Forward-Backward random process for the spectrum of 1D Anderson model (another proof and quantitative results)

Raphael Ducatez

Université de Geneve

November 16th, 2018
1. The critical one dimensional Anderson model.

2. Forward-Backward process for the construction of the eigenvectors.

3. Application I: A formula for the integral density of eigenvalues

4. Application II: with the limit theorem for product of random matrices.

5. Application III: A temperature profile
1. The critical one dimensional Anderson model.

2. Forward-Backward process for the construction of the eigenvectors.

3. Application I: A formula for the integral density of eigenvalues

4. Application II: with the limit theorem for product of random matrices.

5. Application III: A temperature profile
One dimensional critical Anderson model

The critical 1D Anderson model

On $[0, N]$

$$H^N = -\Delta + \frac{1}{\sqrt{N}} V_i^N$$

where V_i^N are iid of same law as V with $\mathbb{E}(V^2) = \sigma^2$
One dimensional critical Anderson model

\[S(x) = \exp(B_x - \frac{1}{2}|x|) \]

We pick randomly an eigenvalue \(\mu^N \in \sigma(H^N) \) and write \(N|\psi_{\mu^N}(\lfloor Nt \rfloor)|^2 \) the corresponding rescaled eigenvector.

Theorem [Rifkind, Virag]

As \(N \to \infty \), we have the convergence in law

\[(\mu^N, N|\psi_{\mu^N}(\lfloor Nt \rfloor)|^2) \to (\mu, S(\tau(\mu)[x - u])) \]

where \(\mu \) a random variable on \([-2, 2]\) with density \(\rho(\mu) = \frac{1}{\sqrt{1 - \frac{\mu^2}{4}}} \), \(u \) is uniform on \([0, 1]\) and \(S \) as defined above (all the three are independent).

And \(\tau(\mu) = \frac{\sigma^2}{2(1 - \frac{\mu^2}{4})} \).
1 The critical one dimensional Anderson model.

2 Forward-Backward process for the construction of the eigenvectors.

3 Application I: A formula for the integral density of eigenvalues

4 Application II: with the limit theorem for product of random matrices.

5 Application III: A temperature profile
The set up (the non critical case).

On \([1, N] \cap \mathbb{Z}\)

\[H = -\Delta + V_\omega \]

with \(V_\omega\) iid random variable with a continuous law.

The function \(u_n\) is an eigenvector of \(H\) with eigenvalue \(\lambda\) iff

\[
\begin{align*}
 u_{n+1} &= (v_n(\omega) - \lambda)u_n - u_{n-1} \\
 \Leftrightarrow \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} &= \begin{pmatrix} v_n(\omega) - \lambda & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_n \\ u_{n-1} \end{pmatrix} \\
 \Leftrightarrow \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} &= \prod_{k=1}^{n} T_\lambda(v_k(\omega)) \begin{pmatrix} u_1 \\ u_0 \end{pmatrix},
\end{align*}
\]

Three natural random processes: the forward product of random matrices, the backward product of random matrices and the construction of the eigenvector.
\[\log(|u_{n+1}|^2 + |u_n|^2) \approx \gamma(\lambda)n + \sigma(\lambda)B_n \] of the eigenvector
A forward-backward random process

Notation: \(z_n = u_{n+1} + iu_n = r_ne^{i\phi_n} \)
\(P_{f,1..k} \): the forward product of matrices up to \(k \)
\(P_{b,k+1,...,N} \): the backward product of matrices up to \(k \).
\(X = (\phi_0, \phi_1, \cdots, \phi_N) \).

Theorem [RD]: Law of the form of the eigenvector

For any test function \(G(\lambda, X) \), we have

\[
\mathbb{E} \left[\sum_{\lambda \in \sigma(H), X = P h(\lambda)} G(\lambda, X) \right] = \int_{\mathbb{R}} d\lambda \sum_{k=1}^{N} \mathbb{E} P_{f,1..k} \otimes P_{b,k+1,...,N} \left[G(\lambda, X) \delta_{\phi_k^f - \phi_k^b} \sin^2(\phi_k^f) \right] \tag{1}
\]
A forward-backward random process

Notation: $z_n = u_{n+1} + i u_n = r_n e^{i \phi_n}$
$\mathcal{P}_f, 1..k :$ the forward product of matrices up to k
$\mathcal{P}_b, k+1, ..., N :$ the backward product of matrices up to k
$X = (\phi_0, \phi_1, \cdots, \phi_N)$.

