Quantum Diffusion in Fluctuating Media

Jeffrey Schenker

Supported by NSF grant DMS-1500386

CRM, Montréal
November 15, 2018

Joint work with Zak Tilocco and Shiwen Zhang
Quantum Diffusion

Outline

1. Quantum Diffusion Conjecture (Extended States)
2. Schrödinger equation with a Markov fluctuating potential
3. Comments on the proof
4. Open Quantum Systems
5. Conclusions
Consider the Schrödinger equation

\[i\partial_t \psi(x) = H_\omega \psi_t(x) \]

where \(H_\omega \) is an RSO with a spatially homogeneous distribution. Under suitable hypotheses,\(^a\) a diffusive rescaling of the mean wave density \(\mathbb{E}(|\psi_t(x)|^2) \) should approximately solve a heat equation at large time:

\[
\mathbb{E}\left(|\psi_{Tt}(\sqrt{T}x)|^2\right) \sim \int_{\sigma(H_\omega)} \frac{1}{(D(E)t)^{d/2}} e^{-\frac{1}{4D(E)t}|x|^2} \, d\nu(E), \quad T \to \infty
\]

with \(D(E) > 0 \) in the center of the band — \(D(E) = 0 \) at the edges due to Lifshitz tails localization.

\(^a\)Weak disorder, dimension \(\geq 3 \), ...
Consider $H_\omega = H_0 + \lambda V_\omega$, with H_0 giving ballistic propagation and V_ω a random “perturbation.”
Consider $H_\omega = H_0 + \lambda V_\omega$, with H_0 giving ballistic propagation and V_ω a random “perturbation.”

- In a multiple scattering picture

$$e^{-itH_\omega} = e^{-itH_0} - i\lambda \int_0^t e^{-i(t-s)H_0} V_\omega e^{-isH_0} ds + \ldots$$

suggests a build up of random phases.
Consider $H_\omega = H_0 + \lambda V_\omega$, with H_0 giving ballistic propagation and V_ω a random “perturbation.”

- In a multiple scattering picture

$$e^{-itH_\omega} = e^{-itH_0} - i\lambda \int_0^t e^{-i(t-s)H_0} V_\omega e^{-isH_0} ds + \ldots$$

suggests a build up of random phases.

- build up of random phases \implies loss of coherence
Consider $H_\omega = H_0 + \lambda V_\omega$, with H_0 giving ballistic propagation and V_ω a random “perturbation.”

- In a multiple scattering picture
 \[
 e^{-itH_\omega} = e^{-itH_0} - i\lambda \int_0^t e^{-i(t-s)H_0} V_\omega e^{-isH_0} ds + \ldots
 \]

 suggests a build up of random phases.

- build up of random phases \implies loss of coherence

- loss of coherence \implies interference effects can be ignored: densities from different scattering paths are additive, i.e., “classical” propagation.
Consider $H_\omega = H_0 + \lambda V_\omega$, with H_0 giving ballistic propagation and V_ω a random “perturbation.”

- In a multiple scattering picture

$$e^{-itH_\omega} = e^{-itH_0} - i\lambda \int_0^t e^{-i(t-s)H_0} V_\omega e^{-isH_0} ds + \ldots$$

suggests a build up of random phases.

- build up of random phases \implies loss of coherence

- loss of coherence \implies interference effects can be ignored: densities from different scattering paths are additive, i.e., “classical” propagation.

- classical random scattering \implies diffusion (CLT?)
There are mathematical difficulties with every step of the above argument. Despite experience and a rich physical theory, we are far from a good mathematical understanding of this phenomenon.
There are mathematical difficulties with every step of the above argument. Despite experience and a rich physical theory, we are far from a good mathematical understanding of this phenomenon.

In particular, recurrence is a huge problem. And in $1D$ — and maybe $2D$ — it is an essential obstacle.
There are mathematical difficulties with every step of the above argument. Despite experience and a rich physical theory, we are far from a good mathematical understanding of this phenomenon.

