Numerical Holography and Heavy Ion Collisions

Laurence Yaffe
University of Washington

based on work with Paul Chesler

relativistic heavy ion collisions

Relevant dynamics:

Very early: partonic, marginally perturbative (?)

Plasma phase: strongly coupled

Evidence: screening lengths, viscosity, ...

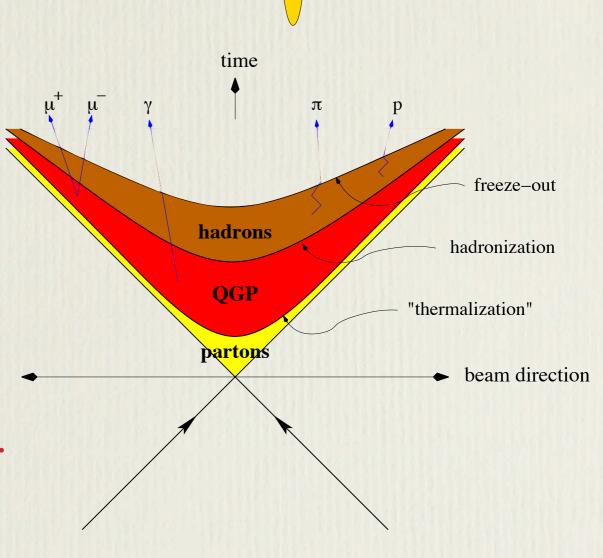
Many questions:

How fast do produced partons isotropize?

Initial conditions for hydrodynamics?

Signatures of strongly coupled dynamics?

No fully controlled theoretical methods.



idealize

$$\rightarrow$$
 $\mathcal{N}=4$ SYM

colors $N_c = 3$

$$N_{\rm c} = \infty$$

't Hooft coupling $\lambda \approx 10$

highly boosted nuclei

lightlike projectiles

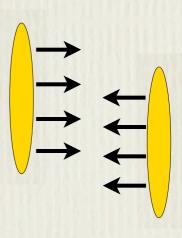
- ✓ non-Abelian plasma
- √ hydrodynamic response
- no hadronization
- **√X** conformal
 - √ dual holographic description

holography

- strongly coupled, large NQFT = classical (super)gravity in higher dimension
 - valid description on all scales
 - gravitational fluctuations: $1/N^2$ suppressed
 - QFT state \rightarrow asymptotically AdS geometry
 - $O(N^2)$ entropy \rightarrow gravitational (black brane) horizon
 - thermalization = gravitational infall, horizon formation & equilibration
 - non-equilibrium QFT dynamics classical gravitational initial value problem

holographic collisions

- scattering Poincaré patch AdS asymptotics
- warm-up steps:
 - homogeneous isotropization: 1+1D PDEs no spatial dynamics
 - boost invariant: 1+1D (no radial flow) or 2+1D PDEs unrealistic longitudinal dynamics
 - planar shocks: 2+1D PDEs no transverse dynamics
- recent work:
 - finite "nuclei": 4+1D PDEs (off-center) sensible transverse and longitudinal dynamics



initial projectiles

exact analytic solution for stable null projectile

Fefferman-Graham (FG) coordinates:

Gubser, ...; Romatschke,...

$$ds^2 = rac{L^2}{s^2} \left[-dt^2 + d\boldsymbol{x}_{\perp}^2 + dz^2 + ds^2 + h_{\pm}(\boldsymbol{x}_{\perp}, z_{\mp}, s) dz_{\mp}^2 \right]$$
 $\boldsymbol{x}_{\perp} \equiv \{x, y\}$ $z_{\mp} \equiv z \mp t$

metric deformation function

$$\left(\partial_s^2 - \frac{3}{s}\,\partial_s + \nabla_\perp^2\right)h_\pm = 0$$
 arbitrary
$$h_\pm(\boldsymbol{x}_\perp, z_\mp, s) = \int \frac{d^2\mathbf{k}_\perp}{(2\pi)^2}\,e^{i\mathbf{k}_\perp\cdot\mathbf{y}_\perp}\,\widetilde{H}_\pm(\mathbf{k}_\perp, z_\mp)\,8(s^2/k_\perp^2)\,I_2(k_\perp s)$$

- stress-energy: $\langle T^{00} \rangle = \langle T^{zz} \rangle = \pm \langle T^{0z} \rangle = \kappa H_+(\boldsymbol{x}_\perp, z_\pm)$
- choose Gaussian profile for simplicity:

$$H_{\pm}(\boldsymbol{x}_{\perp}, z_{\mp}) = \frac{\mathcal{A}}{\sqrt{2\pi w^2}} \exp\left(-\frac{1}{2}z_{\mp}^2/w^2\right) \exp\left[-\frac{1}{2}(\boldsymbol{x}_{\perp} \mp \boldsymbol{b}/2)^2/R^2\right]$$

with:
$$A = 1$$
 $w = \frac{1}{2}$ $R = 4$ $b = \frac{3}{4}R\hat{x}$.

initial data

- Superpose left & right-moving shocks
- Transform to infalling Eddington-Finkelstein (EF)
 - must compute infalling radial null geodesic congruence

EF coordinates
$$X \equiv \{x^{\mu}, r\}$$
 boundary coordinates $Y \equiv \{y^{\mu}, s\}$ geodesic congruence $Y(X)$ transformed metric $G_{MN}(X) = \frac{\partial Y^A}{\partial X^M} \frac{\partial Y^B}{\partial X^N} \, \widetilde{G}_{AB}(Y(X))$

numerical techniques

- characteristic formulation of Einstein equations
- spectral methods w. domain decomposition
- residual diffeomorphism freedom > fix apparent horizon
- periodic spatial compactification
- Matlab implementation (shared memory, multicore)

- null slicing of spacetime
- coordinates tied to infalling null geodesic congruence
- metric ansatz: $ds^2 = \frac{r^2}{L^2} g_{\mu\nu}(x,r) dx^{\mu} dx^{\nu} + 2 dr dt$

 x^{μ} =const. is null geodesic, r = affine parameter

• residual diffeomorphism freedom: $r \rightarrow r + \lambda(x)$

use to fix radial position of apparent horizon

• rename:
$$\frac{r^2}{L^2} g_{00} = -2A$$
, $\frac{r^2}{L^2} g_{0i} = -F_i$, $\frac{r^2}{L^2} g_{ij} = G_{ij} \equiv \sum_{j=1}^{2} \hat{g}_{ij}$ unit determinant

• schematic form of resulting equations:

