β so that the corresponding operators are within $\log^3 n \cdot n^{-1/2}$ in H-S norm.
Operator level bulk limit

Thm (V-Virág, ‘17):
One can couple the finite n circular β-ensembles to Sine_β so that the corresponding operators are within $\log^3 n \cdot n^{-1/2}$ in H-S norm.

$$\iint_0^1 \iint_0^1 \text{tr}((\mathcal{K} - \mathcal{K}_n)(\mathcal{K} - \mathcal{K}_n)^t)dx \, dy \leq \frac{\log^6 n}{n}.$$
Operator level bulk limit

Thm (V-Virág, ’17):
One can couple the finite n circular β-ensembles to Sine_β so that the corresponding operators are within $\log^3 n \cdot n^{-1/2}$ in H-S norm.

\[
\int_0^1 \int_0^1 \text{tr}((\mathcal{K} - \mathcal{K}_n)(\mathcal{K} - \mathcal{K}_n)^t)dx \, dy \leq \frac{\log^6 n}{n}.
\]

In this coupling

\[
\sum_k \left| \frac{1}{\lambda_{k,n}} - \frac{1}{\lambda_k} \right|^2 \leq \frac{\log^6 n}{n}
\]
Operator level bulk limit

Thm (V-Virág, ‘17):
One can couple the finite n circular β-ensembles to Sine_β so that the corresponding operators are within $\log^3 n \cdot n^{-1/2}$ in H-S norm.

$$
\int_0^1 \int_0^1 \text{tr}((\mathcal{K} - \mathcal{K}_n)(\mathcal{K} - \mathcal{K}_n)^t)dx \, dy \leq \frac{\log^6 n}{n}.
$$

In this coupling

$$
\sum_k \left| \frac{1}{\lambda_{k,n}} - \frac{1}{\lambda_k} \right|^2 \leq \frac{\log^6 n}{n}
$$

Coupling bound for $\beta = 2$: Maples, Najnudel, Nikeghbali ’13
TV bounds on the counting functions ($\beta = 2$): Meckes, Meckes ’16
Limits of characteristic polynomials

Thm (Chhaibi, Najnudel, Nikeghbali '17): Label the points of Sine_2 as $\ldots < \lambda - 1 < \lambda_0 < \lambda_1 < \ldots$ Then

$$\xi(z) := (1 - z \lambda_0) \prod_{k=1}^{\infty} (1 - z \lambda_{-k})(1 - z \lambda_k)$$

defines a random entire function. Moreover, there is a coupling of the finite circular unitary ensembles to Sine_2 so that a.s.

$$p_n(e^{i z_n}) \overset{p_n}{\to} e^{i z_2} \cdot \xi(z)$$

p_n: characteristic polynomial of the size n ensemble.
Limits of characteristic polynomials

Thm (Chhaibi, Najnudel, Nikeghbali ’17): Label the points of Sine_2 as $\ldots < \lambda_{-1} < \lambda_0 < 0 < \lambda_1 < \ldots$ Then

$$
\xi(z) := (1 - \frac{z}{\lambda_0}) \prod_{k=1}^{\infty} \left(1 - \frac{z}{\lambda_{-k}} \right) \left(1 - \frac{z}{\lambda_k} \right)
$$

defines a random entire function.
Limits of characteristic polynomials

Thm (Chhaibi, Najnudel, Nikeghbali ’17): Label the points of Sine$_2$ as $\ldots < \lambda_{-1} < \lambda_0 < 0 < \lambda_1 < \ldots$. Then

$$
\xi(z) := (1 - \frac{z}{\lambda_0}) \prod_{k=1}^{\infty} \left(1 - \frac{z}{\lambda_{-k}}\right) \left(1 - \frac{z}{\lambda_k}\right)
$$

defines a random entire function.

