The role of Seiberg-Witten theory in Riemannian geometry

Ioana Suvaina
Vanderbilt University
Centre de Recherches Mathématiques, Montreal
July 6th, 2016
Motivation

Question

What is the relation between the differential topology and the Riemannian properties on 4-manifolds?
Motivation

Question

What is the relation between the differential topology and the Riemannian properties on 4-manifolds?

More focused questions:

Question

- *Can we classify the simply connected smooth 4-manifolds?*

 We discuss the existence of a canonical and exotic structures.
Motivation

Question

What is the relation between the differential topology and the Riemannian properties on 4-manifolds?

More focused questions:

Question

- *Can we classify the simply connected smooth 4-manifolds? We discuss the existence of a canonical and exotic structures.*
- *Does a smooth manifold admit a preferred metric? We focus on Einstein metrics.*
Motivation

Question

What is the relation between the differential topology and the Riemannian properties on 4-manifolds?

More focused questions:

Question

- Can we classify the simply connected smooth 4-manifolds? We discuss the existence of a canonical and exotic structures.

- Does a smooth manifold admit a preferred metric? We focus on Einstein metrics.

- How can we understand the differential invariants? We consider the Seiberg-Witten invariant and Yamabe invariant.
Main ingredients

(M, g) compact, oriented, smooth 4–manifold, g a Riemannian metric.
Main ingredients

\((M, g)\) compact, oriented, smooth 4–manifold, \(g\) a Riemannian metric.
Homotopy invariants

- fundamental group: $\pi_1(M)$
- Second Stiefel-Whitney class: $w_2(M) \in H^2(M, \mathbb{Z}_2)$
- Euler Characteristic: $\chi(M) = 2 - 2b_1 + b^+ + b^-$
- Signature: $\tau(M) = b^+ - b^-$

Freedman, Donaldson: Compact, smooth, simply connected 4-manifolds are classified, up to homeomorphism, by their topological invariants: $\chi(M), \tau(M)$, and the parity of the intersection form (i.e. $w_2 = 0$ or $\neq 0$).

Consequence: A simply connected, non-spin ($w_2 \neq 0$) smooth manifold is homeomorphic to $\mathbb{CP}^2 \# b\mathbb{CP}^2$ ($a = b+$, $b = b^-$).

On a non-spin manifold, we call this the canonical smooth structure, otherwise we say that the smooth structure is exotic.

We will consider manifolds with finite fundamental group, hence $b_1 = 0$, for the rest of the talk.
Homotopy invariants

- fundamental group: $\pi_1(M)$
- Second Stiefel-Whitney class: $w_2(M) \in H^2(M, \mathbb{Z}_2)$
- Euler Characteristic: $\chi(M) = 2 - 2b_1 + b^+ + b^-$
- Signature: $\tau(M) = b^+ - b^-$

Freedman, Donaldson: Compact, smooth, simply connected 4-manifolds are classified, up to homeomorphism, by their topological invariants: $\chi(M), \tau(M)$, and the parity of the intersection form (i.e $w_2 = 0$ or $\neq 0$).
Homotopy invariants

- fundamental group: $\pi_1(M)$
- Second Stiefel-Whitney class: $w_2(M) \in H^2(M, \mathbb{Z}_2)$
- Euler Characteristic: $\chi(M) = 2 - 2b_1 + b^+ + b^-$
- Signature: $\tau(M) = b^+ - b^-$

Freedman, Donaldson: Compact, smooth, simply connected 4-manifolds are classified, up to homeomorphism, by their topological invariants: $\chi(M), \tau(M)$, and the parity of the intersection form (i.e $w_2 = 0$ or $\neq 0$).

Consequence: A simply connected, non-spin ($w_2 \neq 0$) smooth manifold is homeomorphic to $a\mathbb{CP}^2 \# b\overline{\mathbb{CP}^2}$ ($a = b^+$, $b = b^-$).
Homotopy invariants

- fundamental group: $\pi_1(M)$
- Second Stiefel-Whitney class: $w_2(M) \in H^2(M, \mathbb{Z}_2)$
- Euler Characteristic: $\chi(M) = 2 - 2b_1 + b^+ + b^-$
- Signature: $\tau(M) = b^+ - b^-$

Freedman, Donaldson: Compact, smooth, simply connected
4-manifolds are classified, up to homeomorphism, by their topological
invariants: $\chi(M), \tau(M)$, and the parity of the intersection form (i.e
$w_2 = 0$ or $\neq 0$).

Consequence: A simply connected, non-spin ($w_2 \neq 0$) smooth
manifold is homeomorphic to $a\mathbb{CP}^2 \# b\overline{\mathbb{CP}^2}$ ($a = b^+, b = b^-$).
On a non-spin manifold, we call this the **canonical** smooth structure,
otherwise we say that the smooth structure is **exotic**.
Homotopy invariants

- fundamental group: $\pi_1(M)$
- Second Stiefel-Whitney class: $w_2(M) \in H^2(M, \mathbb{Z}_2)$
- Euler Characteristic: $\chi(M) = 2 - 2b_1 + b^+ + b^-$
- Signature: $\tau(M) = b^+ - b^-$

Freedman, Donaldson: Compact, smooth, simply connected 4-manifolds are classified, up to homeomorphism, by their topological invariants: $\chi(M), \tau(M)$, and the parity of the intersection form (i.e. $w_2 = 0$ or $\neq 0$).

Consequence: A simply connected, non-spin ($w_2 \neq 0$) smooth manifold is homeomorphic to $a\mathbb{CP}^2 \# b\overline{\mathbb{CP}^2}$ ($a = b^+, b = b^-$). On a non-spin manifold, we call this the **canonical** smooth structure, otherwise we say that the smooth structure is **exotic**.