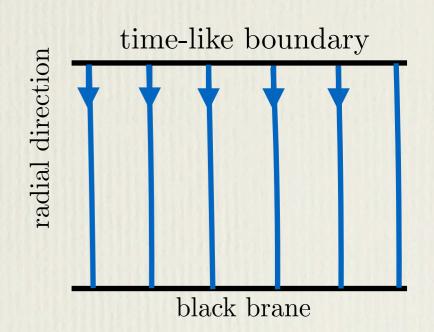
$$(\partial_r^2 + Q_{\Sigma}[\hat{g}]) \Sigma = 0,$$

$$(\partial_r^2 + P_F[\hat{g}, \Sigma] \partial_r + Q_F[\hat{g}, \Sigma]) F = S_F[\hat{g}, \Sigma],$$

$$(\partial_r + Q_{\dot{\Sigma}}[\hat{g}, \Sigma]) \dot{\Sigma} = S_{\dot{\Sigma}}[\hat{g}, \Sigma, F],$$

$$(\partial_r + Q_{\dot{g}}[\hat{g}, \Sigma]) \dot{g} = S_{\dot{g}}[\hat{g}, \Sigma, F, \dot{\Sigma}],$$

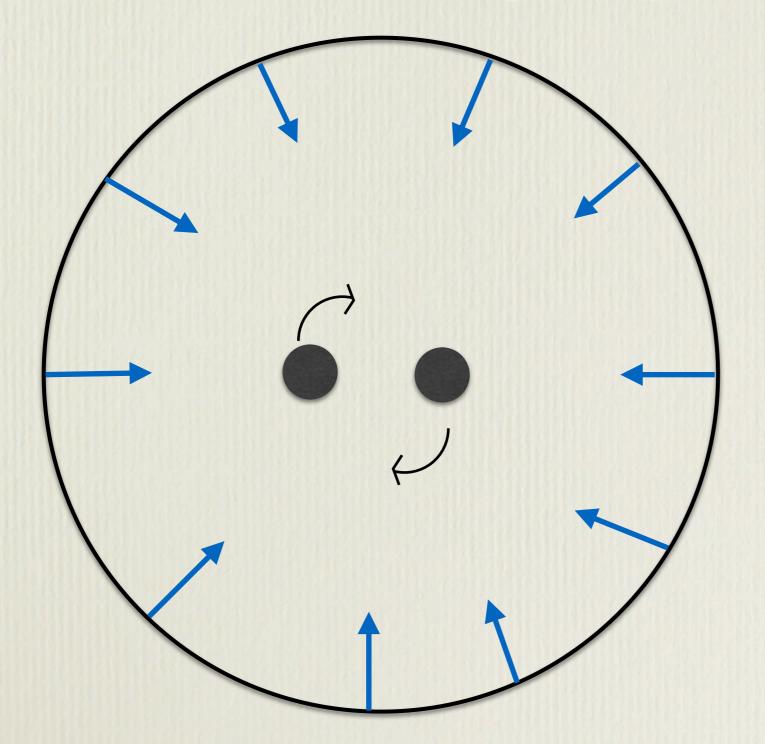
$$\partial_r^2 A = S_A[\hat{g}, \Sigma, F, \dot{\Sigma}, \dot{g}]$$

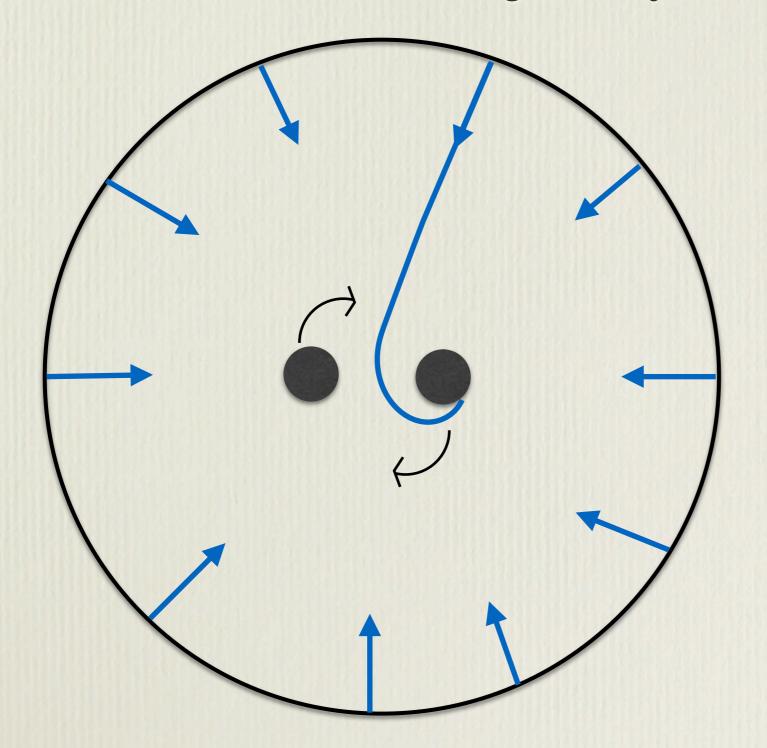


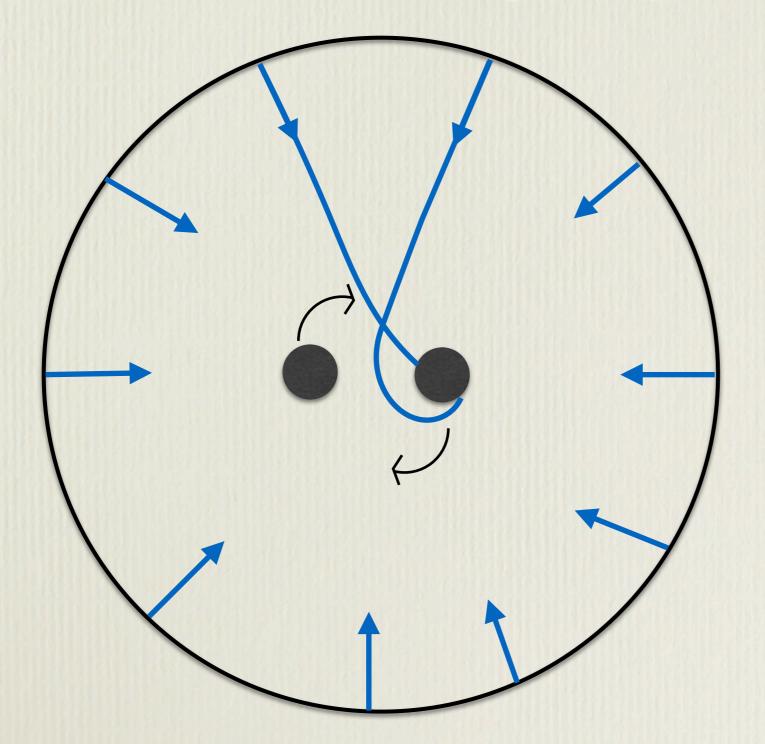
with $h \equiv \partial_t h + \frac{1}{2} A \partial_r h$

