Sum Rules via Large Deviations: A short panoramic travel

Alain Rouault (Versailles)
Joint works with Fabrice Gamboa (Toulouse) and Jan Nagel (Eindhoven)

November 16th 2018

F. Gamboa (Toulouse) J. Nagel (Eindhoven)

Spectral Theory of Quasi-Periodic and Random Operators - CRM
There are two remarkable formulas, which use the relative entropy \mathcal{K} of two probabilities P and Q

$$
\mathcal{K}(P|Q) = \begin{cases}
\int \log \frac{dP}{dQ} \, dP & \text{if } P \ll Q \text{ and } \log \frac{dP}{dQ} \in L^1(P), \\
+\infty & \text{otherwise}.
\end{cases}
$$

The first one is

Szegő-Verblunsky’s formula

$$
\mathcal{K}\text{(UNIF}|\mu) = -\sum_j \log(1 - |\alpha_j|^2)
$$

where the α_j’s are the Verblunsky coefficients of the measure μ on the unit circle \mathbb{T} and UNIF is the uniform probability on \mathbb{T}.
There are two remarkable formulas, which use the relative entropy \mathcal{K} of two probabilities P and Q

$$\mathcal{K}(P|Q) = \begin{cases} \int \log \frac{dP}{dQ} \, dP & \text{if } P \ll Q \text{ and } \log \frac{dP}{dQ} \in L^1(P), \\ +\infty & \text{otherwise}. \end{cases} \quad (1)$$

The first one is

Szegő-Verblunsky’s formula

$$\mathcal{K}(\text{UNIF}|\mu) = - \sum_j \log(1 - |\alpha_j|^2)$$

where the α_j’s are the Verblunsky coefficients of the measure μ on the unit circle \mathbb{T} and UNIF is the uniform probability on \mathbb{T}.
Introduction

There are two remarkable formulas, which use the relative entropy \mathcal{K} of two probabilities P and Q

$$
\mathcal{K}(P|Q) = \begin{cases}
\int \log \frac{dP}{dQ} \, dP & \text{if } P \ll Q \text{ and } \log \frac{dP}{dQ} \in L^1(P), \\
+\infty & \text{otherwise}.
\end{cases}
$$

(1)

The first one is

Szegő-Verblunsky’s formula

$$
\mathcal{K}(\text{UNIF}|\mu) = - \sum_j \log(1 - |\alpha_j|^2)
$$

where the α_j’s are the Verblunsky coefficients of the measure μ on the unit circle \mathbb{T} and UNIF is the uniform probability on \mathbb{T}.
Introduction

There are two remarkable formulas, which use the relative entropy \mathcal{K} of two probabilities P and Q

$$\mathcal{K}(P|Q) = \begin{cases} \int \log \frac{dP}{dQ} \, dP & \text{if } P \ll Q \text{ and } \log \frac{dP}{dQ} \in L^1(P), \\ +\infty & \text{otherwise}. \end{cases}$$

(1)

The first one is

Szegő-Verblunsky’s formula

$$\mathcal{K}(UNIF|\mu) = - \sum_j \log(1 - |\alpha_j|^2)$$

where the α_j’s are the Verblunsky coefficients of the measure μ on the unit circle \mathbb{T} and $UNIF$ is the uniform probability on \mathbb{T}.
Introduction

There are two remarkable formulas, which use the relative entropy \mathcal{K} of two probabilities P and Q

$$\mathcal{K}(P|Q) = \begin{cases} \int \log \frac{dP}{dQ} \, dP & \text{if } P \ll Q \text{ and } \log \frac{dP}{dQ} \in L^1(P), \\ +\infty & \text{otherwise.} \end{cases}$$ \hspace{1cm} (1)

The first one is

Szegő-Verblunsky’s formula

$$\mathcal{K}(\text{UNIF}|\mu) = - \sum_j \log(1 - |\alpha_j|^2)$$

where the α_j’s are the Verblunsky coefficients of the measure μ on the unit circle \mathbb{T} and UNIF is the uniform probability on \mathbb{T}.
The second one is

Killip-Simon sum rule (’03)

\[
\mathcal{K}(\text{SC}\mid \mu) + \sum_{n} \mathcal{F}(E_n^+) + \sum_{n} \mathcal{F}(E_n^-) = \sum_{j} G(a_j^2) + \frac{b_j^2}{2},
\]

when

\[
\text{Supp}(\mu) = [-2, 2] \cup \{E_j^-\}_{j=1}^{N^-} \cup \{E_j^+\}_{j=1}^{N^+}
\]

where \(N^+\) (resp. \(N^-\)) is 0, finite or infinite, \(E_j^- \uparrow -2\) and \(E_j^+ \downarrow 2\) are isolated points of the support, \(a_j\)'s and \(b_j\)'s are the Jacobi coefficients of \(\mu\),

\[
\mathcal{F}(x) = \int_{2}^{\left| x \right|} \sqrt{t^2 - 4} \, dt, \quad G(x) = x - 1 - \log x,
\]

and \(\text{SC}\) is the semi-circle distribution:

\[
\text{SC}(dx) = \frac{1}{2\pi} \sqrt{4 - x^2} \, dx.
\]
The second one is

Killip-Simon sum rule (’03)

\[
\mathcal{K}(SC| \mu) + \sum_n \mathcal{F}(E_n^+) + \sum_n \mathcal{F}(E_n^-) = \sum_j G(a_j^2) + \frac{b_j^2}{2},
\]

when

\[\text{Supp}(\mu) = [-2, 2] \cup \{E_j^-\}_{j=1}^{N^-} \cup \{E_j^+\}_{j=1}^{N^+}\]

where \(N^+\) (resp. \(N^-\)) is 0, finite or infinite, \(E_j^- \uparrow -2\) and \(E_j^+ \downarrow 2\) are isolated points of the support, \(a_j\)'s and \(b_j\)'s are the Jacobi coefficients of \(\mu\),

\[\mathcal{F}(x) = \int_2^{|x|} \sqrt{t^2 - 4} \, dt\]

\[G(x) = x - 1 - \log x\]

and \(SC\) is the semi-circle distribution:

\[SC(dx) = \frac{1}{2\pi} \sqrt{4 - x^2} \, dx\].
The second one is

Killip-Simon sum rule ('03)

\[
\mathcal{K}(SC| \mu) + \sum_n \mathcal{F}(E_n^+) + \sum_n \mathcal{F}(E_n^-) = \sum_j G(a_j^2) + \frac{b_j^2}{2},
\]

when

\[
\text{Supp}(\mu) = [-2, 2] \cup \{E_j^-\}_{j=1}^{N^-} \cup \{E_j^+\}_{j=1}^{N^+}
\]

where \(N^+\) (resp. \(N^-\)) is 0, finite or infinite, \(E_j^- \uparrow -2\) and \(E_j^+ \downarrow 2\) are isolated points of the support, \(a_j\)'s and \(b_j\)'s are the Jacobi coefficients of \(\mu\),

\[
\mathcal{F}(x) = \int_2^{\mid x \mid} \sqrt{t^2 - 4} \, dt , \quad G(x) = x - 1 - \log x ,
\]

and \(SC\) is the semi-circle distribution:

\[
SC(dx) = \frac{1}{2\pi} \sqrt{4 - x^2} \, dx .
\]
The common features of both formulas are

- their positivity
- the presence of a reference measure μ_0
- their structure; the "measure side" is a discrepancy between μ and μ_0 and the "coefficient side" is a "discrepancy" between the coefficients of μ and the corresponding coefficients of μ_0.
The common features of both formulas are

- their positivity
- the presence of a reference measure μ_0
- their structure; the "measure side" is a discrepancy between μ and μ_0 and the "coefficient side" is a "discrepancy" between the coefficients of μ and the corresponding coefficients of μ_0.
The common features of both formulas are

- their positivity
- the presence of a reference measure μ_0
- their structure; the "measure side" is a discrepancy between μ and μ_0 and the "coefficient side" is a "discrepancy" between the coefficients of μ and the corresponding coefficients of μ_0.
The common features of both formulas are

- their positivity
- the presence of a reference measure μ_0
- their structure; the "measure side" is a discrepancy between μ and μ_0, and the "coefficient side" is a "discrepancy" between the coefficients of μ and the corresponding coefficients of μ_0.
How to get a sum rule with a probabilistic method

- Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e:

$$<e, M^k e> = \int_E x^k d\mu(x), \ (k \geq 0)$$

$E = \mathbb{T}$ or \mathbb{R}, M unitary or self-adjoint.