In particular, recurrence is a huge problem. And in 1D —and maybe 2D—it is an essential obstacle.

Best results so far: Erdös, Salmhofer, Yau, proved diffusion in a limit with the “disorder strength” \(\lambda \propto T^{-\frac{1}{2}+\epsilon} \).
Outline

1. Quantum Diffusion Conjecture (Extended States)
2. Schrödinger equation with a Markov fluctuating potential
3. Comments on the proof
4. Open Quantum Systems
5. Conclusions
Schrödinger equation with a Markov fluctuating potential

What if the potential fluctuates?

What are the long time dynamics for solutions to

$$\partial_t U(t, t_0) = -iH(t)U(t, t_0),$$

with $U(t_0, t_0) = I$ and $H(t) = H_0 + g \sum_x w(x, t) |x\rangle \langle x|$?
What kind of fluctuations?

Throughout we take

\[w(x, t) = w(\tau_x \alpha_t) \]

with
Throughout we take

\[w(x, t) = w(\tau_x \alpha_t) \]

with

1. \(t \mapsto \alpha_t \) a Markov process on a nice space \(\Lambda \) with a unique invariant probability measure \(\nu \) and a "spectral gap."

- Take the initial value \(\alpha_0 \) distributed according to \(\nu \) (for simplicity).
Throughout we take

\[w(x, t) = w(\tau_x \alpha_t) \]

with

1. \(t \mapsto \alpha_t \) a Markov process on a nice space \(\Lambda \) with a unique invariant probability measure \(\nu \) and a "spectral gap."
 - Take the initial value \(\alpha_0 \) distributed according to \(\nu \) (for simplicity).
2. \(\{\tau_x\}_{x \in \mathbb{Z}^d} \) an action of \(\mathbb{Z}^d \) on \(\Lambda \) as \(\nu \)-measure preserving maps
 - assume the distribution of the Markov process is invariant under \(\tau_x \).
Throughout we take

\[w(x, t) = w(\tau_x \alpha_t) \]

with

1. \(t \mapsto \alpha_t \) a Markov process on a nice space \(\Lambda \) with a unique invariant probability measure \(\nu \) and a "spectral gap."
 - Take the initial value \(\alpha_0 \) distributed according to \(\nu \) (for simplicity).
2. \(\{\tau_x\}_{x \in \mathbb{Z}^d} \) an action of \(\mathbb{Z}^d \) on \(\Lambda \) as \(\nu \)-measure preserving maps
 - assume the distribution of the Markov process is invariant under \(\tau_x \).
3. \(w \) a non-constant, mean-zero function on \(\Lambda \) such that

\[
\lim_{x \to \infty} \int_{\Lambda} w(\tau_x \alpha) w(\alpha) \nu(d\alpha) = 0.
\]
Schrödinger equation with a Markov fluctuating potential

Huh?

If that was too much, think of the following:

Flip process

1. Initially $w(x, 0)$ are i.i.d. ± 1 with equal probability.
Huh?

If that was too much, think of the following:

Flip process

1. Initially $w(x, 0)$ are i.i.d. ± 1 with equal probability.
2. At each site $x \in \mathbb{Z}^d$ we have independent Poisson processes $t_1(x) < t_2(x) < \ldots$, with mean waiting time τ.
Huh?

If that was too much, think of the following:

Flip process

1. Initially $w(x, 0)$ are i.i.d. ± 1 with equal probability.
2. At each site $x \in \mathbb{Z}^d$ we have independent Poisson processes $t_1(x) < t_2(x) < ...$, with mean waiting time τ.
3. $w(x, t)$ is constant for $t \neq t_j(x)$ and flips at times $t = t_j(x)$.
Huh?