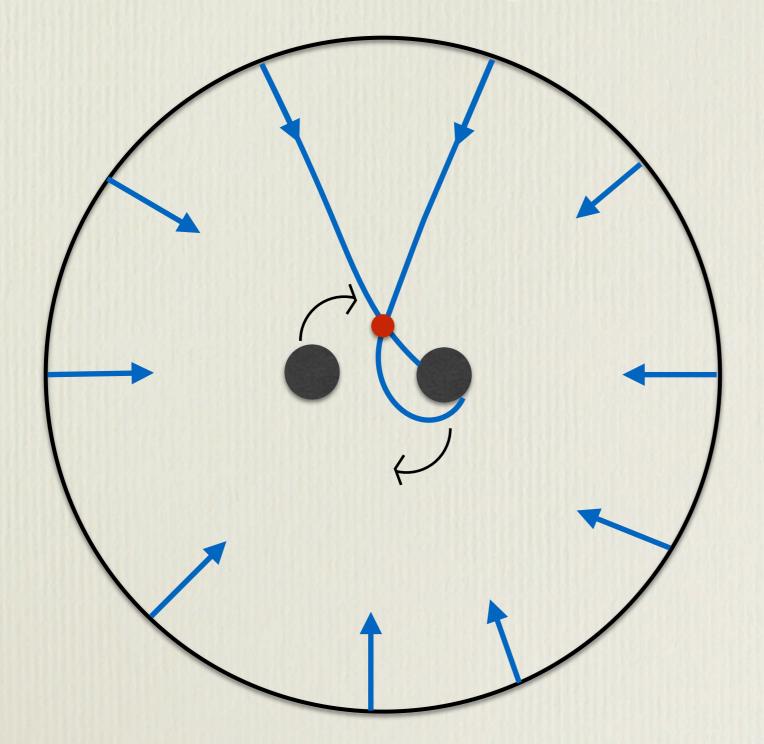
5D PDEs → nested linear radial ODEs!!!