- We will consider manifolds with finite fundamental group, hence $b_1 = 0$, for the rest of the talk.
Complex numerical invariants:

(M, J) (almost) complex surface, then we can consider the Chern numbers:

- $c_2(M, J) = \chi(M)$;
- $c_1^2(M, J) = 2\chi(M) + 3\tau(M) = 4 + 5b^+ - b^-$;

Remark: In complex dimension 2, the complex numerical invariants are determined by the topological invariants.
Complex numerical invariants:

(M, J) (almost) complex surface, then we can consider the Chern numbers:

- $c_2(M, J) = \chi(M)$;
- $c_1^2(M, J) = 2\chi(M) + 3\tau(M) = 4 + 5b^+ - b^-$;
- $\chi_h(M, J) = \frac{\chi + \tau}{4}(M) = \frac{1}{2}(1 + b^+)$ the holomorphic Euler characteristic, or the Todd genus;
 - always an integer if M supports a (almost) complex structure.
Complex numerical invariants:

(M, J) (almost) complex surface, then we can consider the Chern numbers:

- $c_2(M, J) = \chi(M)$;
- $c_1^2(M, J) = 2\chi(M) + 3\tau(M) = 4 + 5b^+ - b^-$;
- $\chi_h(M, J) = \frac{\chi + \tau}{4}(M) = \frac{1}{2}(1 + b^+)$ the holomorphic Euler characteristic, or the Todd genus;
 - always an integer if M supports a (almost) complex structure.

Remark

In complex dimension 2, the complex numerical invariants are determined by the topological invariants.
Seiberg-Witten Theory

Given \((M, g)\) and let \(\nabla_\pm\) be the spin\(^c\) structure associated to the Hermitian line bundle \(L\), \((c_1(L) \equiv w_2(M) \mod 2)\).

The Seiberg-Witten Equations:

\[
\begin{align*}
D_A \Phi &= 0 \\
F_A^+ &= i \sigma(\Phi)
\end{align*}
\]

where \(\Phi \in \Gamma(\nabla_+)\), \(A\) a connection on \(L\), \(F_A^+\) is the self-dual part of the curvature of \(A\), and where \(\sigma : \nabla_+ \rightarrow \Lambda^+\) is a natural real-quadratic map satisfying

\[
|\sigma(\Phi)| = \frac{1}{2\sqrt{2}} |\Phi|^2.
\]
The Seiberg-Witten Invariant, $SW_g(L)$: the number of solutions, (A, Φ), of a generic perturbation of the Seiberg-Witten monopole equations, modulo gauge transformations and counted with orientations.
The Seiberg-Witten Invariant, $SW_g(L)$: the number of solutions, (A, Φ), of a generic perturbation of the Seiberg-Witten monopole equations, modulo gauge transformations and counted with orientations.

- If $b^+(M) \geq 2$, the Seiberg-Witten invariant is a diffeomorphism invariant, i.e. independent of the metric g. Notation $SW_M(L)$.

There are large classes of manifolds for which the invariant is non-trivial: symplectic manifolds, manifolds obtained via certain gluing surgeries. (Taubes, Szabó, Morgan, etc.)
Seiberg-Witten invariant and its properties

The Seiberg-Witten Invariant, $SW_g(L)$: the number of solutions, (A, Φ), of a generic perturbation of the Seiberg-Witten monopole equations, modulo gauge transformations and counted with orientations.

- If $b^+(M) \geq 2$, the Seiberg-Witten invariant is a diffeomorphism invariant, i.e. independent of the metric g. Notation $SW_M(L)$.
- There are large classes of manifolds for which the invariant is non-trivial: symplectic manifolds, manifolds obtained via certain gluing surgeries. (Taubes, Szabó, Morgan, etc.)
The Seiberg-Witten Invariant, \(SW_g(L) \): the number of solutions, \((A, \Phi) \), of a generic perturbation of the Seiberg-Witten monopole equations, modulo gauge transformations and counted with orientations.

- If \(b^+(M) \geq 2 \), the Seiberg-Witten invariant is a diffeomorphism invariant, i.e. independent of the metric \(g \). Notation \(SW_M(L) \).
- There are large classes of manifolds for which the invariant is non-trivial: symplectic manifolds, manifolds obtained via certain gluing surgeries. (Taubes, Szabó, Morgan, etc.)
- \(SW_M \neq 0 \) if \(M = N_1 \# N_2 \) such that \(SW_{N_1} \neq 0 \) and \(b^+(N_2) = 0 \). In particular, if \(SW_M(L) \neq 0 \) then \(SW_{M \# \mathbb{CP}^2}(L \pm E) \neq 0 \), but \(SW_{M \# \mathbb{CP}^2}(L') = 0 \) for all \(L' \).
Properties of the Seiberg-Witten invariant (cont)

- $SW_M \equiv 0$ if $M = N_1 \# N_2$ with $b^+(N_i) \geq 1$
Properties of the Seiberg-Witten invariant (cont)

- $SW_M \equiv 0$ if $M = N_1 \# N_2$ with $b^+(N_i) \geq 1$
- generalization of the Seiberg-Witten invariant: due to Bauer-Furuta, defines a nontrivial invariant for certain connected sums: $M = N_1 \# \ldots \# N_m, m = 2, 3, 4$,
 - necessary condition $SW_{N_j}(L_j) \equiv 1 \mod 2$.

Weitzenb"ock formula for the Dirac operator D_A in relation with the Seiberg-Witten equations:

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

In particular, there are no positive scalar curvature metrics on manifolds with non-trivial S-W invariant.

Seiberg-Witten (Bauer-Furuta) invariant of $M = a\mathbb{CP}^2 \# b\mathbb{CP}^2$ vanishes if $a > 1$.

Lawson and Gromov showed that M supports a metric with positive scalar curvature.
Properties of the Seiberg-Witten invariant (cont)

- $SW_M \equiv 0$ if $M = N_1 \# N_2$ with $b^+(N_i) \geq 1$

- generalization of the Seiberg-Witten invariant: due to Bauer-Furuta, defines a nontrivial invariant for certain connected sums: $M = N_1 \# \ldots \# N_m$, $m = 2, 3, 4$,
 - necessary condition $SW_{N_j}(L_j) \equiv 1 \mod 2$.

