Survey on the square and hexagonal model for random groups

Tomasz Odrzygóźdź

Institute of Mathematics PAN

14th November 2016
We want to consider questions:

- What does a typical group look like?
- What properties are typical for groups?
We want to consider questions:

- What does a typical group look like?
- What properties are typical for groups?

Random groups:

- have some „exotic” properties,
- provide examples hard to construct without random groups
What are random groups?
Isoperimetric inequality
Property (T) and Haagerup Property
Walls and hypergraphs
Other models

Motivations
Definition
Square model - introduction

Definition (General definition of random group)

\[G = \langle S \mid R \rangle \]

- \(S \) is a finite set of generators
- \(R \) is a random set of relations

We need some distribution to draw \(|R|\) at random.
Definition (General definition of random group)

\[G = \langle S \mid R \rangle \]

- \(S \) is a finite set of generators
- \(R \) is a random set of relations

We need some distribution to draw \(|R|\) at random.

Question:
What properties hold with high probability when \(|R| \to \infty\)?
Definition (The square model)

\[G(n, d) = \langle S | R \rangle \]

- \(S \) is a finite set of \(n \) generators
- \(R \) is a set of \((2n - 1)^{4d}\) relators chosen uniformly at random among about \((2n - 1)^4\) words of length 4.
- \(d \in (0, 1) \) is called the density

A property \(\mathcal{P} \) occurs with overwhelming probability (w.o.p.) if

\[\mathbb{P}(\mathcal{P} \text{ holds for } G(n, d)) \to 1, \]

as \(n \to \infty \).
The square model - basic results

- For $d < \frac{1}{2}$ hyperbolic, torsion-free, of dimension 2 [O. ’13]
- For $d > \frac{1}{2}$ w.o.p. trivial [O. ’13]
- For $d < \frac{1}{4}$ w.o.p. free [O. ’13]
The square model - basic results

For $d < \frac{1}{2}$ hyperbolic, torsion-free, of dimension 2 [O. '13]
For $d > \frac{1}{2}$ w.o.p. trivial [O. '13]
For $d < \frac{1}{4}$ w.o.p. free [O. '13]

We will show the idea of proving the hyperbolicity.
van Kampen diagram

Definition

Let $G = \langle S | R \rangle$. For every relation $r \in R$ we have a polygon with as many edges as letters in r. On every edge there is a letter such that the boundary word is r. A van Kampen diagram is a planar diagram obtained by gluing these polygons along corresponding edges.

Example

$$G = \langle a, b | aba^{-1}b^{-1} \rangle$$
Theorem (O. ’13, based on Ollivier ’07)

For any $\varepsilon > 0$ in the square model at density $d < \frac{1}{2}$ w.o.p. every reduced van Kampen diagram \mathcal{D} w.r.t. the group presentation satisfies

$$|\partial \mathcal{D}| > 4(1 - 2d - \varepsilon)|\mathcal{D}| \quad (1)$$

- $|\partial \mathcal{D}|$ - number of edges in the boundary of \mathcal{D}
- $|\mathcal{D}|$ - number of 2-cells of \mathcal{D}
Theorem (O. ’13, based on Ollivier ’07)

For any $\varepsilon > 0$ in the square model at density $d < \frac{1}{2}$ w.o.p. every reduced van Kampen diagram D w.r.t. the group presentation satisfies

$$|\partial D| > 4(1 - 2d - \varepsilon)|D|$$

- $|\partial D|$ - number of edges in the boundary of D
- $|D|$ - number of 2-cells of D

Corollary

Random group in the square model at density $d < \frac{1}{2}$ is w.o.p. hyperbolic.
Definition

A group G has Property (T) if for every real Hilbert space \mathcal{H} every action of G on \mathcal{H} via affine isometries has a fixed point.
Definition

A group G has Property (T) if for every real Hilbert space \mathcal{H} every action of G on \mathcal{H} via affine isometries has a fixed point.

