Compressing over-the-counter markets

Marco D'Errico¹ Tarik Roukny²

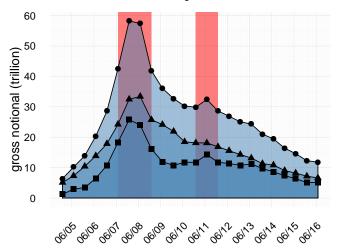
¹Dept. Banking and Finance, University of Zurich

²Media Lab, Massachusetts Institute of Technology

Measurement and Control of Systemic Risk

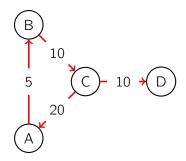
Centre de Recherches Mathématiques, Montréal

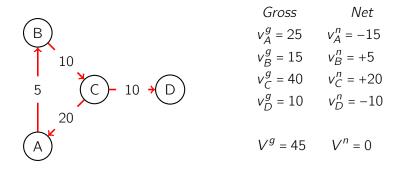
September 27, 2017


"Size" of OTC derivatives markets

The Economist, 2012

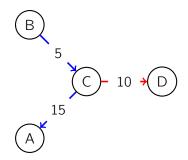
"Size" of OTC derivatives markets


Credit Default Swaps (source: BIS OTC derivatives statistics)

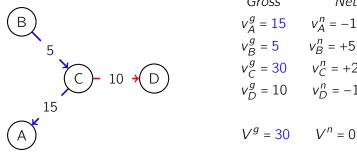

total ▲ singlename ■ index

In a nutshell

In a nutshell

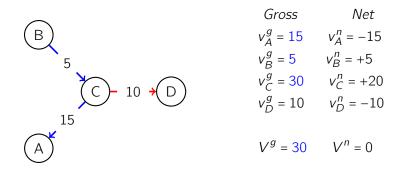


In a nutshell



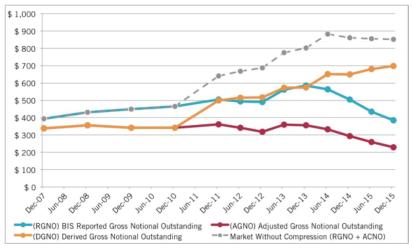
In a nutshell

In a nutshell


In a nutshell

Gross	Net
$v_{A}^{g} = 15$	$v_{A}^{n} = -15$
$v_{B}^{g} = 5$	$v_B^n = +5$
$v_{C}^{g} = 30$	$v_{C}^{n} = +20$
$v_D^g = 10$	$v_D^n = -10$

In a nutshell


Post-trade Operation that reduces gross positions while satisfying net balances

Reduction in aggregate gross notional: 15

"Size" of OTC derivatives markets

Interest Rates Swaps (source: ISDA Report, 2016)

Source: BIS, CME Group, JSCC, LCH.Clearnet, TriOptima

Compression introduced in the middle of 2000s

- Good housekeeping
 - Counterparty risk ↓
 - Operational management burden \downarrow

Compression introduced in the middle of 2000s

- Good housekeeping
 - Counterparty risk ↓
 - Operational management burden \downarrow

2008 crisis aftermath (1)

Credit derivatives The great untangling

Only now is the industry discovering the joys of compression The Economist, November 2008

Compression introduced in the middle of 2000s

- Good housekeeping
 - Counterparty risk ↓
 - Operational management burden \downarrow

2008 crisis aftermath (2)

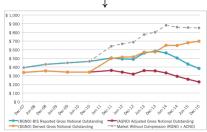
New Regulatory Constraints (e.g., Basel 3) ↓ Capital requirements Leverage ratio Margins and collateral

Compression introduced in the middle of 2000s

- Good housekeeping
 - Counterparty risk ↓
 - Operational management burden \downarrow

2008 crisis aftermath (2)

New interpretation of compression


System wide multilateral deleveraging operation which does not entail asset sales or capital injection

Compression introduced in the middle of 2000s

- Good housekeeping
 - Counterparty risk ↓
 - Operational management burden \downarrow

2008 crisis aftermath (2)

New Regulatory Constraints (e.g., Basel 3)

Source: BIS, CME Group, JSCC, LCH.Clearnet, TriOptima

Compression Today

How?