- Weitzenböck formula for the Dirac operator D_A in relation with the Seiberg-Witten equations:

$$0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4$$

In particular, there are no positive scalar curvature metrics on manifolds with non-trivial S-W invariant.
Properties of the Seiberg-Witten invariant (cont)

- \(SW_M \equiv 0 \) if \(M = N_1 \# N_2 \) with \(b^+(N_i) \geq 1 \)

- generalization of the Seiberg-Witten invariant: due to Bauer-Furuta, defines a nontrivial invariant for certain connected sums: \(M = N_1 \# \ldots \# N_m, m = 2, 3, 4 \),
 - necessary condition \(SW_{N_j}(L_j) \equiv 1 \mod 2 \).

- Weitzenböck formula for the Dirac operator \(D_A \) in relation with the Seiberg-Witten equations:
 \[
 0 = 2\Delta |\Phi|^2 + 4|\nabla_A \Phi|^2 + s|\Phi|^2 + |\Phi|^4
 \]

 In particular, there are no positive scalar curvature metrics on manifolds with non-trivial S-W invariant.

- Seiberg-Witten (Bauer-Furuta) invariant of \(M = a\mathbb{CP}^2 \# b\overline{\mathbb{CP}^2} \) vanishes if \(a > 1 \). Lawson and Gromov showed that \(M \) supports a metric with positive scalar curvature.
Exotic structures on simply connected non-spin manifolds

Definition

An exotic manifold M is called \mathbb{CP}^2-almost completely decomposable if $M \# \mathbb{CP}^2$ has the canonical smooth structure.

Theorem (Braungardt-Kotschick)

For every $\epsilon > 0$ there is a constant $N_{\epsilon} > 0$ such that every lattice point (m, n) in the first quadrant satisfying $n \leq (9 - \epsilon) m - N_{\epsilon}$ is realized by the Chern invariants $(m, n) = (\chi, c_2)$ of infinitely many, pairwise non-diffeomorphic, non-spin, simply connected, minimal symplectic manifolds $M(m, n, i)$, all of which are \mathbb{CP}^2-almost completely decomposable.
An exotic manifold \(M \) is called \(\mathbb{CP}^2 \)-almost completely decomposable if \(M \# \mathbb{CP}^2 \) has the canonical smooth structure.

For every \(\epsilon > 0 \) there is a constant \(N_\epsilon > 0 \) such that every lattice point \((m, n) \) in the first quadrant satisfying

\[
n \leq (9 - \epsilon)m - N_\epsilon
\]

is realized by the Chern invariants \((m, n) = (\chi_h, c_1^2)\) of infinitely many, pairwise non-diffeomorphic, non-spin, simply connected, minimal symplectic manifolds \(M_{(m,n,i)} \), all of which are \(\mathbb{CP}^2 \)-almost completely decomposable.
Geography of simply connected, minimal, symplectic 4-manifolds

Theorem (Braungardt-Kotschick)

For every $\epsilon > 0$ there is a constant $N_\epsilon > 0$ such that every lattice point (a, b) satisfying the conditions

\[
a \equiv 1 \pmod{2}
\]
\[
b \leq 4 + 5a
\]
\[
b \geq \left(\frac{1}{2} + \epsilon\right) a + N_\epsilon
\]

is realized by the Betti two invariants $(a, b) = (b_2^+, b_2^-)$ of infinitely many, pairwise non-diffeomorphic, non-spin, simply connected, minimal symplectic manifolds $M_{(a, b, i)}$, all of which are \mathbb{CP}^2-almost completely decomposable.
Geography of simply connected, non-spin exotic structures

Definition

An exotic manifold M is called $S^2 \times S^2$-almost completely decomposable if $M \# (S^2 \times S^2)$ has the canonical smooth structure.
Geography of simply connected, non-spin exotic structures

Definition

An exotic manifold M is called $S^2 \times S^2$-almost completely decomposable if $M \# (S^2 \times S^2)$ has the canonical smooth structure.

Theorem (S.)

For any $\epsilon > 0$ there is a constant $N'_\epsilon > 0$ such that given any integer pair (a, b) in the first quadrant satisfying either one of the two conditions

\[b \geq \left(\frac{1}{2} + \epsilon \right) a + N'_\epsilon \text{ and } a \not\equiv 0 \mod 8 \]
\[b \leq \frac{2}{1 + 2\epsilon} (a - N'_\epsilon) \text{ and } b \not\equiv 0 \mod 8, \]

the topological space $M = \# a\mathbb{CP}^2 \# b\overline{\mathbb{CP}^2}$ admits infinitely many, pairwise non-diffeomorphic, smooth structures, which are all $S^2 \times S^2$-almost completely decomposable.
For any integer $d \geq 2$ and for any $\epsilon > 0$ there exists a constant $N''_\epsilon > 0$ such that for any point (a, b) in the region R_ϵ satisfying the divisibility conditions D_1 and D_2 the manifold $M = \# a\mathbb{CP}^2 \# b\mathbb{CP}^2$ has the following properties:

- M admits infinitely many, smooth, orientation preserving, free actions of the group \mathbb{Z}_d, which we denote by $\Gamma_{d,i}, i \in \mathbb{N}$,
- the actions $\Gamma_{d,i}$ are conjugate by homemorphisms but are not conjugate by the diffeomorphisms of M.

Theorem (S.)
Theorem (S.)