Moreover, there is a coupling of the finite circular unitary ensembles to Sine$_2$ so that a.s.

$$
\frac{p_n(e^{i\frac{z}{n}})}{p_n(1)} \to e^{i\frac{z}{2}} \cdot \xi(z)
$$

p_n: characteristic polynomial of the size n ensemble.
Limits of characteristic polynomials

Thm (Chhaibi, Najnudel, Nikeghbali ’17): Label the points of Sine$_2$ as $\ldots < \lambda_{-1} < \lambda_0 < 0 < \lambda_1 < \ldots$. Then

$$
\xi(z) := (1 - \frac{z}{\lambda_0}) \prod_{k=1}^{\infty} \left(1 - \frac{z}{\lambda_{-k}}\right) \left(1 - \frac{z}{\lambda_k}\right)
$$

defines a random entire function.

Moreover, there is a coupling of the finite circular unitary ensembles to Sine$_2$ so that a.s.

$$
\frac{p_n(e^{i\frac{z}{n}})}{p_n(1)} \rightarrow e^{i\frac{z}{2}} \cdot \xi(z)
$$

p_n: characteristic polynomial of the size n ensemble.

general β?
The finite ensemble is just \(n \) equally spaced points on the circle, rotated with a uniform angle. The scaling limit is \(2\pi \mathbb{Z} + 2\pi U[0, 1] \).
The finite ensemble is just n equally spaced points on the circle, rotated with a uniform angle. The scaling limit is $2\pi \mathbb{Z} + 2\pi U[0, 1]$.

The limit is $\sin(z/2)$ with a random shift. After normalization:

$$\cos(z/2) + q \sin(z/2), \quad q \sim \text{Cauchy}$$

Aizenmann-Warzel ‘15: On the ubiquity of the Cauchy distribution in spectral problems
Entire function from the random operator

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]
Entire function from the random operator

\[
\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2.
\]

The normalized char. polynomial of a matrix \(A \) is \(\det(I - zA^{-1}) \).
Entire function from the random operator

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

The normalized char. polynomial of a matrix \(A \) is \(\det(I - zA^{-1}) \).

Natural guess for the limit: \(\det(I - z\tau^{-1}) \)
Entire function from the random operator

\[
\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2.
\]

The normalized char. polynomial of a matrix \(A \) is \(\det(I - zA^{-1}) \).

Natural guess for the limit: \(\det(I - z\tau^{-1}) \)

Problem: \(\tau^{-1} \) is not trace class (\(\lambda_k \sim k \)), so this is not defined!
Entire function from the random operator

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

The normalized char. polynomial of a matrix \(A \) is \(\det(I - zA^{-1}) \).

Natural guess for the limit: \(\det(I - z\tau^{-1}) \)

Problem: \(\tau^{-1} \) is not trace class (\(\lambda_k \sim k \)), so this is not defined!

\[\sum_k \frac{1}{\lambda_k^2} < \infty \text{ holds a.s.} \Rightarrow \det_2(I - z\tau^{-1}) \text{ is well defined} \]

\[\det_2(I - z\tau^{-1}) = \prod_k (1 - z\lambda_k^{-1})e^{z\lambda_k^{-1}} \]
Entire function from the random operator

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

For trace class operators

\[\det(I - z\tau^{-1}) = \det_2(I - z\tau^{-1})e^{-z\text{Tr}\tau^{-1}} \]
Entire function from the random operator

$$\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2.$$

For trace class operators

$$\det(I - z\tau^{-1}) = \det_2(I - z\tau^{-1})e^{-z\text{Tr}\tau^{-1}}$$

In our case $\text{Tr}\tau^{-1}$ is not defined, but the principal value sum exists:

$$"\text{Tr}\tau^{-1}" = \lim_{R \to \infty} \sum_{|\lambda_k| < R} \frac{1}{\lambda_k} < \infty$$
Entire function from the random operator

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

For trace class operators

\[\det(I-z\tau^{-1}) = \det_2(I-z\tau^{-1})e^{-z\text{Tr}\tau^{-1}} \]

In our case \(\text{Tr} \tau^{-1} \) is not defined, but the principal value sum exists:

\["\text{Tr} \tau^{-1}" = \lim_{R \to \infty} \sum_{|\lambda_k| < R} \frac{1}{\lambda_k} < \infty \]