- ► Bilateral level → Mutual agreement
- ► Multilateral level → External service provider

(TriOptima, LCH SwapClear, LMRKTS, Catalyst, Markit)

What?

- \blacktriangleright IRS (cleared and non-cleared), CDS (single-name and index)
- More recently: FX, Commodity, Inflation, Currency, etc.

Numbers

- TriOptima: \$1000 trillion eliminated (2003-2017)
- LCH SwapClear: \$380 billions eliminated in 2016
- ▶ ISDA: 67% reduction of IRD markets (2010-2016)

Regulations

- Defined in MiFIR
- EMIR art. 14 requires "valid explanation" for not compressing

Why care?

Global Regulatory Support MiFIR, EMIR, Dodd-Frank

► Reduction of Systemic Risk + Increase of Transparency

Why care?

Global Regulatory Support MiFIR, EMIR, Dodd-Frank

▶ Reduction of Systemic Risk + Increase of Transparency

However...

Systemic Risk

(partial) reconfiguration

- Local vs. global
- Risk concentration
- Legal framework

Monitoring

lack of tractability

- Opaque methods
- Limitations in current reporting framework
- Distortion of aggregate assessments

Why care?

Global Regulatory Support MiFIR, EMIR, Dodd-Frank

▶ Reduction of Systemic Risk + Increase of Transparency

However...

Systemic Risk

(partial) reconfiguration

- Local vs. global
- Risk concentration
- Legal framework

Monitoring

lack of tractability

- Opaque methods
- Limitations in current reporting framework
- Distortion of aggregate assessments

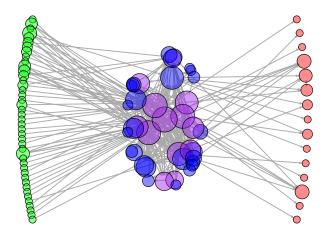
... And

Limited literature and analytical research on the topic

(O'Kane, 2014 WP), (Benos et al., 2013, BoE WP)

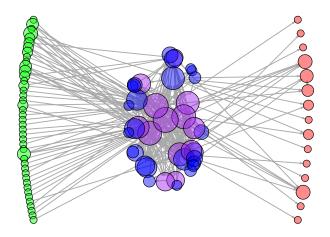
Today

1. Formalize key concepts related to portfolio compression


- Excess
- Tolerance
 - o Conservative vs Non-conservative
- 2. Identify the mechanics of compression
 - Condition
 - Efficiency
 - Topological characterisation
- 3. Apply the framework to CDS markets
 - How much notional is eligible for compression
 - Impact of a EU-wide adoption of compression

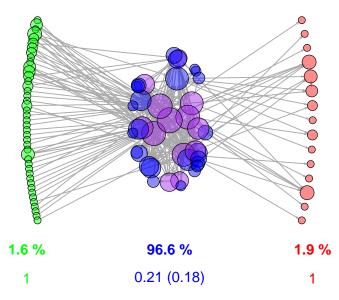
Dealers and Customers

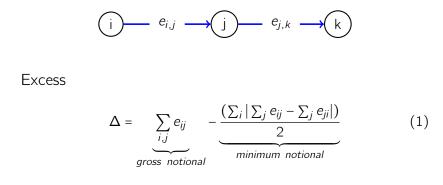
EMIR CDS on Government Reference (April 2016) Total gross notional: 15.95*Bn* euros

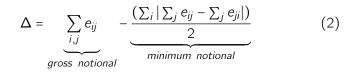

Dealers and Customers

EMIR CDS on Government Reference (April 2016) Total gross notional: 15.95*Bn* euros