laptop/desktop computable, no supercomputers

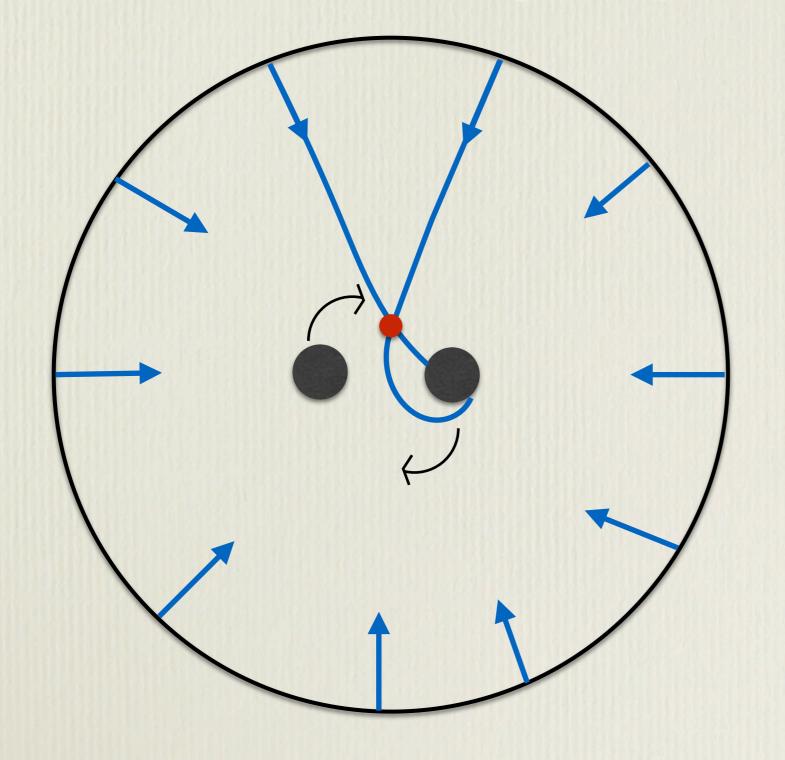




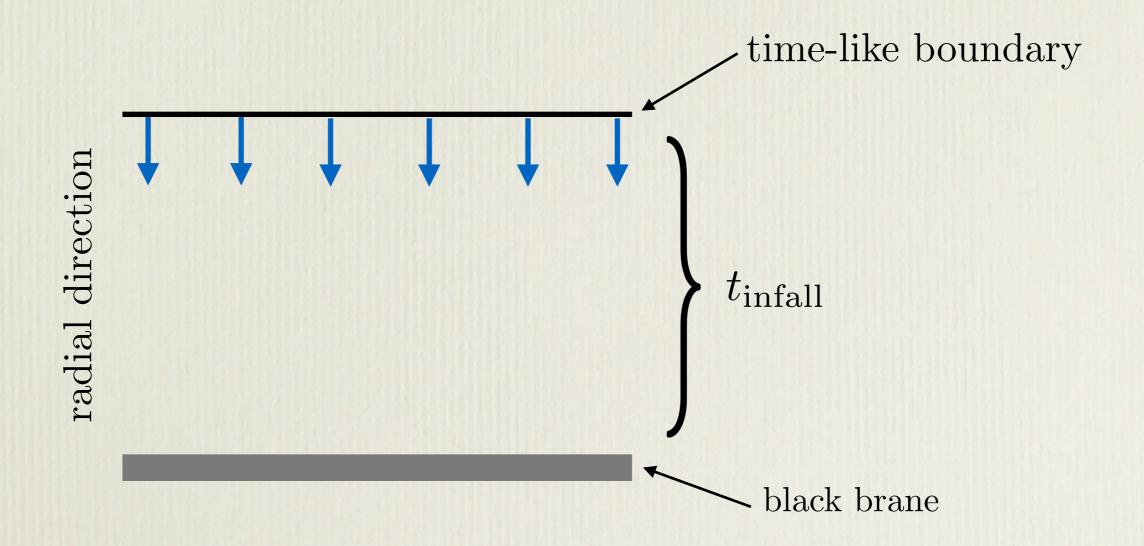


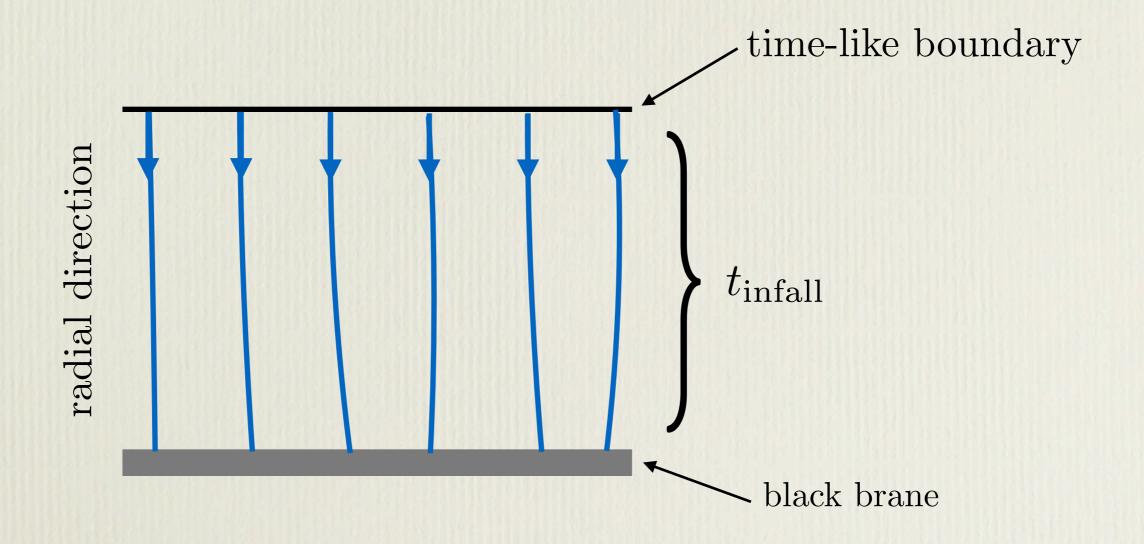


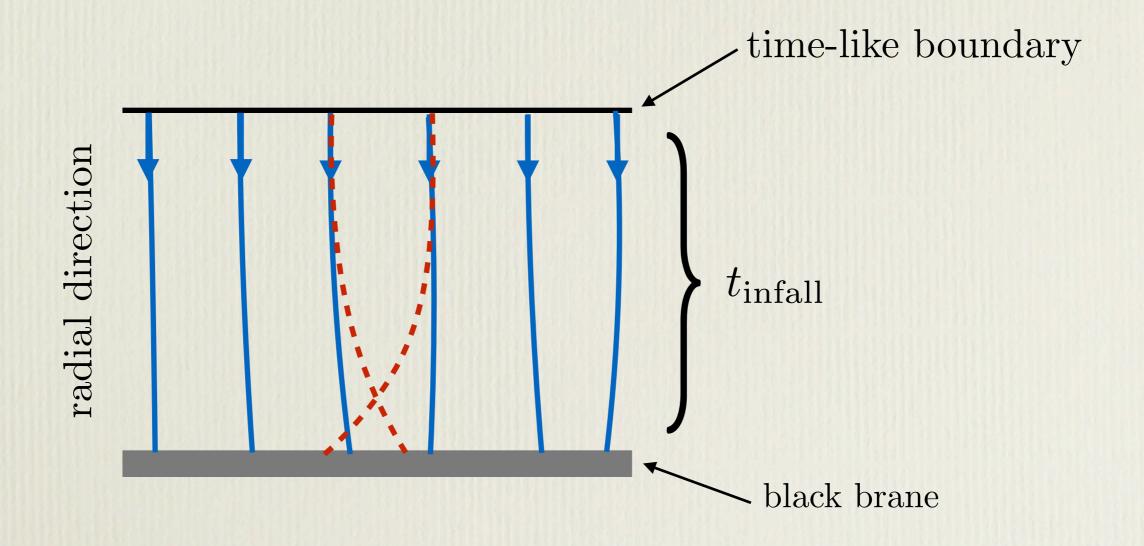
• wonderful method, but not generally used in numerical relativity:

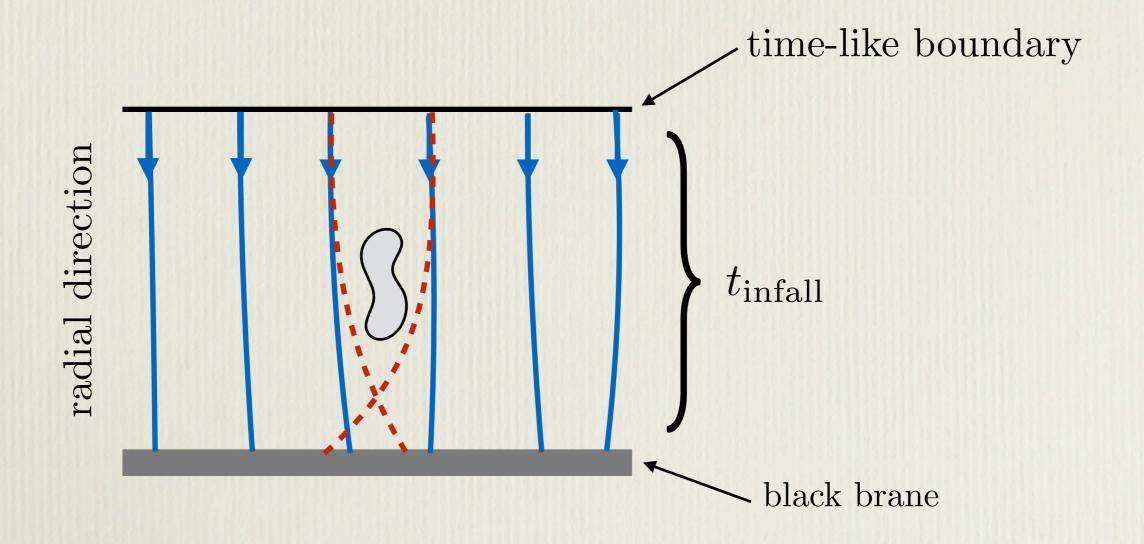


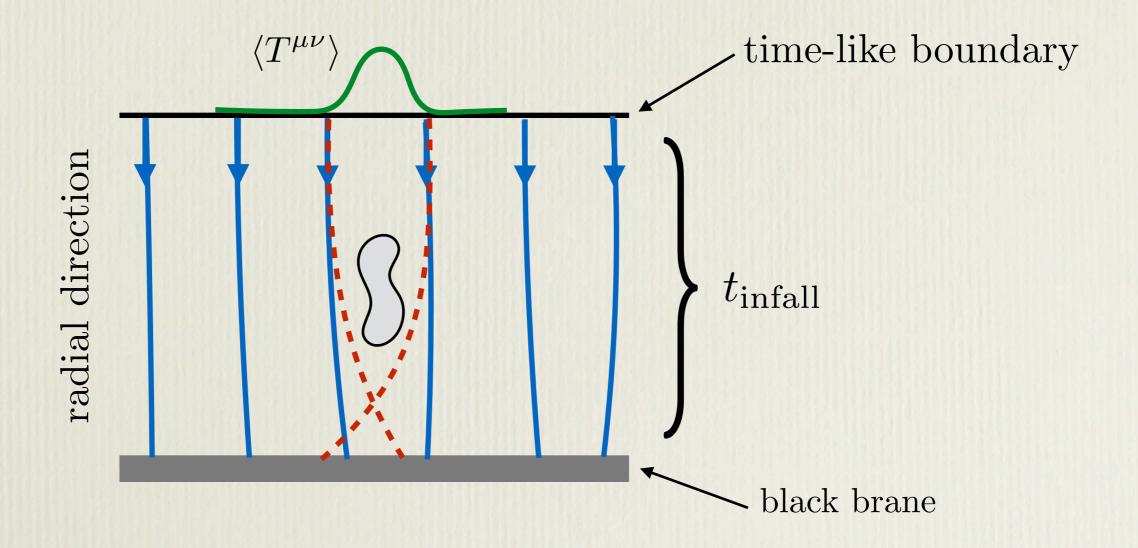
caustics (outside horizon) = coordinate singularities