- Randomize in this class, a family of finite-dimensional operators $(M_n)_{n \geq 1}$ and their spectral measures $(\mu_n)_{n \geq 1}$ at $(e^{(n)})_{n \geq 1}$

- Consider the two encodings of the spectral measures μ_n
 1) the pair "locations, weights"

$$\mu_n = \sum_{k=1}^{n} w_k^{(n)} \delta_{\lambda_k^{(n)}}$$

 2) the recursion coefficients (Jacobi or Verblunsky) : $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)})$.
How to get a sum rule with a probabilistic method

Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e:

$$< e, M^k e > = \int_E x^k d\mu(x), \quad (k \geq 0)$$

$E = \mathbb{T}$ or \mathbb{R}, M unitary or self-adjoint.

Randomize in this class, a family of finite-dimensional operators $(M_n)_{n \geq 1}$ and their spectral measures $(\mu_n)_{n \geq 1}$ at $(e^{(n)})_{n \geq 1}$

Consider the two encodings of the spectral measures μ_n

1) the pair "locations, weights"

$$\mu_n = \sum_{k=1}^{n} w_{\lambda_k^{(n)}}^{(n)} \delta_{\lambda_k^{(n)}}$$

2) the recursion coefficients (Jacobi or Verblunsky) : $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)})$.

A. Rouault (LMV)
How to get a sum rule with a probabilistic method

- Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e:

$$< e, M^k e > = \int_E x^k \, d\mu(x), \quad (k \geq 0)$$

$E = \mathbb{T}$ or \mathbb{R}, M unitary or self-adjoint.

- Randomize in this class, a family of finite-dimensional operators $(M_n)_{n \geq 1}$ and their spectral measures $(\mu_n)_{n \geq 1}$ at $(e^{(n)})_{n \geq 1}$

- Consider the two encodings of the spectral measures μ_n:

1) the pair "locations, weights"

$$\mu_n = \sum_{k=1}^{n} w_k^{(n)} \delta_{\lambda_k^{(n)}}$$

2) the recursion coefficients (Jacobi or Verblunsky): $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)})$.
How to get a sum rule with a probabilistic method

Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e:

$$<e, M^k e> = \int_E x^k d\mu(x), \ (k \geq 0)$$

$E = \mathbb{T}$ or \mathbb{R}, M unitary or self-adjoint.

Randomize in this class, a family of finite-dimensional operators $(M_n)_{n \geq 1}$ and their spectral measures $(\mu_n)_{n \geq 1}$ at $(e^{(n)})_{n \geq 1}$.

Consider the two encodings of the spectral measures μ_n

1) the pair "locations, weights"

$$\mu_n = \sum_{k=1}^{n} w_k^{(n)} \delta_{\lambda_k^{(n)}}$$

2) the recursion coefficients (Jacobi or Verblunsky): $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)})$.

A. Rouault (LMV)
Spectral theory - CRM
November 16th 2018
How to get a sum rule with a probabilistic method

Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e:

$$\langle e, M^k e \rangle = \int_E x^k d\mu(x), \ (k \geq 0)$$

$E = \mathbb{T}$ or \mathbb{R}, M unitary or self-adjoint.

Randomize in this class, a family of finite-dimensional operators $(M_n)_{n \geq 1}$ and their spectral measures $(\mu_n)_{n \geq 1}$ at $(e^{(n)})_{n \geq 1}$.

Consider the two encodings of the spectral measures μ_n

1) the pair "locations, weights"

$$\mu_n = \sum_{k=1}^{n} w^{(n)}_k \delta_{\lambda^{(n)}_k}$$

2) the recursion coefficients (Jacobi or Verblunsky) : $(a^{(n)}_k, b^{(n)}_k)$ or $(\alpha^{(n)}_k)$.
How to get a sum rule with a probabilistic method

Consider a compactly supported measure μ as the spectral measure of some operator M in some class, at a vector e:

$$\langle e, M^k e \rangle = \int_E x^k \, d\mu(x), \quad (k \geq 0)$$

$E = \mathbb{T}$ or \mathbb{R}, M unitary or self-adjoint.

Randomize in this class, a family of finite-dimensional operators $(M_n)_{n \geq 1}$ and their spectral measures $(\mu_n)_{n \geq 1}$ at $(e^{(n)})_{n \geq 1}$.

Consider the two encodings of the spectral measures μ_n

1) the pair "locations, weights"

$$\mu_n = \sum_{k=1}^{n} w_k^{(n)} \delta_{\lambda_k^{(n)}}$$

2) the recursion coefficients (Jacobi or Verblunsky) : $(a_k^{(n)}, b_k^{(n)})$ or $(\alpha_k^{(n)})$.

A. Rouault (LMV)
Prove two Large Deviation Principles:

\[
\frac{1}{n} \log P(\mu_n \approx \mu) \approx -I_{sp}(\mu)
\]

\[
\frac{1}{n} \log P(\mu_n \approx \mu) \approx -I_{Jac}(a_1, b_1, a_2, \ldots)
\]

Write equality of both rate functions:

\[
I_{sp}(\mu) = I_{Jac}(a_1, b_1, a_2, \ldots)
\]

Notice the difference between the two measures

\[
\mu_n = \mu_n^{sp} = \sum_{k=1}^{n} w_k \delta_{\lambda_k} \quad \text{(spectral measure)}
\]

\[
\mu_n^{ESD} = \frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_k} \quad \text{(empirical spectral distribution)}.
\]
Prove two Large Deviation Principles:

\[
\frac{1}{n} \log P(\mu_n \approx \mu) \approx -I_{sp}(\mu) \\
\frac{1}{n} \log P(\mu_n \approx \mu) \approx -I_{Jac}(a_1, b_1, a_2, \ldots)
\]

Write equality of both rate functions:

\[I_{sp}(\mu) = I_{Jac}(a_1, b_1, a_2, \ldots)\]

Notice the difference between the two measures

\[
\mu_n = \mu_n^{SP} = \sum_{k=1}^{n} w_k \delta_{\lambda_k} \quad \text{(spectral measure)}
\]

\[
\mu_n^{ESD} = \frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_k} \quad \text{(empirical spectral distribution)}.
\]
Prove two Large Deviation Principles:

\[
\frac{1}{n} \log P(\mu_n \approx \mu) \approx -I_{sp}(\mu)
\]

\[
\frac{1}{n} \log P(\mu_n \approx \mu) \approx -I_{Jac}(a_1, b_1, a_2, \ldots)
\]

Write equality of both rate functions:

\[
I_{sp}(\mu) = I_{Jac}(a_1, b_1, a_2, \ldots)
\]

Notice the difference between the two measures

\[
\mu_n = \mu_n^{SP} = \sum_{k=1}^{n} w_k \delta_{\lambda_k} \text{ (spectral measure)}
\]

\[
\mu_n^{ESD} = \frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_k} \text{ (empirical spectral distribution)}.
\]
Randomization for the KS/SR

- Suppose the distribution of \mathcal{M}_n has the GUE-density

$$
\mathcal{Z}_n^{-1} \exp \left(- \frac{n}{2} \text{tr} \mathcal{M}^2 \right)
$$

- Dumitriu-Edelman ('02) proved that the Jacobi parameters are independent and

$$
b_k^{(n)} \sim \mathcal{N}(0; n^{-1}) \quad (1 \leq k \leq n),
$$

$$
(a_k^{(n)})^2 \sim \text{Gamma} \left(n - k; n^{-1} \right) \quad (1 \leq k \leq n - 1).
$$

Note that $b_k^{(n)} \to 0$, $a_k^{(n)} \to 1$, the Jacobi coefficients of SC.