If that was too much, think of the following:

Flip process

1. Initially $w(x, 0)$ are i.i.d. ± 1 with equal probability.
2. At each site $x \in \mathbb{Z}^d$ we have independent Poisson processes $t_1(x) < t_2(x) < \ldots$, with mean waiting time τ.
3. $w(x, t)$ is constant for $t \neq t_j(x)$ and flips at times $t = t_j(x)$.

Global resampling process

Take $w(x, 0)$ i.i.d. and use a single Poisson process. Resample the whole distribution of w at each Poisson time.
Huh?

If that was too much, think of the following:

Flip process

1. Initially $w(x, 0)$ are i.i.d. ± 1 with equal probability.
2. At each site $x \in \mathbb{Z}^d$ we have independent Poisson processes $t_1(x) < t_2(x) < ...$, with mean waiting time τ.
3. $w(x, t)$ is constant for $t \neq t_j(x)$ and flips at times $t = t_j(x)$.

Global resampling process

Take $w(x, 0)$ i.i.d. and use a single Poisson process. Resample the whole distribution of w at each Poisson time.

These are just a couple of simple examples. There are many fancier ones that you can use (if you want).
What sort of hopping?

Our methods apply to quite general hopping

\[T\psi(x) = \sum_y h(x - y)\psi(y) \]

such that

1. \(\sum_y |y|^2 h(y) < \infty \), so that \(\hat{h}(k) = \sum_y h(y)e^{-ik\cdot y} \) is a \(C^2 \) function.
What sort of hopping?

Our methods apply to quite general hopping

\[T\psi(x) = \sum_y h(x - y)\psi(y) \]

such that

1. \(\sum_y |y|^2 h(y) < \infty \), so that \(\hat{h}(k) = \sum_y h(y)e^{-ik\cdot y} \) is a \(C^2 \) function.
2. \(h \) is non-degenerate: \(\{ y \mid h(y) \neq 0 \} \) generates \(\mathbb{Z}^d \).
What sort of hopping?

Our methods apply to quite general hopping

\[
T \psi(x) = \sum_y h(x - y) \psi(y)
\]

such that

1. \(\sum_y |y|^2 h(y) < \infty \), so that \(\hat{h}(k) = \sum_y h(y)e^{-i k \cdot y} \) is a \(C^2 \) function.
2. \(h \) is non-degenerate: \(\{ y \mid h(y) \neq 0 \} \) generates \(\mathbb{Z}^d \).

- \(T \) has some ac spectrum, with ballistic transport. It may have infinitely degenerate imbedded eigenvalues (if \(\hat{h} \) is constant on some open sets of positive measure).
What sort of hopping?

Our methods apply to quite general hopping

\[T\psi(x) = \sum_y h(x - y)\psi(y) \]

such that

1. \(\sum_y |y|^2 h(y) < \infty \), so that \(\hat{h}(k) = \sum_y h(y)e^{-ik\cdot y} \) is a \(C^2 \) function.
2. \(h \) is non-degenerate: \(\{ y \mid h(y) \neq 0 \} \) generates \(\mathbb{Z}^d \).

- \(T \) has some ac spectrum, with ballistic transport. It may have infinitely degenerate imbedded eigenvalues (if \(\hat{h} \) is constant on some open sets of positive measure).
- If \(h \) is finite range, or exponentially bounded, then the spectrum is pure a.c. since \(\hat{h} \) is analytic.
Theorem (Kang and S. 2009)

If \(i\partial_t \psi_t(x) = T \psi_t(x) + gW(x, t)\psi_t(x) \) with, say, \(\psi_0(x) = \delta_0(x) \). Then

\[
\lim_{T \to \infty} \frac{1}{T} \sum_x x_i x_j \mathbb{E} \left(|\psi_t(x)|^2 \right) = D(g)_{i,j}
\]
Theorem (Kang and S. 2009)