Theorem [RD]: Law of the form of the eigenvector

For any test function $G(\lambda, X)$, we have

$$
\mathbb{E} \left[\sum_{\lambda \in \sigma(H), \mathcal{P}_f = \mathcal{P} \mathcal{h}(\lambda)} G(\lambda, X) \right] = \int_{\mathbb{R}} d\lambda \sum_{k=1}^{N} \mathbb{E} [\mathcal{P}_f, 1..k \otimes \mathcal{P}_b, k+1, ..., N] \left[G(\lambda, X) \delta_{\phi_f^k - \phi_b^k} \sin^2(\phi_f^k) \right]$$

(1)
Proof: calculations...

\[\theta_N \equiv \phi_N[2\pi]. \]

\[\lambda \text{ is a eigenvalue } \iff \phi_N(\lambda, (V_\omega)) = \frac{\pi}{2} \]

\[\mathbb{E} \left[\sum_{\lambda \in \sigma(H), X = \mathcal{P} h(\lambda)} G(\lambda, X) \right] \]

\[= \lim_{\varepsilon \to 0} \mathbb{E} \left[\frac{1}{2\varepsilon} \sum_{n \in \mathbb{Z}} \int_{\pi n + \pi/2 - \varepsilon}^{\pi n + \pi/2 + \varepsilon} \sum_{\lambda : \theta_N(\lambda) = s} G(\lambda, X) \, ds \right]. \]

\[= \lim_{\varepsilon \to 0} \mathbb{E} \left[\int_{\mathbb{R}} G(\lambda, X) \frac{1}{2\varepsilon} 1_{\theta_N(\lambda) \in I_\varepsilon} \left| \frac{d\theta_N(\lambda)}{d\lambda} \right| \, d\lambda \right] \]

where \(I_\varepsilon = \frac{\pi}{2} + \bigcup_{n \in \mathbb{Z}} [\pi n - \varepsilon, \pi n + \varepsilon]. \)
\[\frac{d\theta_N(\lambda)}{d\lambda} = \frac{d\phi_N(\lambda)}{d\lambda} \]

\[= \frac{d}{d\lambda} \left[\prod_{k=1}^{N} T(\nu_\omega(k) - \lambda) \phi_0 \right] \]

\[= \sum_{k=1}^{N} \frac{d\phi_N}{d\phi_k} |_{\nu_\omega(N), \ldots, \nu_\omega(k+1)} \cdot \frac{d}{d\lambda} [T(\nu_\omega(k) - \lambda)](\phi_{k-1}) \]

And we have

\[\frac{d}{d\lambda} [T(\nu_\omega(k) - \lambda)](\phi_{k-1}) = \sin^2 \phi_k. \]
\[
\sum_{k=1}^{N} \int_{\mathbb{R}} d\lambda \left[\int \ldots \int d\nu(v_1) \ldots d\nu(v_n) G(\lambda, X) \frac{d\phi_N}{d\phi_k} \cdot \sin^2(\phi_k) \right] \frac{1}{2\epsilon} 1_{\theta_N(\lambda) \in \mathbb{I}_{\epsilon}}
\]

We artificially add a variable \(\phi \).

\[
= \sum_{k=1}^{N} \int_{\mathbb{R}} d\lambda \left[\int \ldots \int d\nu(v_1) \ldots d\nu(v_k) \int_{\mathbb{S}^1} d\phi \delta_{\phi_k}(\phi) \int \ldots \int d\nu(v_{k+1}) \ldots d\nu(v_N) G(\lambda, X) \frac{d\phi_N}{d\phi} \cdot \sin^2(\phi_k) \right] \frac{1}{2\epsilon} 1_{\theta_N(\lambda) \in \mathbb{I}_{\epsilon}}
\]

\[
= \sum_{k=1}^{N} \int_{\mathbb{R}} d\lambda \left[\mathbb{E} \mathcal{P}_{f,1\ldots,k} \otimes \mathcal{P}_{b,k+1,\ldots,N}^u \left[G(\lambda, X) \delta_{\phi_k^f - \phi_k^b} \sin^2(\phi_k) \frac{1}{2\epsilon} 1_{\phi_N \in \mathbb{I}_{\epsilon}/\pi \mathbb{Z}} \right] \right]
\]

with \(\mathcal{P}_{f,1\ldots,k} \otimes \mathcal{P}_{b,k+1,\ldots,N}^u \) the forward-backward process with \(\mu_b \) the uniform law on \(\mathbb{S}^1 \) and we can then conclude, by taking the limit

\[
\frac{1}{2\epsilon} 1_{\phi_N \in \mathbb{I}_{\epsilon}/2\pi \mathbb{Z}} d\phi_N \to \delta_0.
\]
\[
\sum_{k=1}^{N} \int_{\mathbb{R}} d\lambda \left[\int ... \int d\nu(v_1)...d\nu(v_n) G(\lambda, X) \frac{d\phi_N}{d\phi_k} \cdot \sin^2(\phi_k) \right] \frac{1}{2\varepsilon} 1_{\theta_N(\lambda) \in I_{\varepsilon}}
\]