Theorem (GR '11)

μ_n^{SP} satisfies the LDP with speed n and rate function

$$
\mathcal{J}_{Jac} = \sum_{1}^{\infty} \frac{1}{2} b_k^2 + \sum_{1}^{\infty} G(a_k^2), \quad G(x) = x - 1 - \log x.
$$
LDP for the "measure side", general potential (no gap)

- \mathcal{M}_n random complex Hermitian $n \times n$ matrix with density

$$\left(Z_n^V \right)^{-1} \exp(-n \text{tr} V(\mathcal{M}))$$

- Potential $V : \mathbb{R} \rightarrow (-\infty, \infty]$ smooth, e.g. $V(x) = x^2/2$, (GUE).

- $\mu_{n}^{\text{SP}} = \sum_{1}^{n} w_i \delta_{\lambda_i}$

 with $w_i = |U_{1,i}|^2$ for U unitary matrix of eigenvectors.

- The joint density of eigenvalues is

$$\left(Z_n^V \right)^{-1} \prod_{i<j}(\lambda_i - \lambda_j)^2 \prod_{i} \exp(-n V(\lambda_i))$$

and (w_1, \ldots, w_n) is uniformly distributed on the simplex, and independent of the eigenvalues.
Theorem (GNR ’16)

Under assumptions on V, the sequence of random spectral measures $\mu^{(n)}$ satisfies the LDP with speed n with good rate function

$$ I_{sp}(\mu) = K(\mu_V \mid \mu) + \sum_k \mathcal{F}_V(E_k^+) + \sum_k \mathcal{F}_V(E_k^-) $$

for probability measures μ on \mathbb{R} satisfying

$$ \text{Supp}(\Sigma) = [a_V, b_V] \cup \{E_j^-\}_{j=1}^{N^-} \cup \{E_j^+\}_{j=1}^{N^+} $$

where N^+ (resp. N^-) is 0, finite or infinite, $E_j^- \uparrow a_V$ and $E_j^+ \downarrow b_V$ are isolated points of the support.
First point: Asymptotics of the empirical spectral distribution

The ESD

\[\mu^\text{ESD}_n = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i} \]

satisfies:

- \(\lim_n \frac{\mu^\text{ESD}_n}{n} = \mu_V \) in probability with \(\mu_V \) compactly supported by \([\alpha_V^-, \alpha_V^+]\) (equilibrium measure a.k.a. density of states)

- Ben Arous, Guionnet ('97): \((\mu^\text{ESD}_n)_n \) satisfies the LDP with speed \(n^2 \) and rate function

\[J^\text{ESD}(\mu) = \int V(x) \, d\mu(x) - \int \int \log |x - y| \, d\mu(x) \, d\mu(y) - c_V \]

- Ben Arous, Dembo, Guionnet ('01): The largest/smallest ev satisfies the LDP with speed \(n \) and rate \(\mathcal{F}_V^\pm \).
First point: Asymptotics of the empirical spectral distribution

The ESD

\[\mu_{n}^{\text{ESD}} = \frac{1}{n} \sum_{1}^{n} \delta \lambda_{i} \]

satisfies:

- \(\lim_{n} \mu_{n}^{\text{ESD}} = \mu_{V} \) in probability with \(\mu_{V} \) compactly supported by \([\alpha_{V}^{\pm}, \alpha_{V}^{\pm}]\) (equilibrium measure a.k.a. density of states)

- Ben Arous, Guionnet (’97): \((\mu_{n}^{\text{ESD}})_{n}\) satisfies the LDP with speed \(n^{2}\) and rate function

\[J^{\text{ESD}}(\mu) = \int V(x) \, d\mu(x) - \int \int \log |x - y| \, d\mu(x) \, d\mu(y) - c_{V} \]

- Ben Arous, Dembo, Guionnet (’01): The largest/smallest ev satisfies the LDP with speed \(n\) and rate \(\mathcal{F}_{V}^{\pm} \).
First point: Asymptotics of the empirical spectral distribution

The ESD

\[\mu_{n}^{\text{ESD}} = \frac{1}{n} \sum_{1}^{n} \delta_{\lambda_{i}} \]

satisfies:

- \(\lim_{n} \mu_{n}^{\text{ESD}} = \mu_{V} \) in probability with \(\mu_{V} \) compactly supported by \([\alpha_{V}^{-}, \alpha_{V}^{+}]\) (equilibrium measure a.k.a. density of states)

- Ben Arous, Guionnet (’97): \((\mu_{n}^{\text{ESD}})_{n} \) satisfies the LDP with speed \(n^{2} \)
and rate function

\[J_{\text{ESD}}(\mu) = \int V(x) d\mu(x) - \int\int \log |x - y| d\mu(x) d\mu(y) - c_{V} \]

- Ben Arous, Dembo, Guionnet (’01): The largest/smallest ev satisfies the LDP with speed \(n \) and rate \(\mathcal{F}_{V}^{\pm} \).
First point: Asymptotics of the empirical spectral distribution

The ESD

\[\mu_{n}^{\text{ESD}} = \frac{1}{n} \sum_{1}^{n} \delta_{\lambda_{i}} \]

satisfies:

- \(\lim_{n} \mu_{n}^{\text{ESD}} = \mu_{V} \) in probability with \(\mu_{V} \) compactly supported by \([\alpha_{V}^{-}, \alpha_{V}^{+}]\) (equilibrium measure a.k.a. density of states)

- Ben Arous, Guionnet ('97): \((\mu_{n}^{\text{ESD}})_{n} \) satisfies the LDP with speed \(n^{2} \) and rate function

\[
J^{\text{ESD}}(\mu) = \int V(x) d\mu(x) - \int \int \log |x - y| d\mu(x) d\mu(y) - c_{V}
\]

- Ben Arous, Dembo, Guionnet ('01): The largest/smallest ev satisfies the LDP with speed \(n \) and rate \(F_{V}^{\pm} \).
Second point: decoupling

At scale n, the measure μ_{n}^{ESD} is quasi-deterministic, and the randomness comes essentially from the weights w_k's.

The weights w_k are not independent but

$$(w_1, \ldots, w_n) \overset{d}{=} \left(\frac{\gamma_1}{\gamma_1 + \cdots + \gamma_n}, \ldots, \frac{\gamma_n}{\gamma_1 + \cdots + \gamma_n} \right)$$

where the γ_k's are independent, $\exp(1)$. So, we can write

$$\mu_{n}^{SP} \overset{d}{=} \tilde{\mu}_n \int d\tilde{\mu}_n \text{ with } \tilde{\mu}_n = \sum_{k=1}^{n} \gamma_k \delta_{\lambda_k},$$

study first $\tilde{\mu}_n$ and then make the "contraction".

To go on, there are 2 methods: GNR / Breuer-Simon-Zeitouni (BSZ).
Second point : decoupling

At scale n, the measure μ_{n}^{ESD} is quasi-deterministic, and the randomness comes essentially from the weights \bar{w}_k’s.

The weights \bar{w}_k are not independent but

$$(w_1, \ldots, w_n) \overset{(d)}{=} \left(\frac{\gamma_1}{\gamma_1 + \cdots + \gamma_n}, \ldots, \frac{\gamma_n}{\gamma_1 + \cdots + \gamma_n} \right)$$

where the γ_k’s are independent, $\exp(1)$. So, we can write

$$\mu_{n}^{SP} \overset{(d)}{=} \frac{\tilde{\mu}_n}{\int d\tilde{\mu}_n} \quad \text{with} \quad \tilde{\mu}_n = \sum_{k=1}^{n} \gamma_k \delta_{\lambda_k},$$

study first $\tilde{\mu}_n$ and then make the "contraction".