If \(i \partial_t \psi_t(x) = T \psi_t(x) + gW(x, t)\psi_t(x) \) with, say, \(\psi_0(x) = \delta_0(x) \). Then

\[
\lim_{T \to \infty} \frac{1}{T} \sum_x x_i x_j \mathbb{E} \left(|\psi_t(x)|^2 \right) = D(g)_{i,j}
\]

and

\[
\lim_{T \to \infty} \sum_x e^{-i \frac{1}{\sqrt{T}} k \cdot x} \mathbb{E} \left(|\psi_{Tt}(x)| \right)^2 = e^{-t \text{tr}(D(g)k \otimes k)},
\]
Theorem (Kang and S. 2009)

If \(i \partial_t \psi_t(x) = T \psi_t(x) + gW(x, t) \psi_t(x) \) with, say, \(\psi_0(x) = \delta_0(x) \). Then

\[
\lim_{T \to \infty} \frac{1}{T} \sum_x x_i x_j \mathbb{E} \left(| \psi_t(x) |^2 \right) = D(g)_{i,j}
\]

and

\[
\lim_{T \to \infty} \sum_x e^{-i \frac{1}{\sqrt{T}} k \cdot x} \mathbb{E} \left(| \psi_{Tt}(x) |^2 \right) = e^{-t \text{tr}(D(g)k \otimes k)},
\]

where \(D(g) \) is a \(d \times d \) positive definite matrix,
Theorem (Kang and S. 2009)

If \(i \partial_t \psi_t(x) = T \psi_t(x) + gW(x, t)\psi_t(x) \) with, say, \(\psi_0(x) = \delta_0(x) \). Then

\[
\lim_{T \to \infty} \frac{1}{T} \sum_x x_i x_j \mathbb{E} \left(|\psi_t(x)|^2 \right) = D(g)_{i,j}
\]

and

\[
\lim_{T \to \infty} \sum_x e^{-i \frac{1}{\sqrt{T}} k \cdot x} \mathbb{E} (|\psi_{Tt}(x)|)^2 = e^{-t \text{tr}(D(g)k \otimes k)}
\]

where \(D(g) \) is a \(d \times d \) positive definite matrix, and

\[
D(g) = \frac{1}{g^2} D_0 + O(1)
\]

as \(g \to 0 \).
A full central limit theorem follows from the result for the Fourier transform:

$$
\lim_{T \to \infty} \sum_x f(\frac{x}{\sqrt{t}}) \mathbb{E} \left(|\psi_t(x)|^2 \right) = C_d \int_{\mathbb{R}^d} f(r) e^{-\frac{1}{2} \text{tr}(D(g)^{-1} r \otimes r)} \, dr.
$$
A full central limit theorem follows from the result for the Fourier transform:

$$\lim_{T \to \infty} \sum_x f(x/\sqrt{t}) \mathbb{E} \left(|\psi_t(x)|^2 \right) = C_d \int_{\mathbb{R}^d} f(r)e^{-\frac{1}{2} \text{tr}(D(g)^{-1} r \otimes r)} \, dr.$$

If T commutes with lattice rotations, then $D(g) = D(g) \mathbb{1}$, where $D(g) = \frac{1}{d} \text{tr} D(g)$ is the diffusion constant.
A full central limit theorem follows from the result for the Fourier transform:

$$\lim_{T \to \infty} \sum_x f(x/\sqrt{t}) \mathbb{E} \left(|\psi_t(x)|^2 \right) = C_d \int_{\mathbb{R}^d} f(r) e^{-\frac{1}{2} \text{tr}(D(g)^{-1} r \otimes r)} \, dr.$$

If T commutes with lattice rotations, then $D(g) = D(g) \mathbb{1}$, where $D(g) = \frac{1}{d} \text{tr} D(g)$ is the \textit{diffusion constant}.