Thm(V., Virág): The scaling limit of the normalized characteristic polynomials for circular \(\beta \)-ensembles is given by

\[e^{i\frac{z}{2}} \cdot \det_2(I-z\tau^{-1})e^{-z\cdot"\text{Tr} \tau^{-1}"} \]
Entire function from the random operator

$$\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2.$$

$$f(0) \parallel u_0, 'f(1) \parallel u_1'.$$

For ‘nice’ R_t: z is an e.v. if the solution of the ‘shooting problem’

$$\partial_t f(t, z) = -\frac{z}{2} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} R_t f(t, z), \quad f(0, z) = u_0$$

satisfies $f(1, z) \parallel u_1$.
Entire function from the random operator

\[\tau : f \rightarrow 2R_{t}^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

\[f(0) \parallel u_0, \ 'f(1) \parallel u_1'. \]

For ‘nice’ \(R_{t} \): \(z \) is an e.v. if the solution of the ‘shooting problem’

\[\partial_t f(t, z) = -\frac{z}{2} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} R_{t} f(t, z), \quad f(0, z) = u_0 \]

satisfies \(f(1, z) \parallel u_1 \).

Thus \(g(z) = u_1^T \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f(1, z) \) would give an appropriate function.
Entire function from the random operator

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

\[f(0) \parallel u_0, \ 'f(1) \parallel u_1'. \]

For ‘nice’ \(R_t \): \(z \) is an e.v. if the solution of the ‘shooting problem’

\[\partial_t f(t, z) = -\frac{z}{2} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} R_t f(t, z), \quad f(0, z) = u_0 \]

satisfies \(f(1, z) \parallel u_1. \)

Thus \(g(z) = u_1^T \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f(1, z) \) would give an appropriate function.

de Branges: if \(\tau^{-1} \) is H-S and \(\int_0^1 u_1 R_t u_1 < \infty \) then the solution of the ‘reverse’ shooting problem is well-defined and gives an entire function.
Entire function from the random operator

\[\tau : f \rightarrow 2R_t^{-1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f'(t), \quad f : [0, 1) \rightarrow \mathbb{R}^2. \]

\[f(0) \parallel u_0, \ 'f(1) \parallel u_1'. \]

For ‘nice’ \(R_t \): \(z \) is an e.v. if the solution of the ‘shooting problem’

\[\partial_t f(t, z) = -\frac{z}{2} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} R_t f(t, z), \quad f(0, z) = u_0 \]

satisfies \(f(1, z) \parallel u_1 \).

Thus \(g(z) = u_1^T \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} f(1, z) \) would give an appropriate function.

de Branges: if \(\tau^{-1} \) is H-S and \(\int_0^1 u_1 R_t u_1 < \infty \) then the solution of the ‘reverse’ shooting problem is well-defined and gives an entire function.

\(\rightsquigarrow \) another characterization of the limiting analytic function.
Entire function from the random operator

The resulting function can be written as $A + qB$ where A, B are random entire functions that are real on \mathbb{R}, and q is an independent Cauchy.
Entire function from the random operator

The resulting function can be written as $A + qB$ where A, B are random entire functions that are real on \mathbb{R}, and q is an independent Cauchy.

This is the analogue of the $\beta = \infty$ case! A and B for general β are the ‘randomized’ versions of \cos and \sin.

\[\frac{dE_t}{dt} = -i\beta \gamma z E_t(z) ds - \beta \lambda z \partial_z E_t(z) ds + \bar{E}_t(\bar{z}) - E_t(z) z dW, \]
\[E_0(z) = 1 \]

W is a complex BM.

The SDE system for $\partial_n z E_t(0)$, $n = 1, 2, ...$ can be solved explicitly.
The resulting function can be written as $A + qB$ where A, B are random entire functions that are real on \mathbb{R}, and q is an independent Cauchy.

This is the analogue of the $\beta = \infty$ case! A and B for general β are the ‘randomized’ versions of \cos and \sin.