To go on, there are 2 methods : GNR / Breuer-Simon-Zeitouni (BSZ).
Second point : decoupling

At scale n, the measure μ_n^{ESD} is quasi-deterministic, and the randomness comes essentially from the weights w_k's. The weights w_k are not independent but

$$ (w_1, \ldots, w_n) \overset{(d)}{=} \left(\frac{\gamma_1}{\gamma_1 + \cdots + \gamma_n}, \ldots, \frac{\gamma_n}{\gamma_1 + \cdots + \gamma_n} \right) $$

where the γ_k's are independent, $\exp(1)$. So, we can write

$$ \mu_n^{SP} \overset{(d)}{=} \frac{\tilde{\mu}_n}{\int d\tilde{\mu}_n} \text{ with } \tilde{\mu}_n = \sum_{k=1}^{n} \gamma_k \delta_{\lambda_k}, $$

study first $\tilde{\mu}_n$ and then make the "contraction". To go on, there are 2 methods : GNR / Breuer-Simon-Zeitouni (BSZ).
Second point : decoupling

At scale n, the measure μ_{n}^{ESD} is quasi-deterministic, and the randomness comes essentially from the weights w_k’s. The weights w_k are not independent but

\[(w_1, \ldots, w_n) \overset{(d)}{=} \left(\frac{\gamma_1}{\gamma_1 + \cdots + \gamma_n}, \ldots, \frac{\gamma_n}{\gamma_1 + \cdots + \gamma_n} \right) \]

where the γ_k’s are independent, $\exp(1)$. So, we can write

\[\mu_{n}^{\text{SP}} \overset{(d)}{=} \frac{\tilde{\mu}_n}{\int d\tilde{\mu}_n} \text{ with } \tilde{\mu}_n = \sum_{k=1}^{n} \gamma_k \delta_{\lambda_k}, \]

study first $\tilde{\mu}_n$ and then make the "contraction".

To go on, there are 2 methods : GNR / Breuer-Simon-Zeitouni (BSZ).
Second point: decoupling

At scale n, the measure μ_{n}^{ESD} is quasi-deterministic, and the randomness comes essentially from the weights w_k's. The weights w_k are not independent but

$$(w_1, \ldots, w_n) \overset{(d)}{=} \left(\frac{\gamma_1}{\gamma_1 + \cdots + \gamma_n}, \ldots, \frac{\gamma_n}{\gamma_1 + \cdots + \gamma_n} \right)$$

where the γ_k's are independent, $\exp(1)$. So, we can write

$$\mu_{n}^{SP} \overset{(d)}{=} \frac{\tilde{\mu}_n}{\int d\tilde{\mu}_n} \text{ with } \tilde{\mu}_n = \sum_{k=1}^{n} \gamma_k \delta_{\lambda_k},$$

study first $\tilde{\mu}_n$ and then make the "contraction".

To go on, there are 2 methods: GNR / Breuer-Simon-Zeitouni (BSZ).
GNR : $\mu \sim \{ \int f \, d\mu ; f \in C_b \}$ (Laplace approach)

\[
E \left[\exp \left(n \int f \, d\tilde{\mu}_n \right) \right] = E \left[\prod_{k=1}^{n} \exp(\gamma_k f(\lambda_k)) \right] = E \left[\prod_{k=1}^{n} \exp(L \circ f(\lambda_k)) \right] = E \left[\exp \left(n \int (L \circ f) \, d\mu_n^{\text{ESD}} \right) \right]
\]

with $L(x) = -\log(1 - x)$. Then, it could be expected that

\[
\frac{1}{n} \log E \left[\exp \left(n \int f \, d\mu_n \right) \right] \to \int (L \circ f) \, d\mu_V
\]

and then the LDP for $\tilde{\mu}_n$ would be

\[
\tilde{I}(\mu) = \sup_f \int f \, d\mu - \int (L \circ f) \, d\mu_V = \mathcal{H}(\mu_V | \mu) + \int d\mu - 1
\]

But there are contributions of the outliers, since their LDP is at speed n.
GNR : $\mu \sim \{ \int f \, d\mu ; f \in \mathcal{C}_b \}$ (Laplace approach)

$$
\mathbb{E} \left[\exp \left(n \int f d\tilde{\mu}_n \right) \right] = \mathbb{E} \left[\prod_{k=1}^{n} \exp(\gamma_k f(\lambda_k)) \right] \\
= \mathbb{E} \left[\prod_{k=1}^{n} \exp(L \circ f(\lambda_k)) \right] = \mathbb{E} \left[\exp \left(n \int (L \circ f) d\mu_n^{ESD} \right) \right]
$$

with $L(x) = -\log(1 - x)$. Then, it could be expected that

$$
\frac{1}{n} \log \mathbb{E} \left[\exp \left(n \int f d\mu_n \right) \right] \to \int (L \circ f) d\mu_V
$$

and then the LDP for $\tilde{\mu}_n$ would be

$$
\tilde{I}(\mu) = \sup_{f} \int f d\mu - \int (L \circ f) d\mu_V = \mathcal{H}(\mu_V|\mu) + \int d\mu - 1
$$

But there are contributions of the outliers, since their LDP is at speed n.
GNR : \(\mu \sim \{ \int f \, d\mu ; f \in \mathcal{C}_b \} \) (Laplace approach)

\[
\mathbb{E} \left[\exp \left(n \int f \, d\tilde{\mu}_n \right) \right] = \mathbb{E} \left[\prod_{k=1}^{n} \exp(\gamma_k f(\lambda_k)) \right]
\]

\[
= \mathbb{E} \left[\prod_{k=1}^{n} \exp(L \circ f(\lambda_k)) \right] = \mathbb{E} \left[\exp \left(n \int (L \circ f) \, d\mu_{n}^{\text{ESD}} \right) \right]
\]

with \(L(x) = -\log(1 - x) \). Then, it could be expected that

\[
\frac{1}{n} \log \mathbb{E} \left[\exp \left(n \int f \, d\mu_n \right) \right] \to \int (L \circ f) \, d\mu_V
\]

and then the LDP for \(\tilde{\mu}_n \) would be

\[
\tilde{I}(\mu) = \sup_f \int f \, d\mu - \int (L \circ f) \, d\mu_V = \mathcal{H}(\mu_V | \mu) + \int d\mu - 1
\]

But there are contributions of the outliers, since their LDP is at speed \(n \).
GNR : $\mu \sim \{ \int f \, d\mu ; f \in \mathcal{C}_b \}$ (Laplace approach)

$$
\mathbb{E} \left[\exp \left(n \int f \, d\tilde{\mu}_n \right) \right] = \mathbb{E} \left[\prod_{k=1}^{n} \exp(\gamma_k f(\lambda_k)) \right]
$$

$$
= \mathbb{E} \left[\prod_{k=1}^{n} \exp(L \circ f(\lambda_k)) \right] = \mathbb{E} \left[\exp \left(n \int (L \circ f) \, d\mu_{n}^{\text{ESD}} \right) \right]
$$

with $L(x) = -\log(1 - x)$. Then, it could be expected that

$$
\frac{1}{n} \log \mathbb{E} \left[\exp \left(n \int f \, d\mu_n \right) \right] \to \int (L \circ f) \, d\mu_V
$$

and then the LDP for $\tilde{\mu}_n$ would be

$$
\tilde{I}(\mu) = \sup_f \int f \, d\mu - \int (L \circ f) \, d\mu_V = \mathcal{H}(\mu_V | \mu) + \int d\mu - 1
$$

But there are contributions of the outliers, since their LDP is at speed n.
GNR : $\mu \sim \{ \int f \, d\mu ; f \in \mathcal{C}_b \}$ (Laplace approach)

$$
\mathbb{E} \left[\exp \left(n \int f \, d\tilde{\mu}_n \right) \right] = \mathbb{E} \left[\prod_{k=1}^{n} \exp(\gamma_k f(\lambda_k)) \right]
$$

$$
= \mathbb{E} \left[\prod_{k=1}^{n} \exp(L \circ f(\lambda_k)) \right] = \mathbb{E} \left[\exp \left(n \int (L \circ f) \, d\mu_n^{ESD} \right) \right]
$$

with $L(x) = -\log(1 - x)$. Then, it could be expected that

$$
\frac{1}{n} \log \mathbb{E} \left[\exp \left(n \int f \, d\mu_n \right) \right] \to \int (L \circ f) \, d\mu
$$

and then the LDP for $\tilde{\mu}_n$ would be

$$
\tilde{I}(\mu) = \sup_{f} \int f \, d\mu - \int (L \circ f) \, d\mu = \mathcal{H}(\mu_V | \mu) + \int d\mu - 1
$$

But there are contributions of the outliers, since their LDP is at speed n.
Breuer-Simon-Zeitouni ('18) use an alternate projective method,

\[\mu \sim \{ \mu(I^j_k); \ k \leq 2^j, j = 1, 2, \ldots \} \]

They replace measures by their "histogram versions" at increasing resolutions.