For the global resampling process there is an explicit formula for D_0 in terms of the Green’s functions of T, suggesting that the asymptotics have to do with AC spectrum and ballistic transport.
Fast diffusion

\[\lambda = 0, u = 1, \gamma = 1, \delta = 0.05 \]

Static Random Potential
Fluctuating Random Potential

time = 0

Probability
Position

-40 -30 -20 -10 0 10 20 30 40
Theorem (S. 2015)

Let H_{ω} be a RSO

$$i\partial_t \psi_t(x) = H_{\omega}\psi_t(x) + gW(x, t)\psi_t(x)$$

with, say, $

\psi_0(x) = \delta_0(x).$

Then

$$\lim_{T \to \infty} \sum_x e^{-i\frac{1}{\sqrt{T}} k \cdot x} \mathbb{E}(|\psi_{Tt}(x)|)^2 = e^{-t \operatorname{tr}(D(g)k \otimes k)},$$

where $D(g)$ is a positive definite matrix.
Theorem (S. 2015)

Let H_ω be a RSO $i \partial_t \psi_t(x) = H_\omega \psi_t(x) + gW(x, t)\psi_t(x)$ with, say, $\psi_0(x) = \delta_0(x)$. Then

$$\lim_{T \to \infty} \sum_x e^{-i \frac{1}{\sqrt{T}} k \cdot x} \mathbb{E}(|\psi_T(x)|^2) = e^{-t \text{tr}(D(g)k \otimes k)},$$

where $D(g)$ a $d \times d$ positive definite matrix.
Theorem (S. 2015)

Let H_ω be a RSO

$$i \partial_t \psi_t(x) = H_\omega \psi_t(x) + gW(x, t) \psi_t(x)$$

with, say, $\psi_0(x) = \delta_0(x)$. Then

$$\lim_{T \to \infty} \sum_x e^{-i \frac{1}{\sqrt{T}} k \cdot x} \mathbb{E} (|\psi_{Tt}(x)|)^2 = e^{-t \text{tr}(D(g) k \otimes k)},$$

where $D(g)$ a $d \times d$ positive definite matrix. If H_ω has exponential dynamical localization then

$$D(g) = F_0 g^2 + o(g^2).$$
Slow diffusion

\[\lambda=0, \ u=1, \ \gamma=1, \ \delta = 0.05 \]

- Static Random Potential
- Fluctuating Random Potential

Probability vs. Position for time = 0.
Schrödinger equation with a Markov fluctuating potential

Slow diffusion

\[\lambda = 0, \ u = 1, \ \gamma = 1, \ \delta = 0.05 \]

\begin{align*}
\text{Probability} \\
0 & \quad \quad 0.1 \quad \quad 0.2 \quad \quad 0.3 \quad \quad 0.4 \quad \quad 0.5 \quad \quad 0.6 \quad \quad 0.7 \quad \quad 0.8 \quad \quad 0.9 \quad \quad 1 \\
\text{Position} \\
-40 & \quad \quad -30 \quad \quad -20 \quad \quad -10 \quad \quad 0 \quad \quad 10 \quad \quad 20 \quad \quad 30 \quad \quad 40
\end{align*}
Conjecture

Let H_0 be an ergodic Schrödinger operator and suppose that the dynamics e^{-itH_0} have a transport exponent ν:

$$\sum_x x_j^2 |\psi_t(x)|^2 \sim C_j t^{2\nu}$$

with $0 < C_j < \infty$. Then solutions to $i\partial_t \psi(x) = H_0 \psi_t(x) + gW(x, t) \psi_t(x)$ are diffusive with diffusion matrix

$$D(g) = g^{2-4\nu} D_0 + o(g^{2-4\nu}).$$
Theorem (S., Tilocco, Zhang 2018, in preparation)