Definition

A group G has a Haagerup Property if there exists a proper action of this group via isometries on a real Hilbert space.
Definition

A group G has Property (T) if for every real Hilbert space \mathcal{H} every action of G on \mathcal{H} via affine isometries has a fixed point.

Definition

A group G has a Haagerup Property if there exists a proper action of this group via isometries on a real Hilbert space.

- Haagerup property is a strong negation of Property (T)
Definition

A group G has **Property (T)** if for every real Hilbert space \mathcal{H} every action of G on \mathcal{H} via affine isometries has a fixed point.

Definition

A group G has a **Haagerup Property** if there exists a proper action of this group via isometries on a real Hilbert space.

- Haagerup property is a strong negation of Property (T)
- If a group has Haagerup property then it satisfies Baum-Connes conjecture and Novikov conjecture.
Definition

A group G has Property (T) if for every real Hilbert space \mathcal{H} every action of G on \mathcal{H} via affine isometries has a fixed point.

Definition

A group G has a Haagerup Property if there exists a proper action of this group via isometries on a real Hilbert space.

- Haagerup property is a strong negation of Property (T)
- If a group has Haagerup property then it satisfies Baum-Connes conjecture and Novikov conjecture.
- Property (T) was used to find an explicit family of expanders
The square model - further results

- For $d < \frac{3}{8}$ w.o.p. no Property (T) [O. '16]
- For $d < \frac{3}{10}$ w.o.p. Haagerup property [O. '16]
- For $d > \frac{5}{12}$ w.o.p. has (T) [Przytycki, Orlef, O. '16]
Space with walls

Definition

Space with walls is a set Y with a nonempty family \mathcal{H} of nonempty subsets satisfying: for every $h \in \mathcal{H}$, h' (completion in Y) belongs to \mathcal{H}.

Example

$A_i = \{ (x, y) : x < i \}$

$B_i = \{ (x, y) : y < i \}$

For $i \in \mathbb{Z}$ pairs $\{A_i, A'_i\}$ and $\{B_i, B'_i\}$ form walls on \mathbb{R}^2.

Tomasz Odrzygóźdź

Survey on the square and hexagonal model for random groups
Space with walls

Definition

Space with walls is a set Y with a nonempty family \mathcal{H} of nonempty subsets satisfying: for every $h \in \mathcal{H}$, h' (completion in Y) belongs to \mathcal{H}.

Pairs $\{h, h'\}$ for $h \in \mathcal{H}$ are called *walls*.

Example:

$A_i = \{ (x, y) : x < i \}$

$B_i = \{ (x, y) : y < i \}$

For $i \in \mathbb{Z}$ pairs $\{A_i, A'_i\}$ and $\{B_i, B'_i\}$ form walls on \mathbb{R}^2.

Tomasz Odrzygóźdź

Survey on the square and hexagonal model for random groups
Definition

Space with walls is a set Y with a nonempty family \mathcal{H} of nonempty subsets satisfying: for every $h \in \mathcal{H}$, h' (completion in Y) belongs to \mathcal{H}.

Pairs $\{h, h'\}$ for $h \in \mathcal{H}$ are called *walls*.

Example

$A_i = \{(x, y) : x < i\}$

$B_i = \{(x, y) : y < i\}$

For $i \in \mathbb{Z}$ pairs $\{A_i, A'_i\}$ and $\{B_i, B'_i\}$ form *walls* on \mathbb{R}^2.
We say that a wall \(\{ h, h' \} \) separates points \(x, y \in Y \) if \(x \in h, y \in h' \) or \(x \in h', y \in h \).
Definition

We say that a wall \{h, h'\} separates points \(x, y \in Y\) if
\(x \in h, y \in h'\) or \(x \in h', y \in h\).

The distance between \(x\) and \(y\) in the wall metric \(d_{\text{wall}}\) is the number of walls separating \(x\) and \(y\).
Metric on a space with walls

Definition

We say that a wall \(\{h, h'\} \) separates points \(x, y \in Y \) if
\(x \in h, y \in h' \) or \(x \in h', y \in h \).