At stage \(j \), they obtain an LDP with rate function

\[K(\pi_j(SC) | \pi_j(\mu)) \]

Then use monotonicity, lower semicontinuity and Jensen’s inequality.
Breuer-Simon-Zeitouni ('18) use an alternate projective method,

\[\mu \sim \{ \mu(I_k^j); \ k \leq 2^j, j = 1, 2, \ldots \} \]

They replace measures by their "histogram versions" at increasing resolutions.
At stage \(j \), they obtain an LDP with rate function

\[\mathcal{K}(\pi_j(SC)|\pi_j(\mu)) \]

Then use monotonicity, lower semicontinuity and Jensen’s inequality.
Breuer-Simon-Zeitouni (’18) use an alternate projective method,

\[\mu \sim \{ \mu(I_k^j); \ k \leq 2^j, j = 1, 2, \ldots \} \]

They replace measures by their "histogram versions" at increasing resolutions.
At stage \(j \), they obtain an LDP with rate function

\[\mathcal{K}(\pi_j(SC)|\pi_j(\mu)) \]

Then use monotonicity, lower semicontinuity and Jensen’s inequality.
New sum rules need LDPs for the coefficient side.

We need matrix models whose spectral measure admits a system of coefficients with "nice probabilistic properties"!
New sum rules need LDPs for the coefficient side.

We need matrix models whose spectral measure admits a system of coefficients with "nice probabilistic properties"!
Sum rule

Spectral side

Potential

Hermite, Laguerre, Jacobi

SC, MP, KMK

Coefficient side

Moment problem

Hamburger, Stieltjès, Hausdorff

(a_k, b_k), (z_k), (u_k)
New sum rules : Laguerre case

- The Laguerre ensemble:
 \[V(x) = cx - (c - 1) \log x, \quad x > 0, \quad c \geq 1 \]
 (distribution of \(X = YY^\dagger \) when \(Y \) is a Gaussian \(n \times c n \) matrix).

- Equilibrium measure:
 \[
 MP_c(dx) = \frac{c \sqrt{(\tau^+ - x)(x - \tau^-)}}{2\pi x} \mathbb{1}_{(\tau^-, \tau^+)}(x) dx, \quad c^\pm = \frac{1}{c} (\sqrt{c} \pm 1)^2
 \]

- For \(\mu \) with \(\text{Supp}(\mu) \subset [0, +\infty[\), there exist parameters \(z_j, j \geq 0 \) such that
 \[
 b_n = z_{2n-2} + z_{2n-1}, \quad \text{and} \quad a_n^2 = z_{2n-1}z_{2n}.
 \]

- The \(MP_c \) distribution corresponds to
 \[
 a_k^2 = c^{-1} \quad (k \geq 1), \quad b_1 = 1, \quad b_k = 1 + c^{-1} \quad (k \geq 2)
 \]
 \[\iff z_{2n-1} = 1 \text{ and } z_{2n} = c^{-1} \text{ for all } n \geq 1.\]
New sum rules : Laguerre case

▶ The Laguerre ensemble:

\[V(x) = cx - (c - 1) \log x, \quad x > 0, \quad c \geq 1 \]

(distribution of \(X = YY^\dagger\) when \(Y\) is a Gaussian \(n \times cn\) matrix).

▶ Equilibrium measure:

\[
MP_c(dx) = \frac{c \sqrt{(\tau^+ - x)(x - \tau^-)}}{2\pi x} \mathbb{1}_{(c-,c+)}(x) \, dx, \quad c^\pm = \frac{1}{c}(\sqrt{c} \pm 1)^2
\]

▶ For \(\mu\) with \(\text{Supp}(\mu) \subset [0, +\infty[\), there exist parameters \(z_j, j \geq 0\) such that

\[b_n = z_{2n-2} + z_{2n-1}, \text{ and } a_n^2 = z_{2n-1}z_{2n}. \]

▶ The \(MP_c\) distribution corresponds to

\[a_k^2 = c^{-1} \quad (k \geq 1), \quad b_1 = 1, \quad b_k = 1 + c^{-1} \quad (k \geq 2) \]

\[\iff z_{2n-1} = 1 \text{ and } z_{2n} = c^{-1} \text{ for all } n \geq 1. \]
New sum rules : Laguerre case

▶ The Laguerre ensemble :

\[V(x) = cx - (c - 1) \log x , \ x > 0 , \ c \geq 1 \]

(distribution of \(X = YY^\dagger \) when \(Y \) is a Gaussian \(n \times cn \) matrix).

▶ Equilibrium measure :

\[
MP_c(dx) = \frac{c \sqrt{(\tau^+ - x)(x - \tau^-)}}{2\pi x} \mathbb{1}_{(c^-,c^+)}(x) \, dx , \ c^\pm = \frac{1}{c}(\sqrt{c} \pm 1)^2
\]

▶ For \(\mu \) with \(\text{Supp}(\mu) \subset [0, +\infty[\), there exist parameters \(z_j , j \geq 0 \) such that

\[
b_n = z_{2n-2} + z_{2n-1} , \text{ and } a_n^2 = z_{2n-1}z_{2n}.
\]

▶ The \(MP_c \) distribution corresponds to

\[
a_k^2 = c^{-1} \ (k \geq 1) , \ b_1 = 1 , \ b_k = 1 + c^{-1} \ (k \geq 2)
\]

\[\iff z_{2n-1} = 1 \text{ and } z_{2n} = c^{-1} \text{ for all } n \geq 1.\]
New sum rules : Laguerre case

- The Laguerre ensemble:
 \[V(x) = cx - (c - 1) \log x, \ x > 0, \ c \geq 1 \]
 (distribution of \(X = YY^\dagger \) when \(Y \) is a Gaussian \(n \times cn \) matrix).

- Equilibrium measure:
 \[MP_c(dx) = \frac{c \sqrt{(\tau^+ - x)(x - \tau^-)}}{2\pi x} \mathbb{1}_{(c-,c+)}(x) dx, \ c^\pm = \frac{1}{c}(\sqrt{c} \pm 1)^2 \]

- For \(\mu \) with \(\text{Supp}(\mu) \subset [0, +\infty[\), there exist parameters \(z_j, j \geq 0 \) such that
 \[b_n = z_{2n-2} + z_{2n-1}, \ \text{and} \ a_n^2 = z_{2n-1}z_{2n}. \]

- The \(MP_c \) distribution corresponds to
 \[a_k^2 = c^{-1} \ (k \geq 1) \ , \ b_1 = 1 \ , \ b_k = 1 + c^{-1} \ (k \geq 2) \]
 \[\iff z_{2n-1} = 1 \text{ and } z_{2n} = c^{-1} \text{ for all } n \geq 1. \]
In the random model (Dumitriu-Edelman), we have

\[Z_{2k-1} \overset{\text{law}}{=} \frac{1}{cn} \Gamma(n - k), \quad Z_{2k} \overset{\text{law}}{=} \frac{1}{cn} \Gamma(cn - k - 1) \]

with \(\frac{m}{N} \to c^{-1} \). The sum rule is then (GNR ’16)

\[
K(MP_c | \mu) + \sum_{n=1}^{N^+} \mathcal{F}_L^+(\lambda_n^+) + \sum_{n=1}^{N^-} \mathcal{F}_L^-(\lambda_n^-) = \sum_{k=1}^{\infty} cG(z_{2k-1}) + G(cz_{2k})
\]

where

\[
\mathcal{F}_L^+(x) = \int_{c^+}^{x} \frac{c \sqrt{(t-c^-)(t-c^+)}}{t} \, dt \quad \text{if} \ x \geq c^+,
\]