We artificially add a variable \(\phi \).

\[
= \sum_{k=1}^{N} \int_{\mathbb{R}} d\lambda \left[\int ... \int d\nu(v_1)...d\nu(v_k) \int_{\mathbb{S}^1} d\phi \delta_{\phi_k}(\phi) \int ... \int d\nu(v_{k+1})...d\nu(v_N) G(\lambda, X) \frac{d\phi_N}{d\phi} \cdot \sin^2(\phi_k) \right] \frac{1}{2\varepsilon} 1_{\theta_N(\lambda) \in I_{\varepsilon}}
\]

\[
= \sum_{k=1}^{N} \int_{\mathbb{R}} d\lambda \left[\mathbb{E} \mathcal{P}_{f,1..k} \otimes \mathcal{P}_{b,k+1,...,N}^{u} [G(\lambda, X) \delta_{\phi_k - \phi_b} \sin^2(\phi_k) \frac{1}{2\varepsilon} 1_{\phi_N \in I_{\varepsilon}/\pi\mathbb{Z}}] \right]
\]

with \(\mathcal{P}_{f,1..k} \otimes \mathcal{P}_{b,k+1,...,N}^{u} \) the forward-backward process with \(\mu_b \) the uniform law on \(\mathbb{S}^1 \) and we can then conclude, by taking the limit

\[
\frac{1}{2\varepsilon} 1_{\phi_N \in I_{\varepsilon}/2\pi\mathbb{Z}} d\phi_N \to \delta_0 .
\]
\[
\sum_{k=1}^{N} \int_{\mathbb{R}} d\lambda \left[\int \ldots \int dv(v_1) \ldots dv(v_n) G(\lambda, X) \frac{d\phi_N}{d\phi_k} \cdot \sin^2(\phi_k) \right] \frac{1}{2\epsilon} \mathbf{1}_{\phi_N(\lambda) \in \mathbb{I}_\epsilon}
\]

We artificially add a variable \(\phi\).

\[
= \sum_{k=1}^{N} \int_{\mathbb{R}} d\lambda \left[\int \ldots \int dv(v_1) \ldots dv(v_k) \int_{\mathbb{S}^1} d\phi \delta_{\phi_k}(\phi) \int \ldots \int dv(v_{k+1}) \ldots dv(v_N) G(\lambda, X) \frac{d\phi_N}{d\phi} \cdot \sin^2(\phi_k) \right] \frac{1}{2\epsilon} \mathbf{1}_{\phi_N(\lambda) \in \mathbb{I}_\epsilon}
\]

\[
= \sum_{k=1}^{N} \int_{\mathbb{R}} d\lambda \left[\mathbb{E} \mathcal{P}_{f,1..k} \otimes \mathcal{P}_{b,k+1,...,N} \left[G(\lambda, X) \delta_{\phi_k - \phi_b} \sin^2(\phi_k) \right] \frac{1}{2\epsilon} \mathbf{1}_{\phi_N \in \mathbb{I}_\epsilon / \pi \mathbb{Z}} \right]
\]

with \(\mathcal{P}_{f,1..k} \otimes \mathcal{P}_{b,k+1,...,N}\) the forward-backward process with \(\mu_b\) the uniform law on \(\mathbb{S}^1\) and we can then conclude, by taking the limit
\[
\frac{1}{2\epsilon} \mathbf{1}_{\phi_N \in \mathbb{I}_\epsilon / 2\pi \mathbb{Z}} d\phi_N \to \delta_0.
\]
1. The critical one dimensional Anderson model.