Let $H_0 = T + U$ where $U(x)$ is a periodic potential, and suppose that H_0 has ballistic transport.\(^a\) Then diffusion holds for solutions to

$$i\partial_t(x) = H_0\psi_t(x) + gW(x, t)\psi_t(x)$$

with

$$D(g) = \frac{1}{g^2} D_0 + O(1)$$

\(^a\)This is automatic if T is finite range, or exponentially bounded, but may not hold in full generality for polynomially decaying hopping.
Theorem (S., Tilocco, Zhang 2018, in preparation)

Let $H_0 = T + U$ where $U(x)$ is a periodic potential, and suppose that H_0 has ballistic transport. Then diffusion holds for solutions to
\[i\partial_t \psi_t(x) = H_0 \psi_t(x) + gW(x, t)\psi_t(x) \]
with
\[D(g) = \frac{1}{g^2} D_0 + O(1) \]

\[a \text{This is automatic if } T \text{ is finite range, or exponentially bounded, but may not hold in full generality for polynomially decaying hopping.} \]

A formal calculation suggests that
\[D(g) = \frac{1}{g^2} D_0 + D_1 + o(1). \]
Schrödinger equation with a Markov fluctuating potential

Slow/Fast diffusion

\[\lambda=0, \ u=1, \ \gamma=1, \ \delta=0.05\]

Probability

Position

Static Random Potential
Fluctuating Random Potential

time = 0
D versus g
Schrödinger equation with a Markov fluctuating potential

Literature.

- Ovchinnikov and Erikhman (JETP 1974)
- Pillet (CMP 1985)
Ovchinnikov and Erikhman (JETP 1974)
Pillet (CMP 1985)
Tcheremchantsev (CMP 1997, CMP 1998)
Kang & S. (JSP 2009); Hamza, Kang & S. (LMP 95 2010); S. (CMP 2015)
Ovchinnikov and Erikhman (JETP 1974)

Pillet (CMP 1985)

Tcheremchantsev (CMP 1997, CMP 1998)

Kang & S. (JSP 2009); Hamza, Kang & S. (LMP 95 2010); S. (CMP 2015)

Outline

1. Quantum Diffusion Conjecture (Extended States)
2. Schrödinger equation with a Markov fluctuating potential
3. Comments on the proof
4. Open Quantum Systems
5. Conclusions
Augmented space formalism

- We use the “Augmented space formalism” with disorder variables in the Hilbert space:

$$\mathbb{E} \left(|\psi_t(x)|^2 \right) = \langle \delta_x \times \delta_x \times 1 | e^{-tG} | \delta_0 \times \delta_0 \times 1 \rangle_{\mathcal{H} \times \mathcal{H} \times L^2(\Lambda)}$$

- $\mathcal{H} = \ell^2(\mathbb{Z}^d)$
- $G = i[H, \cdot] + B$ (non self adjoint),
- $H = H_0 + gw(\tau_x \alpha)$ (No time dependence!)
- $B =$ Markov process generator.
Augmented space formalism

We use the "Augmented space formalism" with disorder variables in the Hilbert space:

$$E \left(|\psi_t(x)|^2 \right) = \langle \delta_x \times \delta_x \times 1 | e^{-tG} | \delta_0 \times \delta_0 \times 1 \rangle_{\mathcal{H} \times \mathcal{H} \times L^2(\Lambda)}$$

- $\mathcal{H} = \ell^2(\mathbb{Z}^d)$
- $\mathcal{G} = i[H, \cdot] + B$ (non self adjoint),
- $H = H_0 + g\omega(\tau_x \alpha)$ (No time dependence!)
- $B =$ Markov process generator.

Generator \mathcal{G} commutes with translations

$$\delta_x \times \delta_y \times f(\omega) \mapsto \delta_{x + \xi} \times \delta_{y + \xi} \times f(S_\xi \omega).$$
We use the “Augmented space formalism” with disorder variables in the Hilbert space:

\[E\left(\left|\psi_t(x)\right|^2\right) = \langle \delta_x \times \delta_x \times 1 | e^{-tG} | \delta_0 \times \delta_0 \times 1 \rangle_{\mathcal{H} \times \mathcal{H} \times L^2(\Lambda)} \]

- \(\mathcal{H} = \ell^2(\mathbb{Z}^d) \)
- \(\mathcal{G} = i[H, \cdot] + B \) (non self adjoint),
- \(H = H_0 + gw(\tau_x \alpha) \) (No time dependence!)
- \(B = \) Markov process generator.