\[
\mathcal{F}_L^-(x) = \int_{x}^{c^-} \frac{c \sqrt{(c^- - t)(c^+ - t)}}{t} \, dt \quad \text{if} \ 0 < x \leq c^-.
\]
In the random model (Dumitriu-Edelman), we have

\[Z_{2k-1} \xrightarrow{\text{law}} \frac{1}{cn} \Gamma(n - k), \quad Z_{2k} \xrightarrow{\text{law}} \frac{1}{cn} \Gamma(cn - k - 1) \]

with \(m/N \rightarrow c^{-1} \). The sum rule is then (GNR ’16)

\[
K(\text{MP}_c | \mu) + \sum_{n=1}^{N^+} F_L^+(\lambda_n^+) + \sum_{n=1}^{N^-} F_L^-(\lambda_n^-) = \sum_{k=1}^{\infty} cG(z_{2k-1}) + G(cz_{2k})
\]

where

\[
F_L^+(x) = \int_{c^+}^{x} \frac{c\sqrt{(t-c^-)(t-c^+)} }{t} \, dt \quad \text{if} \ x \geq c^+ ,
\]

\[
F_L^-(x) = \int_{x}^{c^-} \frac{c\sqrt{(c^- - t)(c^+ - t)} }{t} \, dt \quad \text{if} \ 0 < x \leq c^- .
\]
Let μ be a p.m. on $[0, \infty)$ with coefficients $z_k > 0$, then

1. $\sum_{k=1}^{\infty}(z_{2k-1} - 1)^2 + (z_{2k} - c^{-1})^2 < \infty$ if and only if
2. $\text{supp} \quad \mu = [c^-, c^+] \cup \{\lambda_i^-\}_{i=1}^{N^-} \cup \{\lambda_i^+\}_{i=1}^{N^+}$
3. $\sum_{i=1}^{N^-}(c^- - \lambda_i^-)^{3/2} + \sum_{i=1}^{N^+}(\lambda_i^+ - c^+)^{3/2} < \infty$ and if $N^- > 0$, then $\lambda_1^- > 0$,
4. the decomposition $d\mu(x) = f(x) \, dx + d\mu_s(x)$ satisfies

$$\int_{c^-}^{c^+} \frac{\sqrt{c^+-x}(x-c^-)}{x} \log f(x) \, dx > -\infty.$$
New sum rules : Jacobi case

- The Jacobi ensemble:

\[V(x) = -\kappa_1 \log(2 + x) - \kappa_2 \log(2 - x) \quad (\kappa_1, \kappa_2 \geq 0) \]

- Equilibrium measure:

\[\text{KMK}_{\kappa_1, \kappa_2}(dx) = \frac{(2 + \kappa_1 + \kappa_2)}{2\pi} \frac{\sqrt{(u^+ - x)(x - u^-)}}{(2 - x)(2 + x)} 1_{(u^-, u^+)}(x) \, dx \]

- The Jacobi parameters of a measure on \([-2, 2]\) may be represented as (Geronimus relations)

\[
\begin{align*}
b_{k+1} &= (1 - \alpha_{2k-1})\alpha_{2k} - (1 + \alpha_{2k+1})\alpha_{2k-2} \\
a_{k+1} &= \sqrt{(1 - \alpha_{2k-1})(1 - \alpha_{2k}^2)(1 + \alpha_{2k+1})}
\end{align*}
\]

where \(|\alpha_j| < 1\). The \(\alpha_j\)'s are independent and beta-distributed (Killip-Nenciu '05).
The parameters of KMK are

\[\alpha_{2k} \equiv \alpha_{\text{even}} := \frac{\kappa_1 - \kappa_2}{2 + \kappa_1 + \kappa_2}, \quad \alpha_{2k+1} \equiv \alpha_{\text{odd}} := -\frac{\kappa_1 + \kappa_2}{2 + \kappa_1 + \kappa_2} \]

LDP for the "coefficient side"

Theorem (GR ’11)

\(\mu_n \) satisfies the LDP at speed \(n \) and rate function

\[J_\text{coeff} = \sum_{k=0}^{\infty} H_1(\alpha_{2k+1}) + H_2(\alpha_{2k}) \]

\[H_1(\alpha) = -(1 + \kappa_1 + \kappa_2) \log \frac{1 - \alpha}{1 - \alpha_{\text{odd}}} - \log \frac{1 + \alpha}{1 + \alpha_{\text{odd}}} \]

\[H_2(\alpha) = -(1 + \kappa_1) \log \frac{1 + \alpha}{1 + \alpha_{\text{even}}} - (1 + \kappa_2) \log \frac{1 - \alpha}{1 - \alpha_{\text{even}}} \]

Sum rule GNR ’16 and gem.
Coming back to the moment problem:

The parameters in the Laguerre ensemble have a geometrical interpretation as canonical moments. When we fix m_1, \ldots, m_j, the $(j+1)$th moment lives in an interval $[m_{j+1}^-, \infty)$ and

$$z_k = (m_k - m_1^-)(m_{k-1}^--m_{k-1}^-)^{-1}$$

The parameters in the Jacobi ensemble have a geometrical interpretation as canonical moments. When we fix m_1, \ldots, m_j, the $(j+1)$th moment lives in an interval $[m_{j+1}^-, m_{j+1}^+]$ and

$$u_k = (m_k - m_1^-)(m_k^--m_k^-)^{-1}.$$

In this case we have the relation

$$\alpha_k = 2u_{k+1} - 1.$$
Coming back to the moment problem:

The parameters in the Laguerre ensemble have a geometrical interpretation as canonical moments. When we fix m_1, \ldots, m_j, the $(j + 1)$th moment lives in an interval $[m_{j+1}^-, \infty)$ and

$$z_k = (m_k - m_k^-)(m_{k-1}^- - m_{k-1})^{-1}$$

The parameters in the Jacobi ensemble have a geometrical interpretation as canonical moments. When we fix m_1, \ldots, m_j, the $(j + 1)$th moment lives in an interval $[m_{j+1}^-, m_{j+1}^+]$ and

$$u_k = (m_k - m_k^-)(m_k^- - m_k^-)^{-1}.$$

In this case we have the relation

$$\alpha_k = 2u_{k+1} - 1.$$
Coming back to the moment problem:
The parameters in the Laguerre ensemble have a geometrical interpretation as canonical moments. When we fix m_1, \ldots, m_j, the $(j + 1)$th moment lives in an interval $[m_{j+1}^-, \infty)$ and

$$z_k = (m_k - m_k^-)(m_{k-1}^- - m_{k-1}^-)^{-1}$$

The parameters in the Jacobi ensemble have a geometrical interpretation as canonical moments. When we fix m_1, \ldots, m_j, the $(j + 1)$th moment lives in an interval $[m_{j+1}^-, m_{j+1}^+]$ and

$$u_k = (m_k - m_k^-)(m_k^--m_k^-)^{-1}.$$

In this case we have the relation

$$\alpha_k = 2u_{k+1} - 1.$$
On \mathbb{R}, we may study

1) Sum rules for matrix-valued measures in the 3 classical examples
 (Damanik-Killip-Simon ’10 for SC), (GNR ’17 ’18)
2) LDP for the "measure side" for multi-cut a.k.a. finite gap model
3) LDP for the coefficient side in the general one-cut model

On \mathbb{T}, we may study

1) Szegő-Verblunsky sum rule (GNR ’11, BSZ ’16)
2) More complicated random structure of the Verblunsky coefficients
 2.1 Hua-Pickrell $V(\theta) = -2d \log |1 - e^{i\theta}|$ (GNR ’18)
 2.2 Gross-Witten $V(\theta) = \cos \theta$ and "higher sum rules" (BSZ ’18)
On \mathbb{R}, we may study

1) Sum rules for matrix-valued measures in the 3 classical examples (Damanik-Killip-Simon ’10 for SC), (GNR ’17 ’18)
2) LDP for the "measure side" for multi-cut a.k.a. finite gap model
3) LDP for the coefficient side in the general one-cut model

On \mathbb{T}, we may study

1) Szegő-Verblunsky sum rule (GNR ’11, BSZ ’16)
2) More complicated random structure of the Verblunsky coefficients
 2.1 Hua-Pickrell $V(\theta) = -2d \log |1 - e^{i\theta}|$ (GNR ’18)
 2.2 Gross-Witten $V(\theta) = \cos \theta$ and "higher sum rules" (BSZ ’18)
On \mathbb{R}, we may study