For any integer \(d \geq 2 \) and for any \(\epsilon > 0 \) there exists a constant \(N''_\epsilon > 0 \) such that for any point \((a, b)\) in the region \(R_\epsilon \) satisfying the divisibility conditions \(D_1 \) and \(D_2 \) the manifold \(M = \#a\mathbb{CP}^2 \#b\mathbb{CP}^2 \) has the following properties:

- \(M \) admits infinitely many, smooth, orientation preserving, free actions of the group \(\mathbb{Z}_d \), which we denote by \(\Gamma_{d,i} \), \(i \in \mathbb{N} \),
- the actions \(\Gamma_{d,i} \) are conjugate by homemorphisms but are not conjugate by the diffeomorphisms of \(M \).

\[
R_\epsilon = \{ (a, b) | b \geq (\frac{1}{2} + \epsilon)a + N''_\epsilon \} \cup \{ (a, b) | b \leq \frac{2}{1 + 2\epsilon}(a - N''_\epsilon) \}
\]

- \(D_1 : \quad a + 1 \equiv 0 \mod d \) and \(b + 1 \equiv 0 \mod d \),
- \(D_2 : \quad \) if \((a, b) \in R_{\epsilon,1} \) then \(\frac{a+1}{d} \not\equiv 1 \mod 8 \)
- or if \((a, b) \in R_{\epsilon,2} \) then \(\frac{b+1}{d} \not\equiv 1 \mod 8 \).
Homotopy invariants from a Riemannian perspective

g a Riemannian metric: s, W^\pm, \circ are the scalar, Weyl, trace free Ricci curvatures and μ_g the volume form
Homotopy invariants from a Riemannian perspective

g a Riemannian metric: $s, W^\pm, \circ r$ are the scalar, Weyl, trace free Ricci curvatures and μ_g the volume form

$$\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W^+|^2 + |W^-|^2 - \frac{1}{2} \frac{\circ r^2}{2} \right) d\mu_g$$

$$\tau(M) = \frac{1}{12\pi^2} \int_M (|W^+|^2 - |W^-|^2) d\mu_g$$
Homotopy invariants from a Riemannian perspective

g a Riemannian metric: s, W^\pm, \mathring{r} are the scalar, Weyl, trace free Ricci curvatures and μ_g the volume form

$$\chi(M) = \frac{1}{8\pi^2} \int_M \left(\frac{s^2}{24} + |W^+|^2 + |W^-|^2 - \frac{1}{2} \frac{\mathring{r}^2}{2} \right) d\mu_g$$

$$\tau(M) = \frac{1}{12\pi^2} \int_M (|W^+|^2 - |W^-|^2) d\mu_g$$

$$(2\chi \pm 3\tau)(M) = \frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W^\pm|^2 - \frac{1}{2} \frac{\mathring{r}^2}{2} \right) d\mu_g$$
A topological obstruction to existence of Einstein metrics

Einstein metric = constant Ricci curvature:

\[r_{jk} = \lambda \ g_{jk} \text{ or } \tilde{r} = 0. \]
A topological obstruction to existence of Einstein metrics

Einstein metric = constant Ricci curvature:

\[r_{jk} = \lambda \, g_{jk} \text{ or } \tilde{r} = 0. \]

Theorem (Hitchin-Thorpe Inequality)

If the smooth compact oriented 4-manifold \(M \) admits an Einstein metric \(g \), then

\[(2\chi \pm 3\tau)(M) \geq 0, \]

with equality if \((M, g) \) is finitely covered by a flat 4-torus \(T^4 \) or by the K3 surface with a hyper-Kähler metric or by the orientation-reversed K3 with a hyper-Kähler metric.
A differential obstruction to existence of Einstein metrics

Theorem (LeBrun)

Let X be a compact oriented 4-manifold with a non-trivial Seiberg-Witten invariant and with $(2\chi + 3\tau)(X) > 0$. Then

$$M = X \# k\mathbb{CP}^2$$

does not admit Einstein metrics if $k \geq \frac{1}{3}(2\chi + 3\tau)(X)$.

Key ingredient: curvature estimate:

$$\frac{1}{4}\pi^2 \int_M (s^2 + 2|\mathcal{W}|^2) \, d\mu \geq 2\beta(\mathcal{L})^2$$

where $\beta + 1$ is the self-dual part of β^1.
A differential obstruction to existence of Einstein metrics

Theorem (LeBrun)

Let X be a compact oriented 4-manifold with a non-trivial Seiberg-Witten invariant and with $(2\chi + 3\tau)(X) > 0$. Then

$$M = X \# k\overline{\mathbb{C}P^2}$$

does not admit Einstein metrics if $k \geq \frac{1}{3}(2\chi + 3\tau)(X)$.

Key ingredient: curvature estimate:

$$\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu \geq \frac{2}{3} (c_1^+(L))^2$$

where c_1^+ is the self-dual part of $c_1(L)$.
A differential obstruction to existence of Einstein metrics

Theorem (LeBrun)

Let X be a compact oriented 4-manifold with a non-trivial Seiberg-Witten invariant and with $(2\chi + 3\tau)(X) > 0$. Then

$$M = X \# k\mathbb{CP}^2$$

does not admit Einstein metrics if $k \geq \frac{1}{3}(2\chi + 3\tau)(X)$.

Key ingredient: curvature estimate:

$$\frac{1}{4\pi^2} \int_M \left(\frac{s^2}{24} + 2|W_+|^2 \right) d\mu \geq \frac{2}{3} (c_1^+(L))^2$$

where c_1^+ is the self-dual part of $c_1(L)$.

LeBrun, LeBrun-Ishida, Kotshick & collaborators: Obstructions to the existence of Einstein metrics on manifolds with exotic structures.
Question

Does $M = a\mathbb{CP}^2 \# b\overline{\mathbb{CP}^2}$ support an Einstein metric?
Question

Does $M = a\mathbb{CP}^2 \# b\overline{\mathbb{CP}^2}$ support an Einstein metric?

On $M = \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$, $k = 0, 1, \ldots, 8$, there exist Einstein metrics.

- on \mathbb{CP}^2 there is the Fubini-Study metric
- on $\mathbb{CP}^2 \# 3, \ldots, 8\overline{\mathbb{CP}^2}$ there are Kähler-Einstein metrics (Tian-Yau, Siu)
Question

Does $M = a\mathbb{CP}^2 \# b\overline{\mathbb{CP}^2}$ support an Einstein metric?

On $M = \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$, $k = 0, 1, \ldots, 8$, there exist Einstein metrics.

- on \mathbb{CP}^2 there is the Fubini-Study metric
- on $\mathbb{CP}^2 \# 3, \ldots, 8\overline{\mathbb{CP}^2}$ there are Kähler-Einstein metrics (Tian-Yau, Siu)
- on $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$ there is the Page metric and on $\mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$ the Chen-LeBrun-Weber metric (both conformally equivalent to Kähler metrics)
Question

Does $M = a\mathbb{CP}^2 \# b\overline{\mathbb{CP}^2}$ support an Einstein metric?