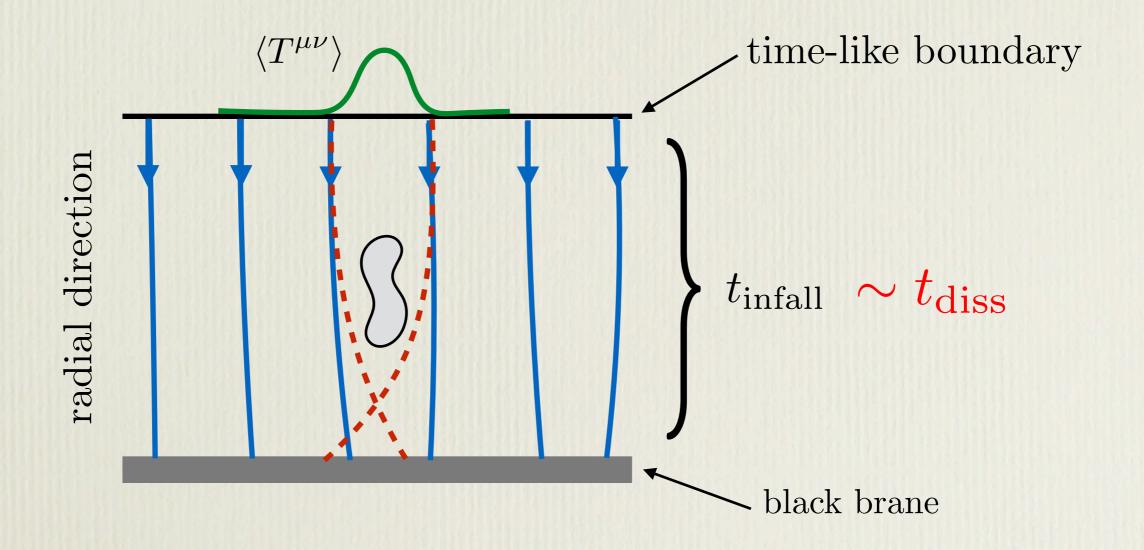


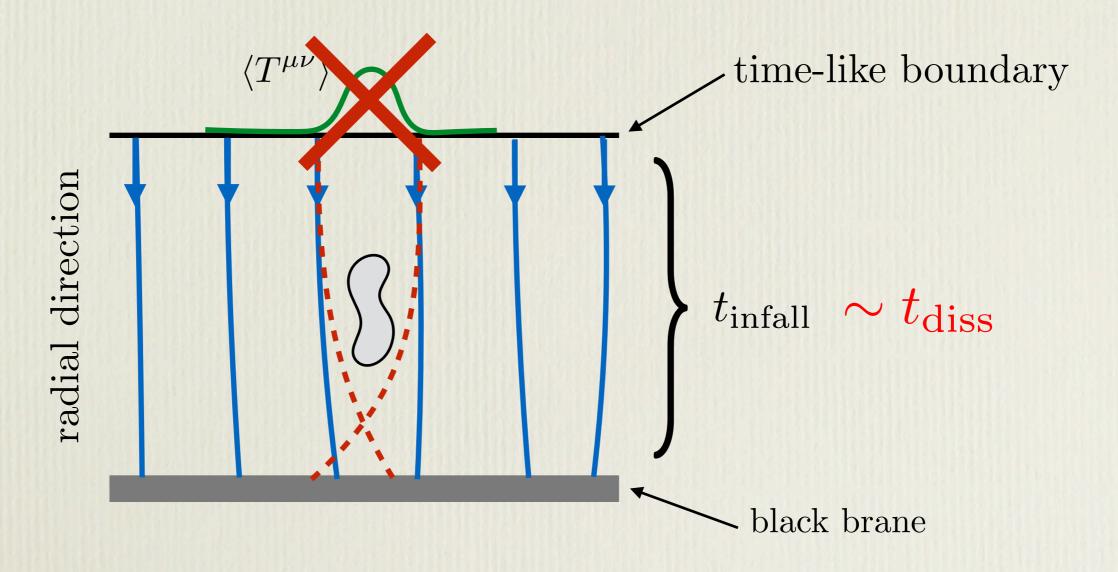


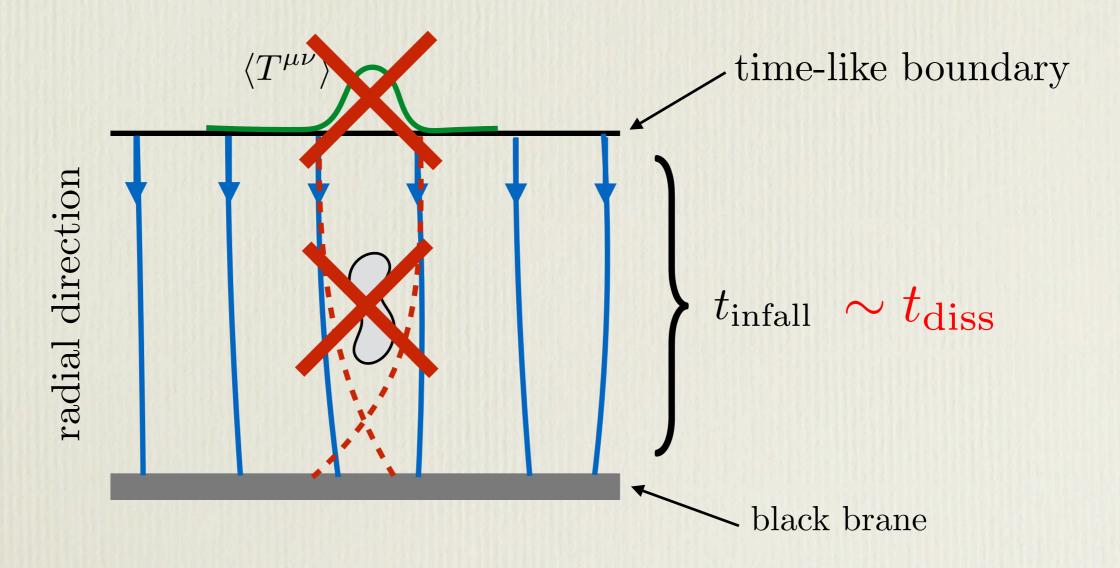






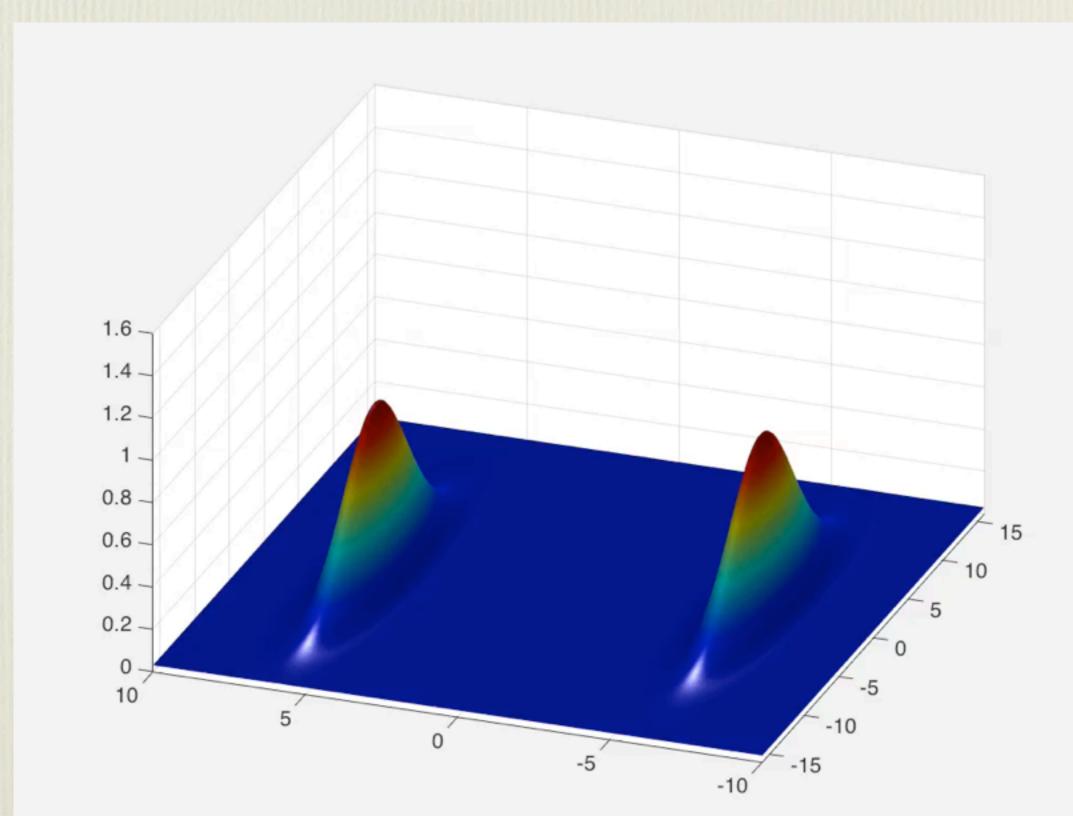


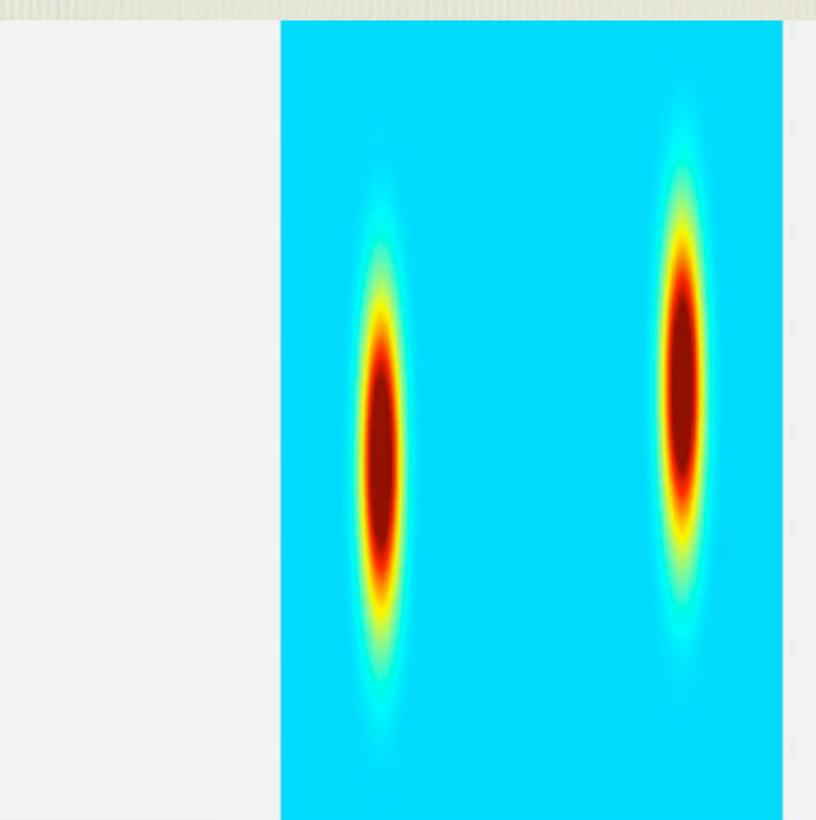




results

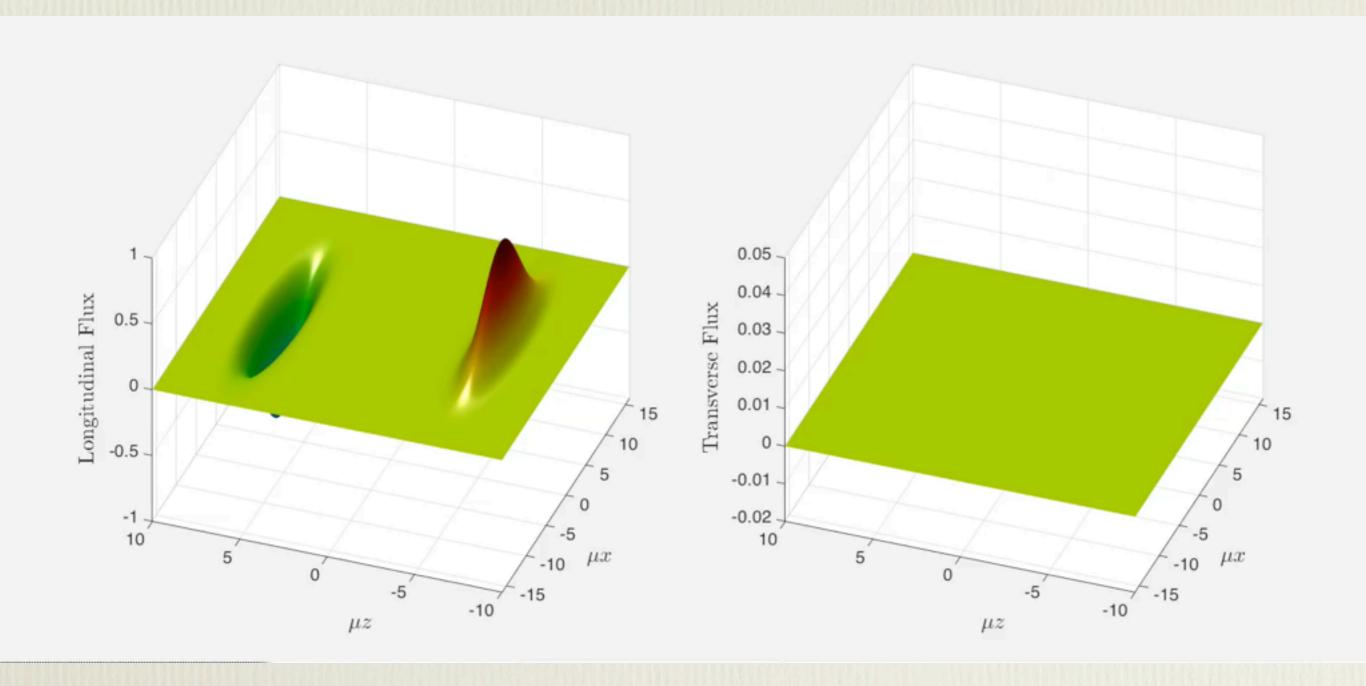
Off-center collisions



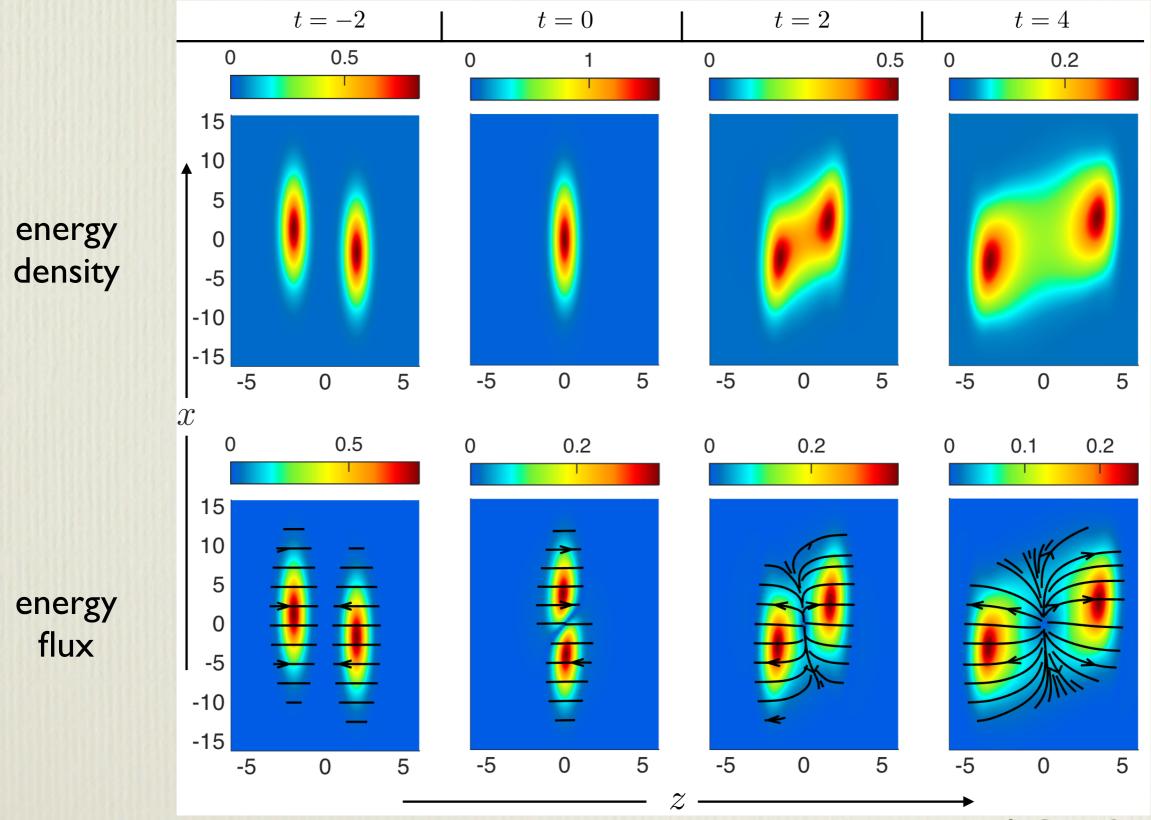


energy flux

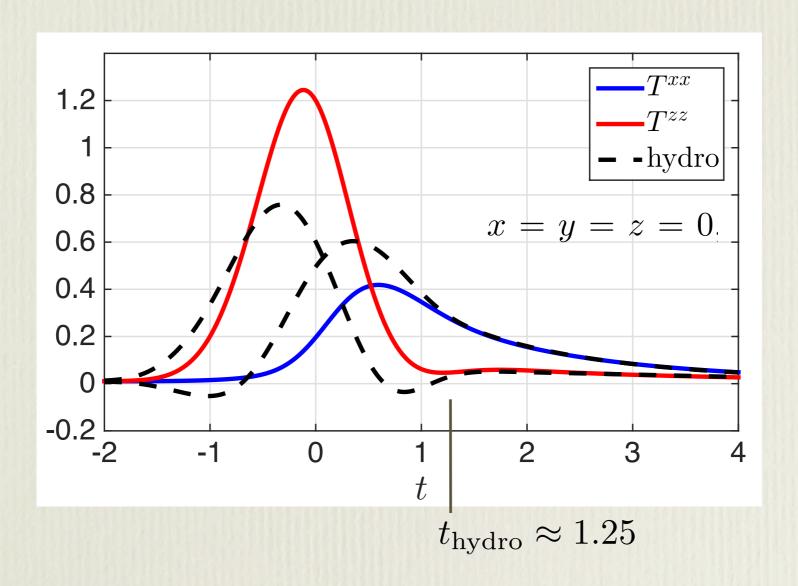
energy flux



snapshots

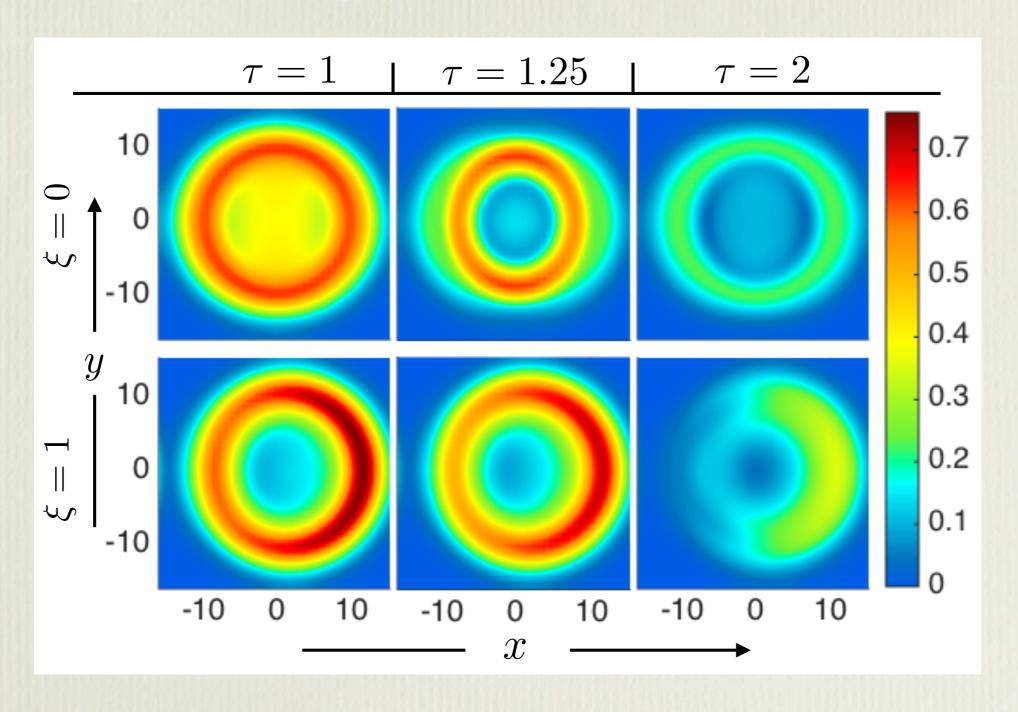


transverse & longitudinal pressure



hydro onset ≈ 30% faster than for planar shocks

hydrodynamic residual



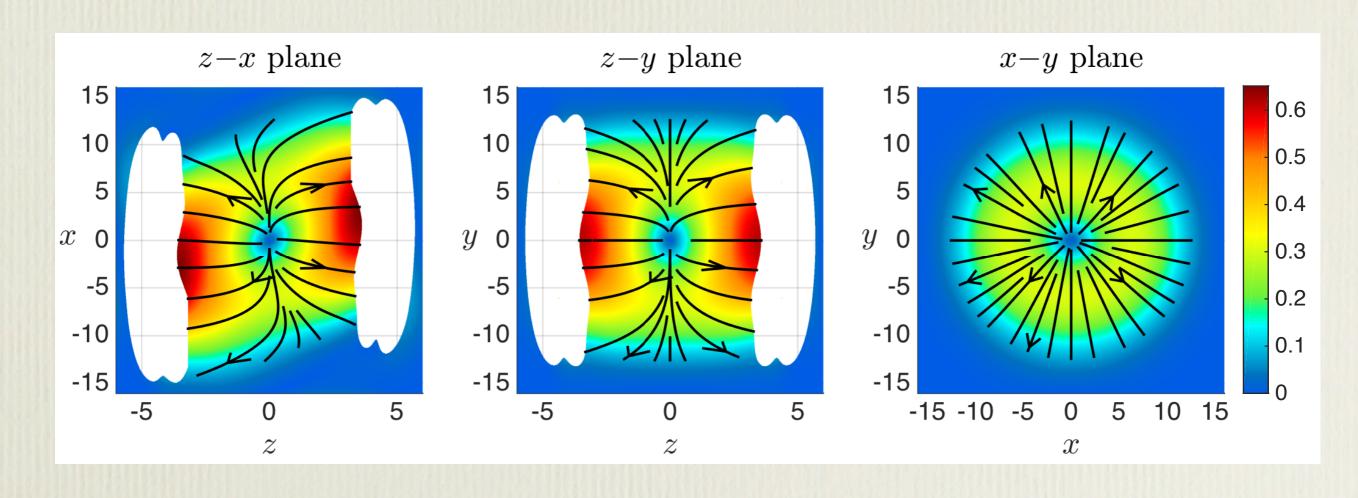