2. Forward-Backward process for the construction of the eigenvectors.

3. Application I: A formula for the integral density of eigenvalues

4. Application II: with the limit theorem for product of random matrices.

5. Application III: A temperature profile
Density of eigenvalues

\[N(\lambda) = \text{Expected number of eigenvalue smaller than } \lambda. \]
\[N(\lambda) \text{ the integral density of states.} \]

Corollary

With \(\rho^k_\lambda \) the law of \(\phi_k \) (after \(k \) iteration of \(T_\lambda \)) we have

\[
\frac{dN(\lambda)}{d\lambda} = \frac{1}{N} \sum_{k=1}^{N} \int_{\mathbb{R}/2\pi\mathbb{Z}} \sin^2(\phi)\rho^k_\lambda(\phi)\rho^{N-k}_\lambda\left(\frac{\pi}{2} - \phi\right) d\phi.
\]

Corollary of the corollary

With \(\rho_\lambda \) the \(T_\lambda \)-invariant measure on \(\mathbb{R}/2\pi\mathbb{Z} \), we have

\[
\frac{dN(\lambda)}{d\lambda} = \int_{\mathbb{R}/2\pi\mathbb{Z}} \sin^2(\phi)\rho_\lambda(\phi)\rho_\lambda\left(\frac{\pi}{2} - \phi\right) d\phi.
\]
1. The critical one dimensional Anderson model.

2. Forward-Backward process for the construction of the eigenvectors.

3. Application I: A formula for the integral density of eigenvalues

4. Application II: with the limit theorem for product of random matrices.

5. Application III: A temperature profile
Let \((M_i)\) iid random variables with a “nice random law”.

Heuristic: the log of the norm behave as if it was the sum of iid random variables.

\[
\log(\|\prod_{i=1}^{n} M_i x\|) = \log(\|M_n \frac{\prod_{i=1}^{n-1} M_i x}{\|\prod_{i=1}^{n-1} M_i x\|}\|) + \log(\|\prod_{i=1}^{n-1} M_i x\|)
\]

\[
= \sum_{k=1}^{n} \log \left(\|M_k \frac{\prod_{i=1}^{k-1} M_i x}{\|\prod_{i=1}^{k-1} M_i x\|}\|\right)
\]

Limit theorems for product of random matrices

- \(\exists \gamma\) (Lyapunov exponent) such that \(\frac{1}{n} \log(\|\prod_{i=1}^{n} M_i x\|) \to \gamma\)
- \(\exists \sigma\) such that \(\frac{1}{\sqrt{n}} (\log(\|\prod_{i=1}^{n} M_i x\|) - \gamma n) \to G(0, \sigma^2)\)
- With \(S_t = \frac{1}{\sqrt{N}} (\log(\|\prod_{i=1}^{[Nt]} M_i x\|) - \gamma Nt) \to \sigma B_t\)
- \(\mathbb{P}(\log(\|\prod_{i=1}^{n} M_i x\|) - \gamma n > an) \sim e^{-nF(a)}\)
An equivalent to the Laplace transform

\[L_N(\alpha) = \mathbb{E}(e^{\alpha\log(\|\prod_{i=1}^{N} M_i x\|)}) \]

An operator \(A(\alpha) : \mathcal{C}^\beta(S^1) \to \mathcal{C}^\beta(S^1) \)

\[[A(0)f](x) = \mathbb{E}(f(\frac{Mx}{\|Mx\|})) \]

\[[A(\alpha)f](x) = \mathbb{E}(e^{\alpha\log(\|Mx\|)}f(\frac{Mx}{\|Mx\|})) \]

\(A(0) \) has a unique largest eigenvalue \((=1)\). We call \(g(\alpha) \) the largest eigenvalue.

\[L_N(\alpha) = [A(\alpha)^N 1](x) \sim g(\alpha)^N \]
An equivalent to the Laplace transform

\[L_N(\alpha) = \mathbb{E}(e^{\alpha \log(\|\prod_{i=1}^N M_i x\|)}) \]

An operator \(A(\alpha) : \mathbb{C}^\beta(S^1) \rightarrow \mathbb{C}^\beta(S^1) \)

\[[A(0)f](x) = \mathbb{E}(f(\frac{Mx}{\|Mx\|})) \]

\[[A(\alpha)f](x) = \mathbb{E}(e^{\alpha \log(\|Mx\|)}f(\frac{Mx}{\|Mx\|})) \]

\(A(0) \) has a unique largest eigenvalue (\(= 1 \)). We call \(g(\alpha) \) the largest eigenvalue.

\[L_N(\alpha) = [A(\alpha)^N1](x) \sim g(\alpha)^N \]
With α fixed, this gives the large deviation estimate.

$$\mathbb{P}(\log(\| \prod_{i=1}^{N} M_i x \|) > \nu N) \leq \frac{\mathbb{E}(e^{\alpha \log(\| \prod_{i=1}^{N} M_i x \|)})}{e^{\alpha \nu N}} \sim \left(\frac{g(\alpha)}{e^{\alpha \nu}} \right)^N$$