1) Sum rules for matrix-valued measures in the 3 classical examples (Damanik-Killip-Simon ’10 for SC), (GNR ’17 ’18)

2) LDP for the "measure side" for multi-cut a.k.a. finite gap model

3) LDP for the coefficient side in the general one-cut model

On \mathbb{T}, we may study

1) Szegő-Verblunsky sum rule (GNR ’11, BSZ ’16)

2) More complicated random structure of the Verblunsky coefficients
 2.1 Hua-Pickrell $V(\theta) = -2d \log |1 - e^{i\theta}|$ (GNR ’18)
 2.2 Gross-Witten $V(\theta) = \cos \theta$ and "higher sum rules" (BSZ ’18)
On \mathbb{R}, we may study

1) Sum rules for matrix-valued measures in the 3 classical examples (Damanik-Killip-Simon ‘10 for SC), (GNR ’17 ’18)

2) LDP for the "measure side" for multi-cut a.k.a. finite gap model

3) LDP for the coefficient side in the general one-cut model

On \mathbb{T}, we may study

1) Szegő-Verblunsky sum rule (GNR ’11, BSZ ’16)

2) More complicated random structure of the Verblunsky coefficients
 2.1 Hua-Pickrell $V(\theta) = -2d \log |1 - e^{i\theta}|$ (GNR ’18)
 2.2 Gross-Witten $V(\theta) = \cos \theta$ and "higher sum rules" (BSZ ’18)
On \mathbb{R}, we may study

1) Sum rules for matrix-valued measures in the 3 classical examples (Damanik-Killip-Simon ’10 for SC), (GNR ’17 ’18)
2) LDP for the "measure side" for multi-cut a.k.a. finite gap model
3) LDP for the coefficient side in the general one-cut model

On \mathbb{T}, we may study

1) Szegő-Verblunsky sum rule (GNR ’11, BSZ ’16)
2) More complicated random structure of the Verblunsky coefficients
 2.1 Hua-Pickrell $V(\theta) = -2\text{d log } |1 - e^{i\theta}|$ (GNR ’18)
 2.2 Gross-Witten $V(\theta) = \cos \theta$ and "higher sum rules" (BSZ ’18)
On \mathbb{R}, we may study

1) Sum rules for matrix-valued measures in the 3 classical examples
 (Damanik-Killip-Simon ’10 for SC), (GNR ’17 ’18)
2) LDP for the "measure side" for multi-cut a.k.a. finite gap model
3) LDP for the coefficient side in the general one-cut model

On \mathbb{T}, we may study

1) Szegő-Verblunsky sum rule (GNR ’11, BSZ ’16)
2) More complicated random structure of the Verblunsky coefficients
 2.1 Hua-Pickrell $V(\theta) = -2d \log |1 - e^{i\theta}|$ (GNR ’18)
 2.2 Gross-Witten $V(\theta) = \cos \theta$ and "higher sum rules" (BSZ ’18)
On \mathbb{R}, we may study

1) Sum rules for matrix-valued measures in the 3 classical examples (Damanik-Killip-Simon ’10 for SC), (GNR ’17 ’18)
2) LDP for the "measure side" for multi-cut a.k.a. finite gap model
3) LDP for the coefficient side in the general one-cut model

On \mathbb{T}, we may study

1) Szegő-Verblunsky sum rule (GNR ’11, BSZ ’16)
2) More complicated random structure of the Verblunsky coefficients
 2.1 Hua-Pickrell $V(\theta) = -2d \log |1 - e^{i\theta}|$ (GNR ’18)
 2.2 Gross-Witten $V(\theta) = \cos \theta$ and "higher sum rules" (BSZ ’18)
On \mathbb{R}, we may study

1) Sum rules for matrix-valued measures in the 3 classical examples (Damanik-Killip-Simon ’10 for SC), (GNR ’17 ’18)
2) LDP for the "measure side" for multi-cut a.k.a. finite gap model
3) LDP for the coefficient side in the general one-cut model

On \mathbb{T}, we may study

1) Szegő-Verblunsky sum rule (GNR ’11, BSZ ’16)
2) More complicated random structure of the Verblunsky coefficients
 2.1 Hua-Pickrell $V(\theta) = -2d \log|1 - e^{i\theta}|$ (GNR ’18)
 2.2 Gross-Witten $V(\theta) = \cos \theta$ and "higher sum rules" (BSZ ’18)
On \mathbb{R}, we may study

1) Sum rules for matrix-valued measures in the 3 classical examples
 (Damanik-Killip-Simon ’10 for SC), (GNR ’17 ’18)
2) LDP for the "measure side" for multi-cut a.k.a. finite gap model
3) LDP for the coefficient side in the general one-cut model

On \mathbb{T}, we may study

1) Szegő-Verblunsky sum rule (GNR ’11, BSZ ’16)
2) More complicated random structure of the Verblunsky coefficients
 2.1 Hua-Pickrell $V(\theta) = -2d \log |1 - e^{i\theta}|$ (GNR ’18)
 2.2 Gross-Witten $V(\theta) = \cos \theta$ and "higher sum rules" (BSZ ’18)
On \mathbb{R}, we may study

1) Sum rules for matrix-valued measures in the 3 classical examples (Damanik-Killip-Simon '10 for SC), (GNR '17 '18)
2) LDP for the "measure side" for multi-cut a.k.a. finite gap model
3) LDP for the coefficient side in the general one-cut model

On \mathbb{T}, we may study

1) Szegő-Verblunsky sum rule (GNR ’11, BSZ ’16)
2) More complicated random structure of the Verblunsky coefficients
 2.1 Hua-Pickrell $V(\theta) = -2d \log |1 - e^{i\theta}|$ (GNR ’18)
 2.2 Gross-Witten $V(\theta) = \cos \theta$ and "higher sum rules" (BSZ ’18)
Matrix sum rule for the Jacobi ensemble

Definition
If \(p \) is some fixed integer, a \(p \times p \) matrix-valued probability measure \(\Sigma \) on \(\mathbb{R} \) (resp. \(\mathbb{T} \)) is a \(p \times p \) matrix of signed complex measures, such that \(\Sigma(A) \) is a Hermitian positive matrix for every Borel set \(A \), and \(\Sigma(\mathbb{R}) = 1 \) (resp. \(\Sigma(\mathbb{T}) = 1 \)).

MOPRL
To each \(p \times p \) matrix-measure \(\Sigma \) we associate a pseudo-scalar products
\[
\langle\langle F, G \rangle\rangle_R = \int_{\mathbb{R}} F(z)^\dagger d\Sigma(z) G(z),
\]
a sequence of right monic matrix orthogonal polynomials, and then a sequence of matrix orthonormal polynomials. They satisfy a three-term recurrence relation
\[
x p_n^R(x) = p_{n+1}^R(x) A_{n+1}^\dagger + p_n^R(x) B_{n+1} + p_{n-1}^R(x) A_n
\] (2)
with \(B_k \) Hermitian and \(A_k \) non singular (\(p \times p \) matrices).
Matrix sum rule for the Jacobi ensemble

Definition

If p is some fixed integer, a $p \times p$ matrix-valued probability measure Σ on \mathbb{R} (resp. \mathbb{T}) is a $p \times p$ matrix of signed complex measures, such that $\Sigma(A)$ is a Hermitian positive matrix for every Borel set A, and $\Sigma(\mathbb{R}) = 1$ (resp. $\Sigma(\mathbb{T}) = 1$).