Using the scale invariance of the hyperbolic BM we can find an SPDE so that its stationary solution is $E = A - iB$:

$$dE_t = -i\frac{\beta}{8}zE_t(z)ds - \frac{\beta}{4}z\partial_z E_t(z)ds + \frac{\bar{E}_t(\bar{z}) - E_t(z)}{2i}dW, \quad E_0(z) = 1$$

W is a complex BM.
Entire function from the random operator

The resulting function can be written as $A + qB$ where A, B are random entire functions that are real on \mathbb{R}, and q is an independent Cauchy.

This is the analogue of the $\beta = \infty$ case! A and B for general β are the ‘randomized’ versions of cos and sin.

Using the scale invariance of the hyperbolic BM we can find an SPDE so that its stationary solution is $E = A - iB$:

$$dE_t = -i\frac{\beta}{8} zE_t(z)ds - \frac{\beta}{4} z\partial_z E_t(z)ds + \frac{\bar{E}_t(z) - E_t(z)}{2i} dW, \quad E_0(z) = 1$$

W is a complex BM. The SDE system for $\partial_z^n E_t(0), n = 1, 2, \ldots$ can be solved explicitly.
Moments of products of ratios

Borodin-Strahov ‘06: Limit of $E \left[\prod_{j=1}^{k} \frac{\tilde{p}_n(z_j)}{\tilde{p}_n(w_j)} \right]$ for various classical random matrix models.
($z_j, w_j \in \mathbb{C}$, k fixed, \tilde{p}_n is the scaled ch. polynomial in the ‘bulk’)
Moments of products of ratios

Borodin-Strahov ‘06: Limit of $E \left[\prod_{j=1}^{k} \frac{\tilde{p}_n(z_j)}{\tilde{p}_n(w_j)} \right]$ for various classical random matrix models.

$(z_j, w_j \in \mathbb{C}, k \text{ fixed}, \tilde{p}_n$ is the scaled ch. polynomial in the ‘bulk’)

If $\text{Im } w_j < 0$ for all $j = 1, \ldots, k$ then the limit simplifies to

$\exp(i \sum_{j=1}^{k} (z_j - w_j))$ in all the classical cases.

Q: Is this true for all $\beta > 0$?
Moments of products of ratios

Borodin-Strahov ‘06: Limit of \(E \left[\prod_{j=1}^{k} \frac{\tilde{p}_n(z_j)}{\tilde{p}_n(w_j)} \right] \) for various classical random matrix models.

\((z_j, w_j \in \mathbb{C}, k \text{ fixed}, \tilde{p}_n \text{ is the scaled ch. polynomial in the ‘bulk’})\)

If \(\text{Im } w_j < 0 \) for all \(j = 1, \ldots, k \) then the limit simplifies to \(\exp(i \sum_{j=1}^{k} (z_j - w_j)) \) in all the classical cases.

Q: Is this true for all \(\beta > 0 \)?

Thm(V.-Virág): The conjectured moment formula for \(\text{Im } w_j < 0 \) holds for the limiting analytic function for all \(\beta > 0 \).
Moments of products of ratios

Borodin-Strahov ‘06: Limit of \(E \left[\prod_{j=1}^{k} \frac{\tilde{p}_n(z_j)}{\tilde{p}_n(w_j)} \right] \) for various classical random matrix models.

\((z_j, w_j \in \mathbb{C}, k \text{ fixed}, \tilde{p}_n \text{ is the scaled ch. polynomial in the ‘bulk’})\)

If \(\text{Im} \, w_j < 0 \) for all \(j = 1, \ldots, k \) then the limit simplifies to \(\exp(i \sum_{j=1}^{k} (z_j - w_j)) \) in all the classical cases.

Q: Is this true for all \(\beta > 0 \)?

Thm(V.-Virág): The conjectured moment formula for \(\text{Im} \, w_j < 0 \) holds for the limiting analytic function for all \(\beta > 0 \).

Outline: In the \(\text{Im} \, w_j < 0 \) case \(E \left[\prod_{j=1}^{k} \frac{A(z_j)+qB(z_j)}{A(w_j)+qB(w_j)} \right] \) can be expressed using \(A - iB \). The expectation can now be evaluated using the SPDE representation for \(A - iB \).