With $\alpha = \frac{is}{\sqrt{N}}$, because $g(\alpha)$ is analytic around 0:

$$\left(\frac{g(\alpha)}{e^{\gamma \alpha}} \right)^N = (1 - \sigma^2 \frac{s^2}{N} + O(\frac{s^3}{N^3}))^N \to e^{-\sigma^2 s^2}$$

which gives the central limit theorem.
With α fixed, this gives the large deviation estimate:

$$\Pr(\log(\| \prod_{i=1}^{N} M_{i}x \|) > \nu N) \leq \frac{\mathbb{E}(e^{\alpha \log(\| \prod_{i=1}^{N} M_{i}x \|)})}{e^{\alpha \nu N}} \sim \left(\frac{g(\alpha)}{e^{\alpha \nu}} \right)^N$$

With $\alpha = \frac{is}{\sqrt{N}}$. because $g(\alpha)$ is analytic around 0:

$$\left(\frac{g(\alpha)}{e^{\gamma \alpha}} \right)^N = (1 - \sigma^2 \frac{s^2}{N} + O(\frac{s^3}{N^3}))^N \rightarrow e^{-\sigma^2 s^2}$$

which gives the central limit theorem.
The random processes

\[\log(|u_{n+1}|^2 + |u_n|^2) \approx \gamma(\lambda) n + \sigma(\lambda) B_n \]

\[\log(|u_{n+1}|^2 + |u_n|^2) \text{ of the eigenvector} \]
1. The critical one dimensional Anderson model.

2. Forward-Backward process for the construction of the eigenvectors.

3. Application I: A formula for the integral density of eigenvalues.

4. Application II: with the limit theorem for product of random matrices.

5. Application III: A temperature profile.
The model (Huveneer, De Roeck)

A disordered harmonic chain coupled at its ends to two thermal baths.
A temperature profile model

Temperature associated to each eigenvector

\[T(\psi_\lambda) = \frac{|\psi_\lambda(1)|^2 T_1 + |\psi_\lambda(N)|^2 T_N}{|\psi_\lambda(1)|^2 + |\psi_\lambda(N)|^2} \]

At each point

\[T(x) = \sum_\lambda |\psi_\lambda(x)|^2 T(\psi_\lambda) \]

For \(N \) large and because of the exponential decay \(T(\psi_\lambda) = T_1 \) (resp. \(T_N \)) if \(|\psi_\lambda(1)| > |\psi_\lambda(N)| \) (resp. \(|\psi_\lambda(1)| < |\psi_\lambda(N)| \))

Limiting temperature profile

We have

\[
\lim_{N \to \infty} \mathbb{E}\left[T(\lfloor \sqrt{N} x + \frac{N}{2} \rfloor) \right] = T_1 + (T_N - T_1) \int_{\mathbb{R}} \mathbb{P}\left(\mathcal{N}(0,1) \leq \frac{2\gamma(\lambda)}{\sigma(\lambda)} x \right) dN(\lambda)
\]

where \(dN(\lambda) \) is the integrated density of states, \(\gamma(\lambda) \) the Lyapunov exponent and \(\sigma(\lambda) \) the limit variance.
A temperature profile model

Temperature associated to each eigenvector

\[T(\psi_\lambda) = \frac{|\psi_\lambda(1)|^2 T_1 + |\psi_\lambda(N)|^2 T_N}{|\psi_\lambda(1)|^2 + |\psi_\lambda(N)|^2} \]

At each point

\[T(x) = \sum_{\lambda} |\psi_\lambda(x)|^2 T(\psi_\lambda) \]

For \(N \) large and because of the exponential decay \(T(\psi_\lambda) = T_1 \) (resp. \(T_N \)) if \(|\psi_\lambda(1)| > |\psi_\lambda(N)| \) (resp. \(|\psi_\lambda(1)| < |\psi_\lambda(N)| \))

Limiting temperature profile

We have

\[\lim_{N \to \infty} \mathbb{E}[T(\lfloor \sqrt{N}x + \frac{N}{2} \rfloor)] = T_1 + (T_N - T_1) \int_{\mathbb{R}} P\left(\mathcal{N}(0,1) \leq \frac{2\gamma(\lambda)}{\sigma(\lambda)} x \right) dN(\lambda) \]

where \(dN(\lambda) \) is the integrated density of states, \(\gamma(\lambda) \) the Lyapunov exponent and \(\sigma(\lambda) \) the limit variance.
Thank you for your attention.