Suppose \((\mathcal{D}, \Gamma, \alpha)\) is a C*-dynamical system where \(\Gamma\) is a discrete group and \(\mathcal{D}\) is a unital abelian C*-algebra. Let \(\mathcal{A}_0\) be the *-algebra of all finitely supported functions from \(\Gamma\) into \(\mathcal{D}\) equipped with the usual adjoint and twisted convolution multiplication. In general there are many C*-norms on \(\mathcal{A}_0\), and there is always a maximal one. Must there be a minimal C*-norm on \(\mathcal{A}_0\)? In general, the answer is no. (The case \(\mathcal{D} = \mathbb{C}\) and \(\Gamma = \mathbb{Z}\) gives an example with no minimal norm.) However, in some cases, there is a minimal C*-norm on \(\mathcal{A}_0\), which is a consequence of Theorem A below, which I will discuss in the talk.

A regular MASA inclusion is a pair \((\mathcal{C}, \mathcal{D})\) of unital C*-algebras (with the same unit) where \(\mathcal{D} \subseteq \mathcal{C}\) is a MASA and the set

\[ \mathcal{N}(\mathcal{C}, \mathcal{D}) := \{ v \in \mathcal{C} : v \mathcal{D} v^* \cup v^* \mathcal{D} v \subseteq \mathcal{D} \} \]

has dense span in \(\mathcal{C}\).

**Theorem A** Let \((\mathcal{C}, \mathcal{D})\) be a regular MASA inclusion and let \(\mathcal{L}\) be the linear span of \(\mathcal{N}(\mathcal{C}, \mathcal{D})\) (\(\mathcal{L}\) is a *-algebra). Then there are unique minimal and maximal C*-norms on \(\mathcal{L}\).

**Application B** Let \((\mathcal{D}, \Gamma, \alpha)\) be as above and suppose that the action of \(\Gamma\) on \(\widehat{\mathcal{D}}\) arising from the action \(\alpha\) is topologically free. Then the reduced crossed product norm is the unique minimal C*-norm on \(\mathcal{A}_0\).