The distance between \(x \) and \(y \) in the wall metric \(d_{\text{wall}} \) is the number of walls separating \(x \) and \(y \).

Example

Wall distance between \(x \) and \(y \) is 5.
Definition

A group G acts on a space with walls if the action preserves walls, i.e. for every $g \in G$ and wall $\{h, h'\}$ the pair $\{gh, gh'\}$ is a wall.
Definition

A group G acts on a space with walls if the action preserves walls, i.e. for every $g \in G$ and wall $\{h, h'\}$ the pair $\{gh, gh'\}$ is a wall.

Definition

Action of G on a space with walls is proper if it is metrically proper, i.e. for every $p \in Y$ and a sequence g_n of elements G s.t. $d_G(e, g_n) \to \infty$ holds $d_{\text{wall}}(p, g_n(p)) \to \infty$.
Definition

A group G acts on a space with walls if the action preserves walls, i.e. for every $g \in G$ and wall $\{h, h'\}$ the pair $\{gh, gh'\}$ is a wall.

Definition

Action of G on a space with walls is proper if it is metrically proper, i.e. for every $p \in Y$ and a sequence g_n of elements G s.t. $d_G(e, g_n) \to \infty$ holds $d_{\text{wall}}(p, g_n(p)) \to \infty$.

Theorem (Chatterji, Niblo ’04)

If a discrete group G acts properly on a space with walls then it acts properly on \text{CAT}(0) cube complex, so has Haagerup Property.
Theorem (Niblo, Roller '98)

If a group acts non-trivially on a $\text{CAT}(0)$ cube complex then it does not have Property (T).
Theorem (Niblo, Roller '98)

If a group acts non-trivially on a CAT(0) cube complex then it does not have Property (T).

If a group has a subgroup with at least two relative ends then it acts nontrivially on CAT(0) cube complex.
Theorem (Niblo, Roller ’98)

If a group acts non-trivially on a CAT(0) cube complex then it does not have Property (T).

If a group has a subgroup with at least two relative ends then it acts nontrivially on CAT(0) cube complex.

Finding subgroup with ≥ 2 relative ends - using walls.
Definition

The Cayley complex \tilde{X} of a group $G = \langle S | R \rangle$ is the universal cover of the presentation complex of G.
Definition

The Cayley complex \tilde{X} of a group $G = \langle S \mid R \rangle$ is the universal cover of the presentation complex of G.

In the square model Cayley complex consists of square 2-cells and has dimension 2.
Definition

The Cayley complex \tilde{X} of a group $G = \langle S | R \rangle$ is the universal cover of the presentation complex of G.

In the square model Cayley complex consists of square 2-cells and has dimension 2.
Definition (Ollivier, Wise, ’11)

We define graph Γ:

- $V(\Gamma)$ - set of midpoints of edges of $\tilde{\mathcal{X}}$.
- Vertices x, y are jointed if are antipodal points of a 2-cell of $\tilde{\mathcal{X}}$.

Definition (Ollivier, Wise, ’11)

We define graph Γ:

- $V(\Gamma)$ - set of midpoints of edges of \tilde{X}.
- Vertices x, y are jointed if are antipodal points of a 2-cell of \tilde{X}.

A connected component of Γ is called hypergraph.
Definition (Ollivier, Wise, ’11)

We define graph Γ:

- $V(\Gamma)$ - set of midpoints of edges of \tilde{X}.
- Vertices x, y are jointed if are antipodal points of a 2-cell of \tilde{X}.

A connected component of Γ is called hypergraph.
Properties of hypergraphs

- Action of group on \tilde{X} preserves the system of hypergraphs
Properties of hypergraphs

- Action of group on \(\tilde{X} \) preserves the system of hypergraphs

Theorem (O. ’13)

In the square model at density \(d < \frac{1}{3} \) w.o.p. hypergraphs are embedded trees in \(\tilde{X} \).
Properties of hypergraphs

- Action of group on \tilde{X} preserves the system of hypergraphs

Theorem (O. ’13)

In the square model at density $d < \frac{1}{3}$ w.o.p. hypergraphs are embedded trees in \tilde{X}.