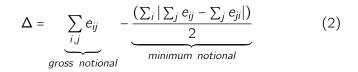
Dealers and Customers


Total gross notional: 15.95Bn euros


1.6 %


Dealers and Customers

Net vs Gross


Excess

Theorem

In a market of fungible and outstanding trades: There is excess ⇔ there is intermediation in the market

Excess

Theorem

In a market of fungible and outstanding trades: There is excess ⇔ there is intermediation in the market

Corollary

Dealers generate the excess in networked markets

(i)
$$e_{i,j} \rightarrow j e_{j,k} \rightarrow k$$

Compression

Definition

Operation over the market G = (N, E) that **reconfigures** the web of outstanding trades s.t. the resulting market G' = (N, E')

- o Preserves net positions \rightarrow unchanged market risk
- o Reduces excess \rightarrow reduction of counterparty risk
- o Satisfies tolerance levels¹

↓ Efficiency criteria Excess Reduction

¹Tolerance level = arbitrary bilateral constraints

Compression

Definition

Operation over the market G = (N, E) that **reconfigures** the web of outstanding trades s.t. the resulting market G' = (N, E')

- o Preserves net positions \rightarrow unchanged market risk
- o Reduces excess \rightarrow reduction of counterparty risk
- o Satisfies tolerance levels¹

↓ Efficiency criteria Excess Reduction

Remark

Compression is a multilateral novation netting technique that does not require the participation of a Clearinghouse or Central Counterparty

¹Tolerance level = arbitrary bilateral constraints

2 classes of compression tolerances

Conservative Relationship constrains Non-conservative No constrains

2 classes of compression tolerances

Conservative

Relationship constrains

Non-conservative

No constrains

Feasibility

2 classes of compression tolerances

Conservative

Relationship constrains

Non-conservative

No constrains

Feasibility

Efficiency

2 classes of compression tolerances

Conservative

Relationship constrains

Non-conservative No constrains

Feasibility

Efficiency

Solution Characterisation

Results

Necessary and sufficient condition **Theorem**

There is excess \Leftrightarrow there is intermediation in the market

Results

Necessary and sufficient condition **Theorem**

There is excess \Leftrightarrow there is intermediation in the market

Non-Conservative

Theorem

Non-conservative compression takes place ⇔ there is intermediation in the market

Necessary and sufficient condition **Theorem**

There is excess \Leftrightarrow there is intermediation in the market

Non-Conservative

Theorem

Non-conservative compression takes place ⇔ there is intermediation in the market

Necessary and sufficient condition **Theorem**

There is excess \Leftrightarrow there is intermediation in the market

Non-Conservative

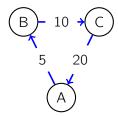
Theorem

Non-conservative compression takes place ⇔ there is intermediation in the market

Necessary and sufficient condition

Conservative

Theorem

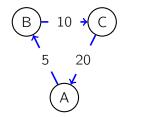

Conservative compression takes place \Leftrightarrow there is at least one closed chain of intermediation in the market

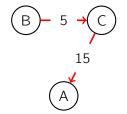
Necessary and sufficient condition

Conservative

Theorem

Conservative compression takes place \Leftrightarrow there is at least one closed chain of intermediation in the market




Necessary and sufficient condition

Conservative

Theorem

Conservative compression takes place \Leftrightarrow there is at least one closed chain of intermediation in the market

Efficiency

Non-Conservative

Theorem

Non-Conservative compression can achieve full compression

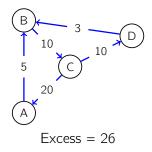
 \rightarrow Excess = 0

Efficiency

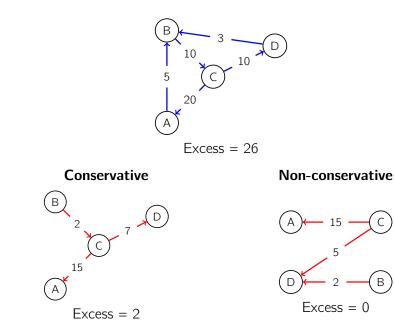
Non-Conservative

Theorem

Non-Conservative compression can achieve full compression


 \rightarrow Excess = 0

Conservative


(In dealer-customer markets) **Theorem** *Conservative compression cannot remove all the excess*