On $M = \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$, $k = 0, 1, \ldots, 8$, there exist Einstein metrics.

- on \mathbb{CP}^2 there is the Fubini-Study metric
- on $\mathbb{CP}^2 \# 3, \ldots, 8\overline{\mathbb{CP}^2}$ there are Kähler-Einstein metrics (Tian-Yau, Siu)
- on $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$ there is the Page metric and on $\mathbb{CP}^2 \# 2\overline{\mathbb{CP}^2}$ the Chen-LeBrun-Weber metric (both conformally equivalent to Kähler metrics)

In general, the existence of an Einstein metric is unknown.
Dependence on the smooth structure

Question (Besse)

Is the sign of the Einstein determined by the homeomorphism class of the manifold?
Dependence on the smooth structure

Question (Besse)

Is the sign of the Einstein determined by the homeomorphism class of the manifold?

Answer:

Catanese-LeBrun: NO.

Example: $\mathbb{CP}^2 \# 8 \overline{\mathbb{CP}^2}$ and a deformation of the Barlow surface (complex surface of general type, with *ample* canonical line bundle).
Theorem (Rasdeaconu-S.)

On every $M = \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$, $k = 5, 6, 7, 8$ there exists a (exotic) smooth structure which admits an Einstein metric with $s < 0$ and infinitely many non-diffeomorphic smooth structures which do not admit Einstein metrics.
Theorem (Rasdeaconu-S.)

On every $M = \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$, $k = 5, 6, 7, 8$ there exists a (exotic) smooth structure which admits an Einstein metric with $s < 0$ and infinitely many non-diffeomorphic smooth structures which do not admit Einstein metrics.

- On $M = \mathbb{CP}^2 \# k \overline{\mathbb{CP}^2}$, $k = 5, \ldots, 8$, we show that the exotic complex structures constructed by Park and collaborators, have ample canonical line bundle. Hence they admit a Kähler-Einstein metrics of negative scalar curvature, from the solution of the Calabi conjecture.
Theorem (Rasdeaconu-S.)

On every $M = \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$, $k = 5, 6, 7, 8$ there exists a (exotic) smooth structure which admits an Einstein metric with $s < 0$ and infinitely many non-diffeomorphic smooth structures which do not admit Einstein metrics.

- On $M = \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$, $k = 5, \ldots, 8$, we show that the exotic complex structures constructed by Park and collaborators, have ample canonical line bundle. Hence they admit a Kähler-Einstein metrics of negative scalar curvature, from the solution of the Calabi conjecture.
- Starting with exotic smooth structures on $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ (due to Akhmedov, Baykur and Park) we construct infinitely many exotic smooth structures on M which don’t admit an Einstein metric.
Theorem (Rasdeaconu-S.)

On every $M = \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$, $k = 5, 6, 7, 8$ there exists a (exotic) smooth structure which admits an Einstein metric with $s < 0$ and infinitely many non-diffeomorphic smooth structures which do not admit Einstein metrics.

- On $M = \mathbb{CP}^2 \# k\overline{\mathbb{CP}^2}$, $k = 5, \ldots, 8$, we show that the exotic complex structures constructed by Park and collaborators, have ample canonical line bundle. Hence they admit a Kähler-Einstein metrics of negative scalar curvature, from the solution of the Calabi conjecture.

- Starting with exotic smooth structures on $\mathbb{CP}^2 \# 3\overline{\mathbb{CP}^2}$ (due to Akhmedov, Baykur and Park) we construct infinitely many exotic smooth structures on M which don’t admit an Einstein metric. All these exotic smooth structures have negative Yamabe invariant.
Theorem (Rasdeaconu-S.)

On every \(M = \mathbb{CP}^2 \# k \mathbb{CP}^2, k = 5, 6, 7, 8 \) there exists a (exotic) smooth structure which admits an Einstein metric with \(s < 0 \) and infinitely many non-diffeomorphic smooth structures which do not admit Einstein metrics.

- On \(M = \mathbb{CP}^2 \# k \mathbb{CP}^2, k = 5, \ldots, 8 \), we show that the exotic complex structures constructed by Park and collaborators, have ample canonical line bundle. Hence they admit a Kähler-Einstein metrics of negative scalar curvature, from the solution of the Calabi conjecture.

- Starting with exotic smooth structures on \(\mathbb{CP}^2 \# 3 \mathbb{CP}^2 \) (due to Akhmedov, Baykur and Park) we construct infinitely many exotic smooth structures on \(M \) which don’t admit an Einstein metric. All these exotic smooth structures have negative Yamabe invariant.

- Due to the nature of the obstruction theorem, this bound can not be lowered.
Non-existence of invariant Einstein metrics

Theorem (S.)

For any integer $d \geq 2$ and any $\epsilon > 0$ there exists a $N(\epsilon) > 0$ such that for any integer lattice point (n, m), satisfying:

- $n > 0$
- $n \equiv 0 \mod d$
- $m \equiv 0 \mod d$
- $n < (6 - \epsilon) m - N(\epsilon)$

there exist infinitely many free, non-equivalent smooth \mathbb{Z}_d-actions on canonical smooth manifold M with $c_2^1(M) = n$, $\chi_h(M) = m$ such that there is no Einstein metric on M invariant under any of the \mathbb{Z}_d-actions.

The existence of Einstein metrics is topologically unobstructed: Hitchin-Thorpe inequality, $n > 0$, is satisfied.

Admissibility condition for a free action: d/n, d/m.

Seiberg-Witten theory and geometry

Montreal, July 6th
Non-existence of invariant Einstein metrics

Theorem (S.)