Theorem (O. ’16)

*In the square model at density $d < \frac{3}{8}$ w.o.p. hypergraphs can be corrected to be embedded trees in \tilde{X}.***
Properties of hypergraphs

- Action of group on \tilde{X} preserves the system of hypergraphs

Theorem (O. ’13)

In the square model at density $d < \frac{1}{3}$ w.o.p. hypergraphs are embedded trees in \tilde{X}.

Theorem (O. ’16)

In the square model at density $d < \frac{3}{8}$ w.o.p. hypergraphs can be corrected to be embedded trees in \tilde{X}.

- Embedded trees \rightarrow split X into two connected components
Properties of hypergraphs

- Action of group on \tilde{X} preserves the system of hypergraphs

Theorem (O. ’13)

In the square model at density $d < \frac{1}{3}$ w.o.p. hypergraphs are embedded trees in \tilde{X}.

Theorem (O. ’16)

In the square model at density $d < \frac{3}{8}$ w.o.p. hypergraphs can be corrected to be embedded trees in \tilde{X}.

- Embedded trees \rightarrow split X into two connected components
- Two connected components \rightarrow structure of a space with walls on X
Collared diagrams

Definition

A **collared diagram** is a disc diagram such that the corresponding hypergraph segment passes through all exterior 2-cells but no internal 2-cells.
Collared diagrams

Definition

A collared diagram is a disc diagram such that the corresponding hypergraph segment passes through all exterior 2-cells but no internal 2-cells.
Theorem (Ollivier, Wise ’11, generalization O. ’13)

A hypergraph is not an embedded tree iff there exists a reduced diagram collared by this hypergraph.
Theorem (Ollivier, Wise ’11, generalization O. ’13)

A hypergraph is not an embedded tree iff there exists a reduced diagram collared by this hypergraph.

Remark

For density $d < \frac{1}{3}$ diagrams a), b) and c) violate Isoperimetric Inequality
Theorem (Ollivier, Wise ’11, generalization O. ’13)

A hypergraph is not an embedded tree iff there exists a reduced diagram collared by this hypergraph.

Remark

For density \(d < \frac{1}{3} \) diagrams a), b) and c) violate Isoperimetric Inequality \(\Rightarrow \) hypergraphs are embedded trees.
If the density \(d < \frac{3}{8} \) only a) can occur. We can correct it to omit self-intersection.
If the density $d < \frac{3}{8}$ only a) can occur. We can correct it to omit self-intersection.
To sum up

- Hypergraphs are embedded trees
To sum up

- Hypergraphs are embedded trees \rightarrow
- They split $\tilde{\mathcal{X}}$ into two connected components
To sum up

- Hypergraphs are embedded trees →
- They split \tilde{X} into two connected components →
- Group acts on a space with walls
Hypergraphs are embedded trees →
They split \tilde{X} into two connected components →
Group acts on a space with walls →
We check properties of this action (is it proper action?)
To sum up

- Hypergraphs are embedded trees →
- They split \tilde{X} into two connected components →
- Group acts on a space with walls →
- We check properties of this action (is it proper action?) →
- Subgroup having ≤ 2 relative ends is a stabilizer of some hypergraph
To sum up

- Hypergraphs are embedded trees →
- They split \tilde{X} into two connected components →
- Group acts on a space with walls →
- We check properties of this action (is it proper action?) →
- Subgroup having ≤ 2 relative ends is a stabilizer of some hypergraph →
- We conclude lack of (T) or Haagerup property.
Definition (The hexagonal model)

\[G(n, d) = \langle S | R \rangle \]