Generator \(\mathcal{G} \) commutes with translations

\[\delta_x \times \delta_y \times f(\omega) \mapsto \delta_{x+\xi} \times \delta_{y+\xi} \times f(S_\xi \omega). \]

In the periodic case, this is a subgroup of possible translations.
Sketch of the Proof

- Make a Bloch-Floquet transform

\[
\sum_{x \in P \mathbb{Z}^d} e^{-i k \cdot x} \mathbb{E} \left(|\psi_t(x)|^2 \right)
= \sum_{y \in P} \langle \delta_0 \times \delta_y \times 1 | e^{-t \hat{G}_k} | \delta_0 \times \delta_0 \times 1 \rangle_{\mathcal{H} \times \ell^2(P) \times L^2(\Lambda)},
\]

where
- \(P \) is the periodicity cell for the periodic potential,
- \(\hat{G}_k \) is an explicit fiber operator (non SA), with hopping in disorder space.
- \(\hat{G}_0 \) has a simple zero eigenvector (conservation of probability) and a spectral gap.
Basic perturbation theory shows that \hat{G}_k has a simple near zero eigenvector $E(k)$ and a spectral gap.
Basic perturbation theory shows that \hat{G}_k has a simple near zero eigenvector $E(k)$ and a spectral gap.

$$\nabla E(0) = 0$$

$$D_{i,j} = \frac{\partial^2}{\partial k_i \partial k_j} E(k) \bigg|_{k=0} .$$
Basic perturbation theory shows that \hat{G}_k has a simple near zero eigenvector $E(k)$ and a spectral gap.

$$\nabla E(0) = 0$$

$$D_{i,j} = \left. \frac{\partial^2}{\partial k_i \partial k_j} E(k) \right|_{k=0} \ . \ \square$$

Proof for the random operator case is a bit different. There is no gap, but we can use the resolvent $(\eta + \hat{G}_k)^{-1}$ to prove the result.
Sketch of the proof

Basic perturbation theory shows that \hat{G}_k has a simple near zero eigenvector $E(k)$ and a spectral gap.

$$\nabla E(0) = 0$$

$$D_{i,j} = \left. \frac{\partial^2}{\partial k_i \partial k_j} E(k) \right|_{k=0}$$

Proof for the random operator case is a bit different. There is no gap, but we can use the resolvent $(\eta + \hat{G}_k)^{-1}$ to prove the result.

Estimating D at small g takes more work.
Outline

1. Quantum Diffusion Conjecture (Extended States)
2. Schrödinger equation with a Markov fluctuating potential
3. Comments on the proof
4. Open Quantum Systems
5. Conclusions
Diffusion for a quantum particle interacting with a thermal bath?
Diffusion for a quantum particle interacting with a thermal bath?

- Vast physics literature going back to Mott.
Diffusion for a quantum particle interacting with a thermal bath?

- Vast physics literature going back to Mott.
- Most work relies on Fermi Golden Rule (quantum Markov formalism).
Diffusion for a quantum particle interacting with a thermal bath?