For any integer $d \geq 2$ and any $\epsilon > 0$ there exists a $N(\epsilon) > 0$ such that for any integer lattice point (n, m), satisfying:

1. $n > 0$
2. $n \equiv 0 \mod d, m \equiv 0 \mod d$
3. $n < (6 - \epsilon)m - N(\epsilon)$

there exist infinitely many free, non-equivalent smooth \mathbb{Z}_d-actions on canonical smooth manifold M with $c_1^2(M) = n$, $\chi_h(M) = m$ such that there is no Einstein metric on M invariant under any of the \mathbb{Z}_d-actions.
Non-existence of invariant Einstein metrics

Theorem (S.)

For any integer \(d \geq 2 \) and any \(\epsilon > 0 \) there exists a \(N(\epsilon) > 0 \) such that for any integer lattice point \((n, m) \), satisfying:

- \(n > 0 \)
- \(n \equiv 0 \pmod{d}, m \equiv 0 \pmod{d} \)
- \(n < (6 - \epsilon)m - N(\epsilon) \)

there exist infinitely many free, non-equivalent smooth \(\mathbb{Z}_d \)-actions on canonical smooth manifold \(M \) with \(c_1^2(M) = n, \chi_h(M) = m \) such that there is no Einstein metric on \(M \) invariant under any of the \(\mathbb{Z}_d \)-actions.

- The existence of Einstein metrics is topologically unobstructed: Hitchin-Thorpe inequality, \(n > 0 \), is satisfied.
- Admissibility condition for a free action: \(d/n, d/m \)
the region \(n < (6 - \varepsilon)m - N(\varepsilon) \) is determined by the geography of simply connected, symplectic manifolds.

If we denote by \(\Gamma_i, i \in \mathbb{N} \), the actions of \(\mathbb{Z}_d \) on \(M \), then the quotient manifolds \(M/\Gamma_i \) are homeomorphic, but pairwise non-diffeomorphic.

\[
M/\Gamma_i = M_{(m,n,i)} \# k\overline{\mathbb{C}P^2} \# S_d
\]

where \(S_d \) is a rational homology sphere, \(\pi_1(S_d) = \mathbb{Z}_d \),
• the region $n < (6 - \epsilon)m - N(\epsilon)$ is determined by the geography of simply connected, symplectic manifolds

• If we denote by $\Gamma_i, i \in \mathbb{N}$, the actions of \mathbb{Z}_d on M, then the quotient manifolds M/Γ_i are homeomorphic, but pairwise non-diffeomorphic.

$$M/\Gamma_i = M_{(m,n,i)} \# k\overline{\mathbb{C}P^2} \# S_d$$

where S_d is a rational homology sphere, $\pi_1(S_d) = \mathbb{Z}_d$, $\widetilde{S_d} = \#(d - 1)(S^2 \times S^2)$.
- M has trivial Seiberg-Witten invariant, but on M/Γ_i there are non-trivial solutions of the S-W equations.
- M has trivial Seiberg-Witten invariant, but on M/Γ_i there are non-trivial solutions of the S-W equations.
- While the Yamabe invariant of M is positive, while the Yamabe invariant of the conformal class of a Γ_i-invariant metric is negative.
M has trivial Seiberg-Witten invariant, but on M/Γ_i there are non-trivial solutions of the S-W equations.

While the Yamabe invariant of M is positive, while the Yamabe invariant of the conformal class of a Γ_i-invariant metric is negative.

Infinitely many other actions can be exhibited on M.
• M has trivial Seiberg-Witten invariant, but on M/Γ_i there are non-trivial solutions of the S-W equations.

• While the Yamabe invariant of M is positive, while the Yamabe invariant of the conformal class of a Γ_i-invariant metric is negative.

• Infinitely many other actions can be exhibited on M.

• The results in the above theorem are stated for finite cyclic groups, but they also hold for groups acting freely on the 3-dimensional sphere or for direct sums of the above groups.
• M has trivial Seiberg-Witten invariant, but on M/Γ_i there are non-trivial solutions of the S-W equations.

• While the Yamabe invariant of M is positive, while the Yamabe invariant of the conformal class of a Γ_i-invariant metric is negative.

• Infinitely many other actions can be exhibited on M.

• The results in the above theorem are stated for finite cyclic groups, but they also hold for groups acting freely on the 3-dimensional sphere or for direct sums of the above groups.

Proposition (S.)

There exists an involution σ acting freely on the manifold $M = 15\mathbb{CP}^2 \# 77\overline{\mathbb{CP}^2}$, and $15\mathbb{CP}^2 \# 77\overline{\mathbb{CP}^2}$ does not admit a σ–invariant Einstein metric.

Here $n = c_1^2(M) = 2$, $m = \chi_h(M) = 8$.
Existence of invariant Einstein metrics

Theorem (S.)

Given an integer \(d \geq 2 \), there are infinitely many compact, smooth, simply connected, non-spin manifolds \(M_i \), \(i \in \mathbb{N} \), whose topological invariants satisfy

\[
\text{c}^2(M_i) = n_i > 0 \quad \text{and} \quad \text{c}^2(M_i) < 5 \chi(M_i),
\]

and have the following properties:

There is at least one free, smooth, \(\mathbb{Z}_d \) action on \(M_i \), \(M_i \) admits an Einstein metric which is invariant under the above \(\mathbb{Z}_d \) action, \(M_i \) is \(\mathbb{CP}^2 \)-almost completely decomposable.
Existence of invariant Einstein metrics

Theorem (S.)

Given an integer \(d \geq 2 \), there are infinitely many compact, smooth, simply connected, non-spin manifolds \(M_i, i \in \mathbb{N} \), whose topological invariants satisfy \(c_1^2(M_i) = n_i > 0 \) and \(c_1^2(M_i) < 5\chi_h(M_i) \), and have the following properties:

- There is at least one free, smooth, \(\mathbb{Z}_d \) action on \(M_i \),
- \(M_i \) admits an Einstein metric which is invariant under the above \(\mathbb{Z}/d\mathbb{Z} \) action,
Existence of invariant Einstein metrics

Theorem (S.)