 \rightarrow Excess > 0

Illustration

Illustration

A third approach

Hybrid Compression

Assumptions

- 1. Dealers want to keep their intermediation role with customers
- 2. Intra-dealer trades can be switched at negligible cost (**Rich club**)

A third approach

Hybrid Compression

Assumptions

- 1. Dealers want to keep their intermediation role with customers
- 2. Intra-dealer trades can be switched at negligible cost (**Rich club**)

Implementation

- E^C is the set of customer trades \rightarrow **conservative**
- E^D is the set of intra-dealer trades \rightarrow **non-conservative**
- $E^C + E^D = E$

A third approach

Hybrid Compression

Assumptions

- 1. Dealers want to keep their intermediation role with customers
- 2. Intra-dealer trades can be switched at negligible cost (**Rich club**)

Implementation

- E^C is the set of customer trades \rightarrow **conservative**
- E^D is the set of intra-dealer trades \rightarrow **non-conservative**
- $E^C + E^D = E$

Theorem

General ranking of efficiency bilateral ≤ conservative ≤ hybrid ≤ non – conservative

Application

Data

Trade state report under EMIR: EU-wide Credit Default Swaps

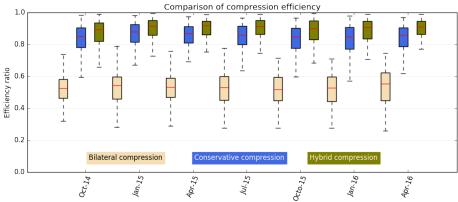
- Oct 2014 Apr 2016
- 100 most traded instruments (ref. entity + maturity) ≈ 70 Bn euros

Implementation

- Design benchmark solution for each approach
 - o Non-conservative
 - o Conservative
 - o Hybrid
 - o Bilateral

Analysis

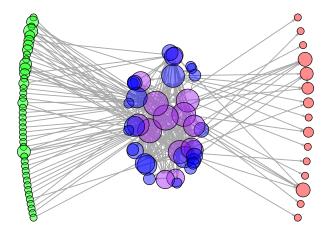
- Excess
- Compression efficiency


Top 100 markets

Top 100 markets

Total Excess	Oct-14	Jan-15	Apr-15	Jul-15	Oct-15	Jan-16	Apr-16
min	0.529	0.513	0.475	0.420	0.533	0.403	0.532
max	0.904	0.914	0.895	0.901	0.903	0.890	0.869
mean	0.769	0.777	0.766	0.757	0.751	0.728	0.734
stdev	0.077	0.082	0.085	0.090	0.082	0.096	0.080
first quart.	0.719	0.733	0.712	0.703	0.693	0.660	0.678
median	0.781	0.791	0.783	0.769	0.758	0.741	0.749
third quart.	0.826	0.847	0.832	0.822	0.808	0.802	0.796

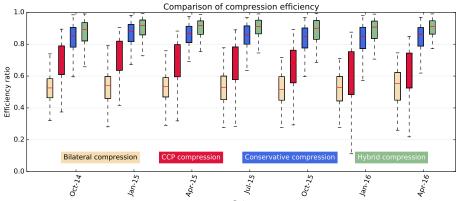
Top 100 markets


Top 100 markets

. Date

Illustration: concentration effects

Lehman and AIG under conservative compression



Conclusion

- There is more to market size
 - o In OTC markets
 - \rightarrow Trades generate **excess** when there is **intermediation**
- Excess can be removed by compression
 - Already in place in some **derivatives** markets
- Theoretical understanding of the mechanics
 - o Tolerances, feasibility, efficiency trade-off, design
- Empirical application
 - o Large levels of excess, concentration in the intra-dealer segment, efficiency of multilateral approaches despite trade-off

Towards an understanding of the systemic implications of compression

Thank you! roukny@mit.edu

Date