MOPRL

To each $p \times p$ matrix-measure Σ we associate a pseudo-scalar products

$$\langle \langle F, G \rangle \rangle_{\mathbb{R}} = \int_{\mathbb{R}} F(z) \dagger d\Sigma(z) G(z),$$

a sequence of right monic matrix orthogonal polynomials, and then a sequence of matrix orthonormal polynomials. They satisfy a three-term recurrence relation

$$xp_n^R(x) = p_{n+1}^R(x) A_{n+1}^\dagger + p_n^R(x) B_{n+1} + p_{n-1}^R(x) A_n$$

with B_k Hermitian and A_k non singular ($p \times p$ matrices).
If \(M \) is self-adjoint \(N \times N \), the spectral theorem gives

\[
M = \int_{\mathbb{R}} \lambda dE_{\lambda}
\]

so that for every integer \(p \leq N \) there exists a unique \(p \times p \) matrix measure

\[
\Sigma = (\Sigma_{ij})_{1 \leq i, j \leq p}, \quad d\Sigma_{ij}(\lambda) = \langle dE_{\lambda} e_i, e_j \rangle \quad (1 \leq i, j \leq p), \quad k \in \mathbb{N},
\]

so that

\[
\langle M^k e_i, e_j \rangle = \int_{\mathbb{R}} x^k d\Sigma_{i,j}(x).
\]

Previously, \(M \) was chosen randomly in a classical ensemble of self-adjoint operators (Hermite, Laguerre, Jacobi).

\(\Rightarrow \) OPRL, random Jacobi coefficients

Actually

\[
\Sigma_p(dx) = \sum_{j=1}^{N} u_j u_j^\dagger \delta_{\lambda_j}
\]

(\(u_j \) is the jth \(p \)-truncated column of the unitary matrix diagonalizing \(M \)).
Properties of the weights

Lemma

If U is Haar distributed in $\mathbb{U}(N)$ then

$$(u_1u_1^\dagger, \ldots, u_Nu_N^\dagger) \overset{(d)}{=} (h^{-1/2}v_1v_1^\dagger h^{-1/2}, \ldots, h^{-1/2}v_Nv_N^\dagger h^{-1/2})$$

where the v_j's are i.i.d. random gaussian vectors of size p and

$$h = \sum_{j=1}^{N} v_jv_j^\dagger.$$
In the GUE or in the Laguerre ensemble, all the results on distributions are extended rather easily.

In the Jacobi ensemble, there is an issue.

▶ In the scalar case, as Killip and Nenciu (’05) we lift up the measure (supported by n points) on $[0, 1]$ or $[-2, 2]$ into a symmetric measure (supported by $2n$ points) on \mathbb{T}, by inverse Szegő mapping. It is the spectral measure of an element of $SO(2n)$.

▶ In the matrix case ($p > 1$), an element of $SO(2np)$ has a spectral measure at (e_1, \ldots, e_p) which is not symmetric. To compute the distribution of some random coefficients, we use the canonical moments approach.
In the GUE or in the Laguerre ensemble, all the results on distributions are extended rather easily.

In the Jacobi ensemble, there is an issue.

- In the scalar case, as Killip and Nenciu (’05) we lift up the measure (supported by \(n \) points) on \([0, 1]\) or \([-2, 2]\) into a symmetric measure (supported by \(2n \) points) on \(\mathbb{T} \), by inverse Szegő mapping. It is the spectral measure of an element of \(SO(2n) \).

- In the matrix case \((p > 1)\), an element of \(SO(2np) \) has a spectral measure at \((e_1, \ldots, e_p)\) which is not symmetric. To compute the distribution of some random coefficients, we use the canonical moments approach.
In the GUE or in the Laguerre ensemble, all the results on distributions are extended rather easily.

In the Jacobi ensemble, there is an issue.

▶ In the scalar case, as Killip and Nenciu ('05) we lift up the measure (supported by \(n\) points) on \([0, 1]\) or \([-2, 2]\) into a symmetric measure (supported by \(2n\) points) on \(\mathbb{T}\), by inverse Szegő mapping. It is the spectral measure of an element of \(SO(2n)\).

▶ In the matrix case \((p > 1)\), an element of \(SO(2np)\) has a spectral measure at \((e_1, \ldots, e_p)\) which is not symmetric. To compute the distribution of some random coefficients, we use the canonical moments approach.
In the GUE or in the Laguerre ensemble, all the results on distributions are extended rather easily.

In the Jacobi ensemble, there is an issue.

- In the scalar case, as Killip and Nenciu (’05) we lift up the measure (supported by \(n \) points) on \([0, 1]\) or \([-2, 2]\) into a symmetric measure (supported by \(2n \) points) on \(\mathbb{T} \), by inverse Szegő mapping. It is the spectral measure of an element of \(\mathbb{SO}(2n) \).

- In the matrix case \((p > 1)\), an element of \(\mathbb{SO}(2np) \) has a spectral measure at \((e_1, \ldots, e_p)\) which is not symmetric. To compute the distribution of some random coefficients, we use the canonical moments approach.
Bibliography

Spectral theory
B. Simon, *Szegö’s Theorem and Its Descendants* (2011)

Large deviations
Spectral theory

Large deviations

Bibliography

Spectral theory
B. Simon, *Szegö’s Theorem and Its Descendants* (2011)

Large deviations
Papers (LD = large deviations, SR = sum rules)

F. Gamboa, J. Nagel, A. Rouault
▶ LD for random spectral measures and SR, *AMRX* (2011)
▶ Operator-valued spectral measures and LD, *JSPI* (2014)
▶ SR and LD for spectral measures on the unit circle, *Random Matrices Th. and Appl.* (2017)

Papers (LD = large deviations, SR = sum rules)

F. Gamboa, J. Nagel, A. Rouault

Papers (LD = large deviations, SR = sum rules)

F. Gamboa, J. Nagel, A. Rouault
- Canonical moments and random spectral measures, JoTP (2010)
- LD for random spectral measures and SR, AMRX (2011)
- Operator-valued spectral measures and LD, JSPI (2014)
- SR and LD for spectral matrix measures, Bernoulli (2018)
- SR and LD for spectral measures on the unit circle, Random Matrices Th. and Appl. (2017)

From Barry Simon’s book "Szegő’s Theorem and Its Descendants", Chapter 2:

In algebra, when one says $a = b$, it is a tautology and so uninteresting; while in analysis, when one says $a = b$, it is two deep inequalities. (attributed to S. Bochner)

If one only proves $a = b$ by showing $a \leq b$ and $b \leq a$, one has not understood the true reason why $a = b$. (attributed to E. Noether)

Our contribution could be:

If a and b are two positive functionals, when one says $a = b$, a probabilist may think that a and b could be two rate functions of the same large deviation principle under two different encodings.
From Barry Simon’s book "Szegő’s Theorem and Its Descendants", Chapter 2 :

In algebra, when one says $a = b$, it is a tautology and so uninteresting; while in analysis, when one says $a = b$, it is two deep inequalities.
(attributed to S. Bochner)

If one only proves $a = b$ by showing $a \leq b$ and $b \leq a$, one has not understood the true reason why $a = b$.
(attributed to E. Noether)

Our contribution could be :

If a and b are two positive functionals, when one says $a = b$, a probabilist may think that a and b could be two rate functions of the same large deviation principle under two different encodings.
From Barry Simon’s book "Szegő’s Theorem and Its Descendants", Chapter 2:

In algebra, when one says \(a = b \), it is a tautology and so uninteresting; while in analysis, when one says \(a = b \), it is two deep inequalities.

(attributed to S. Bochner)

If one only proves \(a = b \) by showing \(a \leq b \) and \(b \leq a \), one has not understood the true reason why \(a = b \).

(attributed to E. Noether)

Our contribution could be:

If \(a \) and \(b \) are two positive functionals, when one says \(a = b \), a probabilist may think that \(a \) and \(b \) could be two rate functions of the same large deviation principle under two different encodings.
From Barry Simon's book "Szegő's Theorem and Its Descendants", Chapter 2:

In algebra, when one says $a = b$, it is a tautology and so uninteresting; while in analysis, when one says $a = b$, it is two deep inequalities. (attributed to S. Bochner)

If one only proves $a = b$ by showing $a \leq b$ and $b \leq a$, one has not understood the true reason why $a = b$. (attributed to E. Noether)

Our contribution could be:

If a and b are two positive functionals, when one says $a = b$, a probabilist may think that a and b could be two rate functions of the same large deviation principle under two different encodings.
THANK YOU FOR YOUR ATTENTION!