- \(S \) is a finite set of \(n \) generators
- \(R \) is a set of \((2n - 1)^{6d}\) relators chosen uniformly at random among about \((2n - 1)^6\) words of length 6.
- \(d \in (0, 1) \) is called the density

A property \(\mathcal{P} \) occurs with overwhelming probability (w.o.p.) if

\[\mathbb{P}(\mathcal{P} \text{ holds for } G(n, d)) \to 1, \]

as \(n \to \infty \).
The hexagonal model - results

- For $d < \frac{1}{6}$ free, and for $d > \frac{1}{2}$ trivial [O. ’16]
- For $d < \frac{1}{3}$ w.o.p. no (T) [O. ’16]
- For $d > \frac{1}{3}$ w.o.p. Property (T) [easy observation]

Sharp threshold for Property (T) is $\frac{1}{3}$.
Definition (The Gromov density model)

\[G(n, l, d) = \langle S|R \rangle \]

- \(S \) is a finite set of \(n \) generators
- \(R \) is a set of \((2n - 1)^d l\) relators chosen uniformly at random among about \((2n - 1)^l\) words of length \(l \).
- \(d \in (0, 1) \) is called the density
- \(n \) is fixed but \(l \) goes to infinity.

A property \(\mathcal{P} \) occurs with overwhelming probability (w.o.p.) if

\[\mathbb{P}(\mathcal{P} \text{ holds for } G(n, d)) \to 1, \]

as \(l \to \infty \).
Results in the Gromov model

- for $d < \frac{1}{6}$ w.o.p. it has Haagerup property [Ollivier, Wise '08]
- for $d < \frac{5}{24}$ w.o.p. it does not have (T) [Przytycki, Mackay '14]
- For $d > \frac{1}{3}$ w.o.p. it has (T) [Żuk '03, Kotowski and Kotowski '13]
Definition (The k-angular model model)

$$G(n, d) = \langle S \mid R \rangle$$

- S is a finite set of n generators
- R is a set of $(2n - 1)^{dk}$ relators chosen uniformly at random among about $(2n - 1)^k$ words of length k.
- $d \in (0, 1)$ is called the density

A property \mathcal{P} occurs with overwhelming probability (w.o.p.) if

$$\mathbb{P}(\mathcal{P} \text{ holds for } G(n, d)) \to 1,$$

as $n \to \infty$.

Tomasz Odrzygóźdź
Survey on the square and hexagonal model for random groups
Let $k = mk'$.
Let $k = mk'$.

- If at density d Property (T) holds w.o.p. in the k'-angular model it holds w.o.p. in the k-angular model.
Let $k = mk'$.

- If at density d Property (T) holds w.o.p. in the k'-angular model it holds w.o.p. in the k-angular model.
- If at density d Property (T) does not hold w.o.p. in the k-angular model it w.o.p. does not hold in the k'-angular model.
Let $k = mk'$.

- If at density d Property (T) holds w.o.p. in the k'-angular model it holds w.o.p. in the k-angular model.
- If at density d Property (T) does not hold w.o.p. in the k-angular model it w.o.p. does not hold in the k'-angular model.

Definition

We say that $d_T \in (0,1)$ is a **sharp threshold** in a random group model for a property \mathcal{P} if

- for densities $d < d_T$ w.o.p. property \mathcal{P} does not hold
- for densities $d > d_T$ w.o.p. property \mathcal{P} holds.
Sharp threshold for Property (T)

The graph shows the sharp threshold for Property (T) in the Gromov model. The x-axis represents the parameter k, and the y-axis represents the value of $d(T)$. The graph indicates critical values for different values of k, such as $\frac{1}{2}$, $\frac{1}{3}$, $\frac{5}{24}$, and ... for various values of k.
The triangular model \((k=3)\)

- For \(d > \frac{1}{3}\) w.o.p. Property (T) [Żuk ’03, Kotowski and Kotowski ’13]
- More detailed picture - Antoniuk, Łuczak, Świątkowski, Friedgut (series of papers).