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relativistic heavy 1on collisions

Relevant dynamics:
Very early: partonic, marginally perturbative (?)

Plasma phase: strongly coupled

i i ) A time
Evidence: screening lengths, V1SCOSIty, ... 1131 T
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Many questions:

freeze—out

How fast do produced partons i1sotropize?

hadronization

Initial conditions for hydrodynamics?

"thermalization"

Signatures of strongly coupled dynamics?

- & beam direction

No tully controlled theoretical methods.
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hydrodynamic response
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holography

e strongly coupled, large V QFT = classical (super)gravity

1n higher dimension

e valid description on all scales

® gravitational fluctuations: 1/N* suppressed

e OFT state @ asymptotically AdS geometry

e O(/V?) entropy « gravitational (black brane) horizon

® thermalization @ gravitational infall, horizon formation &

equilibration

® non-equilibrium QFT dynamics « classical gravitational

iitial value problem
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holographic collisions

e scattering ™ Poincaré patch AdS asymptotics
® warm-up steps:

® homogeneous isotropization: 1+1D PDEs
no spatial dynamics

® boost invariant: 1+1D (no radial flow) or 2+1D PDEs

unrealistic longitudinal dynamics

® planar shocks: 2+1D PDEs

no transverse dynamics

® recent work:

e finite “nucle1”: 4+1D PDEs (off-center)

sensible transverse and longitudinal dynamics
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initial projectiles

® cxact analytic solution for stable null projectile

Fefferman-Graham (FG) coordinates:
9 Gubser, ...; Romatschke,...

L
ds® = e [—dt2 +dzt +dz* +ds® + ha(xy, 2+, 5) dZ?F]
S
o = i i e = =)

® metric deformation function

(02 — 2054+ Vi) he =0 arbitrary

.
L
ha(zy, 25, ) = / s € Halles, 22) 8(6%/A2) ol )

® stress-energy: (T°) = (T%) = £(T%) = k Hi(z, 25)

® choose Gaussian profile for simplicity:

B g \/% exp (—522 /w’) exp [—3(x. F b/2)*/R?]

with: A=1 w= R=4 b=32Rg

DN | —
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initial data

e Superpose left & right-moving shocks

e Transform to infalling Eddington-Finkelstein (EF)

= must compute infalling radial null geodesic congruence

EF coordinates Xt = {ﬁujr}
boundary / \ affine

coordinates parameter
FG coordinates Y = {y*, s}
geodesic congruence Y (X)

oY+ 9y’s ~

transformed metric Gy (X) = Gap(Y(X

. (X) = =7 o Gan(Y (X))
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numerical techniques

® characteristic formulation of Einstein equations

e spectral methods w. domain decomposition

e residual diffeomorphism freedom ® fix apparent horizon
e periodic spatial compactification

e Matlab implementation (shared memory, multicore)
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characteristic formulation (1)

e null shicing of spacetime

e coordinates tied to infalling null geodesic congruence

7,2

® metric ansatz: ds® = 73 ghtamid ey da Es Ad di
x=const. 1s null geodesic, r = athne parameter

e residual diffeomorphism freedom: r — r + A(x)

use to fix radial position of apparent horizon

L. Yaffe, CRM, October 2015 9



characteristic formulation (2)

spatial scale factor

2 2 2 )
o AR VARSIl S R i s o th
rename L2 goo = 2147 L2 9goi = an L2 gzy T sz = D) qu

unit determinant

® schematic form of resulting equations:

(62 +Qslg) = = 0, . time-like boundary
(02 + Prl§,%] 0+ Qr[3,S) F = Spl, %], s
0, +Qslg: BT = Sglg = F), 2
(- +Qsl.7)§ = Sl F3), B
OIS g RS ]

. black brane
with h = 8;h + 3 A0,

m 5] PDEs — nested linear radial ODEs 11!

laptop/desktop computable, no supercomputers
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characteristic formulation (3)

e wonderful method, but not generally used in numerical relativity:
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characteristic formulation (3)

e wonderful method, but not generally used in numerical relativity:

caustics (outside horizon)
= coordinate singularities
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characteristic formulation (4)

e works for wide range of holographic QFT problems, but can

fail if shortest relevant length scale < dissipative time scale

/ time-like boundary

Y O

Linfall

radial direction

. ]
\ black brane
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results

Oftf-center

collisions



energy density
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energy density

1.6 -
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energy density
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energy density
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energy flux
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Longitudinal Flux

energy flux

Transverse Flux
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snapshots

t=0

energy
density

energy
flux
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transverse & longitudinal pressure

— T
_TZZ
— -hydro|"

thydro |8
hydro onset = 30% faster than for planar shocks

L. Yafte, CRM, October 2015 18



hydrodynamic residual
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tlow velocity

t =4  non-hydro regions excised

z—x plane
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substantial radial flow: 40

L. Yafte, CRM, October 2015 20



radial flow

| —¢ = 0, exact | —¢ = 0, exactl
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Vredevoogd & Pratt: “universal flow” model (assumes = —% O,€
boost invariance & transverse rotational symmetry): T% = —1 Qe
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elliptic flow?

® no evident “almond” shape to fluid droplet

e transverse flow nearly symmetric

VAL
1‘ yy’ < 1%
§(Tm i Tyy)

e negligible transverse pressure anisotropy:

® but:
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elliptic flow?

® no evident “almond” shape to fluid droplet

e transverse flow nearly symmetric

Ty — 1
‘ yy’ < 1%

e negligible transverse pressure anisotropy: -
2 (Tew + Tyy)

® but:

e Gaussian choice of initial energy density profile

e overlap function: €4(Z)e_(Z) o e~ 2(x1=b/2)" =3 (x1+b/2)’

_ oG H(b/2)Y)
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lessons

e successful proof-of-principle: holographic calculation of colliding
“nucle1” without (over)simplifying symmetry assumptions

e numerical solution of 5D gravitational initial value problems
feasible with desktop computing resources (and good methods)

e substantial radial flow develops very early

e faster hydro onset in non-planar collisions

e much more to do:
® variation w. impact parameter, longitudinal thickness, transverse size
e more realistic non-Gaussian energy density profile
e fluctuations in mitial profile

e confining theories
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