Given an integer \(d \geq 2 \), there are infinitely many compact, smooth, simply connected, non-spin manifolds \(M_i, i \in \mathbb{N} \), whose topological invariants satisfy \(c_1^2(M_i) = n_i > 0 \) and \(c_1^2(M_i) < 5\chi_h(M_i) \), and have the following properties:

- There is at least one free, smooth, \(\mathbb{Z}_d \) action on \(M_i \),
- \(M_i \) admits an Einstein metric which is invariant under the above \(\mathbb{Z}/d\mathbb{Z} \) action,
- \(M_i \) is \(\mathbb{C}\mathbb{P}^2 \)-almost completely decomposable.
- \(M_i \) are complex surfaces with ample canonical line bundle, and admit Kähler-Einstein metrics.

\(M_i = \pi_2 \rightarrow N \rightarrow \mathbb{CP}^1 \times \mathbb{CP}^1 \)

where \(\pi_1, \pi_2 \) are branched covers of orders \(d \) and \(p \) (\(p = 2, 3 \)), branched on transverse curves of positive self-intersection.

The \(\mathbb{Z}_d \) action on \(M \) is induced by a diagonal action on \(\mathbb{CP}^1 \times \mathbb{CP}^1 \), \(\rho_d(\mathbb{Z}_d) \rightarrow \mathbb{Z}_d \), which can be extended to a free action on \(M \) if the branch locus is \(\mathbb{Z}_d \)-invariant and certain numerical conditions are satisfied.

Proposition

The iterated branched covers of \(\mathbb{CP}^1 \times \mathbb{CP}^1 \), branched along smooth curves of positive self-intersections which are pairwise transverse, are almost completely decomposable.
- M_i are complex surfaces with ample canonical line bundle, and admit Kähler-Einstein metrics.
- Construct $M_i = M$ as a bi-cyclic branched cover:

$$M \xrightarrow{\pi_2} N \xrightarrow{\pi_1} \mathbb{CP}^1 \times \mathbb{CP}^1$$

where $\pi_{1,2}$ are branched covers of orders d and p ($p = 2, 3$), branched on transverse curves of positive self-intersection.
- M_i are complex surfaces with ample canonical line bundle, and admit Kähler-Einstein metrics.

- Construct $M_i = M$ as a bi-cyclic branched cover:

\[
M \xrightarrow{\pi_2} N \xrightarrow{\pi_1} \mathbb{CP}^1 \times \mathbb{CP}^1
\]

where $\pi_{1,2}$ are branched covers of orders d and p ($p = 2, 3$), branched on transverse curves of positive self-intersection.

- The \mathbb{Z}_d action on M is induced by a diagonal action on $\mathbb{CP}^1 \times \mathbb{CP}^1$

\[
\rho^d = 1, \quad \rho([z_1 : z_2]) = [\rho z_1 : z_2],
\]

which can be extended to a free action on M if the branch locus is \mathbb{Z}_d-invariant and certain numerical conditions are satisfied.
- M_i are complex surfaces with ample canonical line bundle, and admit Kähler-Einstein metrics.

- Construct $M_i = M$ as a bi-cyclic branched cover:

 $$ M \xrightarrow{\pi_2} N \xrightarrow{\pi_1} \mathbb{CP}^1 \times \mathbb{CP}^1 $$

 where $\pi_{1,2}$ are branched covers of orders d and p ($p = 2, 3$), branched on transverse curves of positive self-intersection.

- The \mathbb{Z}_d action on M is induced by a diagonal action on $\mathbb{CP}^1 \times \mathbb{CP}^1$

 $$ \rho^d = 1, \rho([z_1 : z_2]) = [\rho z_1 : z_2] $$

 which can be extended to a free action on M if the branch locus is \mathbb{Z}_d-invariant and certain numerical conditions are satisfied.

Proposition

The iterated branched covers of $\mathbb{CP}^1 \times \mathbb{CP}^1$, branched along smooth curves of positive self-intersections which are pairwise transverse, are almost completely decomposable.
The Yamabe invariant:

Yamabe, Aubin, Trudinger, Schoen, etc.
The Yamabe invariant:

Yamabe, Aubin, Trudinger, Schoen, etc.

- Yamabe invariant of a conformal class

\[[g] = \{ \tilde{g} = e^f g \mid f : M \to \mathbb{R} \text{ smooth} \} : \]

\[Y[g] = \inf_{\tilde{g} \in [g]} \frac{\int_M s_{\tilde{g}} \, d\mu_{\tilde{g}}}{\Vol(\tilde{g})^{1/2}} \]

Yamabe invariant (O. Kobayashi, Schoen):

\[Y(M) = \sup [g] Y[g]. \]

Yamabe invariant is positive for

\[M = a\mathbb{CP}^2 \# b\mathbb{CP}^2 \text{ (Gromov-Lawson)} \]

and it is not computed, in general.

\[Y(S^4) = 8\sqrt{6}/\pi \text{ (Aubin)}, \]

\[Y(\mathbb{CP}^2) = 12\sqrt{2}/\pi \text{ (LeBrun)}. \]
The Yamabe invariant:

Yamabe, Aubin, Trudinger, Schoen, etc.

- Yamabe invariant of a conformal class
 \[[g] = \{ \tilde{g} = e^f g \mid f : M \to \mathbb{R} \text{ smooth} \} : \]
 \[
 Y[g] = \inf_{\tilde{g} \in [g]} \frac{\int_M s_{\tilde{g}} d\mu_{\tilde{g}}}{\text{Vol}(\tilde{g})^{\frac{1}{2}}}
 \]

- Yamabe invariant (O. Kobayashi, Schoen):
 \[
 Y(M) = \sup_{[g]} Y[g].
 \]
The Yamabe invariant:

Yamabe, Aubin, Trudinger, Schoen, etc.

- Yamabe invariant of a conformal class

\[[g] = \{ \tilde{g} = e^f g \mid f : M \rightarrow \mathbb{R} \text{ smooth} \} : \]

\[
Y[g] = \inf_{\tilde{g} \in [g]} \frac{\int_M s_{\tilde{g}} d\mu_{\tilde{g}}}{Vol(\tilde{g})^{\frac{1}{2}}}
\]

- Yamabe invariant (O. Kobayashi, Schoen):

\[
Y(M) = \sup_{[g]} Y[g].
\]

- Yamabe invariant is positive for \(M = a\mathbb{CP}^2 \# b\overline{\mathbb{CP}^2} \) (Gromov-Lawson) and it is not computed, in general.