$$\Delta \equiv (1/\bar{p})\sqrt{\Delta T_{\mu\nu}\Delta T^{\mu\nu}},$$

$$\Delta T^{\mu\nu} \equiv T^{\mu\nu} - T^{\mu\nu}_{\rm hydro}$$

$$\bar{p} \equiv \epsilon/3$$

flow velocity

non-hydro regions excised t=4

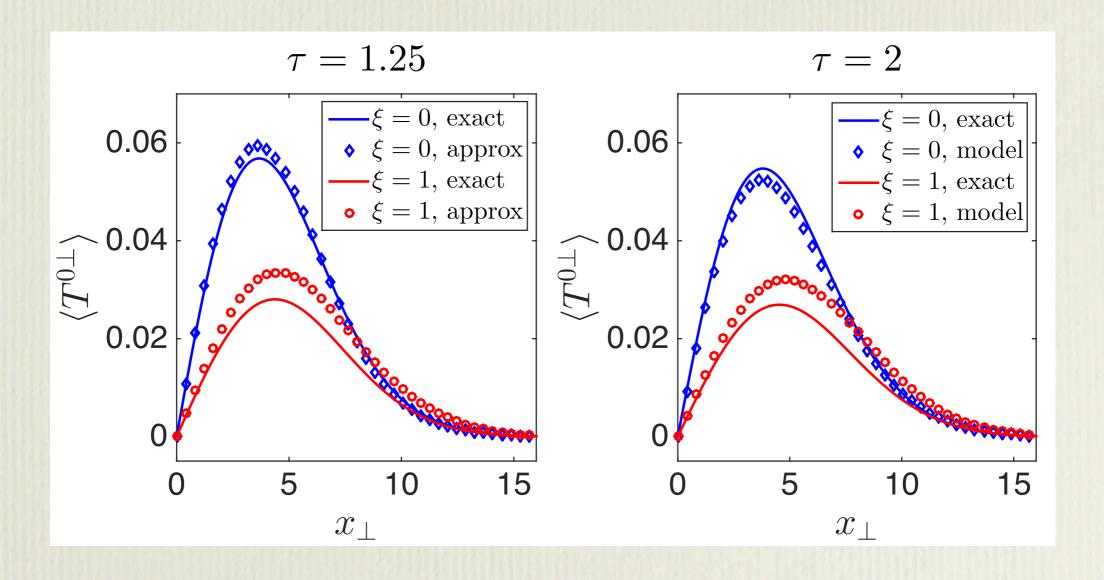


substantial radial flow:

$$v_{\perp}(x_{\perp} = 5) \approx 0.3$$

 $v_{\parallel}^{\text{max}} \approx 0.64$

radial flow



Vredevoogd & Pratt: "universal flow" model (assumes boost invariance & transverse rotational symmetry):

$$T^{0x} = -\frac{t}{2} \,\partial_x \epsilon$$
$$T^{0y} = -\frac{t}{2} \,\partial_y \epsilon$$

elliptic flow?