- Vast physics literature going back to Mott.
- Most work relies on Fermi Golden Rule (quantum Markov formalism).
- Some recent mathematical physics literature:
 - D. Spehner and J. Bellissard (JSP 2001);
 - W. De Roeck and J. Fröhlich (CMP 2011);
 - Fröhich and S. (JMP 2016);
Theorem (Fröhlich, S. 2016)

\[\partial_t \rho_t = -i [H_\omega, \rho_t] + u \mathcal{L}(\rho_t), \]

with \(H_\omega = T + \lambda V_\omega \) and a suitable\(^a\) Lindbladian \(\mathcal{L} \). Then

\[D = \lim_{t \to \infty} \frac{1}{t} \sum_x |x|^2 \mathbb{E}(\langle x | \rho_t | x \rangle) \]

exists and satisfies \(0 < D < \infty \).
Theorem (Fröhlich, S. 2016)

\[\partial_t \rho_t = -i [H_\omega, \rho_t] + u \mathcal{L}(\rho_t), \]

with \(H_\omega = T + \lambda V_\omega \) and a suitable\(^a\) Lindbladian \(\mathcal{L} \). Then \(D = \lim_{t \to \infty} \frac{1}{t} \sum_x |x|^2 \mathbb{E} (\langle x | \rho_t | x \rangle) \)

exists and satisfies \(0 < D < \infty \).

1. If \(\lambda = 0 \) (no disorder), then \(D = \frac{C}{u} \) for all \(u > 0 \).
2. If \(H_\omega \) exhibits localization, then

\[D = \Delta u + o(u) \]

where \(0 < \Delta < (\text{loc. length})^2 \).
The Lindblad generator

Describes a hopping process for the particle momentum:

\[
\rho^W(X, p) = \sum_\xi e^{ip \cdot \xi} \langle \frac{X + \xi}{2} \left| \rho \left| \frac{X - \xi}{2} \right. \rangle,
\]

\[
\mathcal{L}\rho^W(X, p) = \int \hat{r}(p, q) \left[\rho^W(X, q) - \rho^W(X, p) \right] dq,
\]

\[
\hat{r}(p, q) = \hat{r}(q, p),
\]

and

\[
\int\int \hat{r}(p, q) \left| f(p) - f(q) \right|^2 dp dq \geq c \int\int \left| f(p) - f(q) \right|^2 dp dq.
\]
Conclusions

Outline

1. Quantum Diffusion Conjecture (Extended States)
2. Schrödinger equation with a Markov fluctuating potential
3. Comments on the proof
4. Open Quantum Systems
5. Conclusions
Summary

- Diffusion is universal in the presence of time dependent fluctuations. (Quantitative analysis)
Summary

- Diffusion is universal in the presence of time dependent fluctuations. (Quantitative analysis)
- The speed of diffusion for weak noise carries information about the transport properties of the underlying time independent system. (Qualitative analysis)
Open Problems

Open Problems

2. Operators H_0 with anomalous diffusion.
Open Problems

2. Operators H_0 with anomalous diffusion.
3. Handling more natural Lindblad generators.
Open Problems

2. Operators H_0 with anomalous diffusion.
3. Handling more natural Lindblad generators.
4. Fluctuations around the limit of the mean. For example what can we say about

$$\mathbb{E} \left(\langle \psi_t | X^2 | \psi_t \rangle - \langle \psi_t | X | \psi_t \rangle^2 \right)$$

? Does the wave function self-average?
If not, does it make sense to look at the limit in distribution.
Open Problems

2. Operators H_0 with anomalous diffusion.
3. Handling more natural Lindblad generators.
4. Fluctuations around the limit of the mean. For example what can we say about
 \[\mathbb{E} \left(\langle \psi_t | X^2 | \psi_t \rangle - \langle \psi_t | X | \psi_t \rangle^2 \right) \]?

5. Does the wave function self-average?
 - If not, does it make sense to look at the limit in distribution.
Hard problems

1. Diffusion in an open quantum system without the Markov approximation.
 - How to *prove* that decoherence emerges and memory in the bath decays?
Hard problems

1. Diffusion in an open quantum system without the Markov approximation.
 - How to prove that decoherence emerges and memory in the bath decays?
2. Diffusion for weak disorder (without fluctuations)
 - Recurrence is the problem.
 - Can fluctuations help?
Thank you!