- \(Y(S^4) = 8\sqrt{6}\pi \) (Aubin), \(Y(\mathbb{CP}^2) = 12\sqrt{2}\pi \) (LeBrun).
Yamabe invariant of Kähler surfaces

Theorem (LeBrun)

Let M be a Kähler surface of Kodaira dimension 0, 1 or 2, and X its minimal model, then:

$$Y(M) = -4\pi \sqrt{2c_1^2(X)}.$$
Yamabe invariant of Kähler surfaces

Theorem (LeBrun)

Let M be a Kähler surface of Kodaira dimension 0, 1 or 2, and X its minimal model, then:

$$Y(M) = -4\pi \sqrt{2c_1^2(X)}.$$

Key ideas:

- if $Y(M) \leq 0$ then $Y(M)^2 = \inf_g \int_M s_g^2 d\mu_g$.

Yamabe invariant of Kähler surfaces

Theorem (LeBrun)

Let M be a Kähler surface of Kodaira dimension 0, 1 or 2, and X its minimal model, then:

$$Y(M) = -4\pi \sqrt{2c_1^2(X)}.$$

Key ideas:

- if $Y(M) \leq 0$ then $Y(M)^2 = \inf_g \int_M s_g^2 d\mu_g$.
- if M is a symplectic manifold, if $b^+ = 1$ assume $c_1(X) \cdot [\omega] < 0$ (M of general type), then
 $$\int_M s_g^2 d\mu_g \geq 32\pi^2 (c_1^+)^2 \quad (*)$$
Theorem (LeBrun)

Let M be a Kähler surface of Kodaira dimension 0, 1 or 2, and X its minimal model, then:

$$Y(M) = -4\pi \sqrt{2c_1^2(X)}.$$

Key ideas:

- if $Y(M) \leq 0$ then $Y(M)^2 = \inf_g \int_M s_g^2 d\mu_g$.
- if M is a symplectic manifold, if $b^+ = 1$ assume $c_1(X) \cdot [\omega] < 0$ (M of general type), then

$$\int_M s_g^2 d\mu_g \geq 32\pi^2 (c_1^+)^2 $$ (*)

Moreover, equality is obtained iff g is a Kähler metric of negative constant scalar curvature.
$Y(M) \leq -4\pi \sqrt{2c_1^2(X)}.$
If M is a surface of general type, by starting with the Kähler-Einstein metric on the canonical model, LeBrun constructs a family of metrics which shows that the bound is optimal.

$$Y(M) \leq -4\pi \sqrt{2c_1^2(X)}.$$
\[Y(M) \leq -4\pi \sqrt{2c_1^2(X)}. \]

- If \(M \) is a surface of general type, by starting with the Kähler-Einstein metric on the canonical model, LeBrun constructs a family of metrics which shows that the bound is optimal.

There was a strong indication that on a symplectic manifold of general type, the Yamabe bound is optimized only when the manifold is of Kähler type.
\[Y(M) \leq -4\pi \sqrt{2c_1^2(X)}. \]

If \(M \) is a surface of general type, by starting with the Kähler-Einstein metric on the canonical model, LeBrun constructs a family of metrics which shows that the bound is optimal.

There was a strong indication that on a symplectic manifold of general type, the Yamabe bound is optimized only when the manifold is of Kähler type.

Theorem (S.)

For every point on the half-Noether line there is a simply connected, minimal, symplectic 4–manifold of general type \(M \), for which the Yamabe invariant is

\[Y(M) = -4\pi \sqrt{2c_1^2(M)}. \] \hspace{1cm} (1)

Moreover, if \(M' = M \# \ell \mathbb{C}P^2 \) then \(Y(M') = Y(M) \).
Key ideas:

- M is obtained from an elliptic surface $E(n)$ which contains a chain of $n - 3$ rational curves of self-intersection $(-n, -2, \ldots, -2)$ by doing a rational blow down surgery.
Key ideas:

- M is obtained from an elliptic surface $E(n)$ which contains a chain of $n - 3$ rational curves of self-intersection $(-n, -2, \cdots, -2)$ by doing a rational blow down surgery.

- second description: M is obtained by doing a local deformation of a Kähler-Einstein orbifold surface \hat{M} which has singularities of A.D.E. type or of type $\mathbb{C}^2/\left(\frac{1}{(n-2)^2}\right)(1, n-3)$.
Key ideas:

- M is obtained from an elliptic surface $E(n)$ which contains a chain of $n - 3$ rational curves of self-intersection $(-n, -2, \cdots, -2)$ by doing a rational blow down surgery.

- second description: M is obtained by doing a local deformation of a Kähler-Einstein orbifold surface \hat{M} which has singularities of A.D.E. type or of type $\mathbb{C}^2/\left(\frac{1}{(n-2)^2}\right)(1, n - 3)$.

- $Y(M) = Y_{orb}(\hat{M})$.

Open question

Is there a minimal symplectic manifold of general type for which the Yamabe invariant does not equal $\frac{-4\pi}{\sqrt{2}c_2^1}$?
Key ideas:

- M is obtained from an elliptic surface $E(n)$ which contains a chain of $n - 3$ rational curves of self-intersection $(-n, -2, \cdots, -2)$ by doing a rational blow down surgery.

- Second description: M is obtained by doing a local deformation of a Kähler-Einstein orbifold surface \hat{M} which has singularities of A.D.E. type or of type $\mathbb{C}^2 / \frac{1}{(n-2)^2} (1, n - 3)$.

- $Y(M) = Y_{orb}(\hat{M})$.

Open question

Is there a minimal symplectic manifold of general type for which the Yamabe invariant does not equal $-4\pi \sqrt{2c_1^2}$?
Thank you!
Happy Birthday Claude!