- no evident "almond" shape to fluid droplet
- transverse flow nearly symmetric
- negligible transverse pressure anisotropy: $\frac{|T_{xx} T_{yy}|}{\frac{1}{2}(T_{xx} + T_{yy})} < 1\%$
- but:

elliptic flow?

- no evident "almond" shape to fluid droplet
- transverse flow nearly symmetric
- negligible transverse pressure anisotropy: $\frac{|T_{xx} T_{yy}|}{\frac{1}{2}(T_{xx} + T_{yy})} < 1\%$
- but:
 - Gaussian choice of initial energy density profile
 - overlap function: $\varepsilon_+(\vec{x}) \varepsilon_-(\vec{x}) \propto e^{-\frac{1}{2}(\mathbf{x}_\perp \mathbf{b}/2)^2} e^{-\frac{1}{2}(\mathbf{x}_\perp + \mathbf{b}/2)^2}$ $= e^{-(\mathbf{x}_{\perp}^2 + (\mathbf{b}/2)^2)}$

lessons

- successful proof-of-principle: holographic calculation of colliding "nuclei" without (over) simplifying symmetry assumptions
- numerical solution of 5D gravitational initial value problems feasible with desktop computing resources (and good methods)
- substantial radial flow develops very early
- faster hydro onset in non-planar collisions
- much more to do:
 - variation w. impact parameter, longitudinal thickness, transverse size
 - more realistic non-Gaussian energy density profile
 - fluctuations in initial profile
 - confining theories