Numerical Holography and Heavy Ion Collisions

Laurence Yaffe
 University of Washington

based on work with Paul Chesler

relativistic heavy ion collisions

Relevant dynamics:
Very early: partonic, marginally perturbative (?)
Plasma phase: strongly coupled
Evidence: screening lengths, viscosity, ...
Many questions:
How fast do produced partons isotropize?
Initial conditions for hydrodynamics?
Signatures of strongly coupled dynamics?

idealize

QCD
\# colors $N_{\mathrm{c}}=3$
't Hooft coupling $\lambda \approx 10$
highly boosted nuclei
$\Rightarrow \quad N=4 S Y M$
$\Rightarrow \quad N_{\mathrm{c}}=\infty$
$\Rightarrow \lambda \gg 1$
$\Rightarrow \quad$ lightlike projectiles
\checkmark non-Abelian plasma
\checkmark hydrodynamic response
X no hadronization
$\checkmark \times$ conformal
\checkmark dual holographic description

holography

- strongly coupled, large N QFT = classical (super) gravity in higher dimension
- valid description on all scales
- gravitational fluctuations: $1 / N^{2}$ suppressed
- QFT state $\boldsymbol{\bullet}$ asymptotically AdS geometry
- $\mathrm{O}\left(N^{2}\right)$ entropy \leftrightarrow gravitational (black brane) horizon
- thermalization \leftrightarrow gravitational infall, horizon formation \& equilibration
- non-equilibrium QFT dynamics \rightarrow classical gravitational initial value problem

holographic collisions

- scattering \Rightarrow Poincaré patch AdS asymptotics
- warm-up steps:
- homogeneous isotropization: $1+1 \mathrm{DPDEs}$ no spatial dynamics
- boost invariant: $1+1 \mathrm{D}$ (no radial flow) or $2+1 \mathrm{D}$ PDEs unrealistic longitudinal dynamics
- planar shocks: 2+1D PDEs no transverse dynamics
- recent work:
- finite "nuclei": 4+1D PDEs (off-center) sensible transverse and longitudinal dynamics

initial projectiles

- exact analytic solution for stable null projectile

Fefferman-Graham (FG) coordinates:
Gubser, ...; Romatschke,...

$$
\begin{array}{r}
d s^{2}=\frac{L^{2}}{s^{2}}\left[-d t^{2}+d \boldsymbol{x}_{\perp}^{2}+d z^{2}+d s^{2}+h_{ \pm}\left(\boldsymbol{x}_{\perp}, z_{\mp}, s\right) d z_{\mp}^{2}\right] \\
\boldsymbol{x}_{\perp} \equiv\{x, y\} \quad z_{\mp} \equiv z \mp t
\end{array}
$$

- metric deformation function

$$
\begin{array}{ll}
\left(\partial_{s}^{2}-\frac{3}{s} \partial_{s}+\nabla_{\perp}^{2}\right) h_{ \pm}=0 & \text { arbitrary } \\
h_{ \pm}\left(\boldsymbol{x}_{\perp}, z_{\mp}, s\right)=\int \frac{d^{2} \mathbf{k}_{\perp}}{(2 \pi)^{2}} e^{i \mathbf{k}_{\perp} \cdot \boldsymbol{y}_{\perp}} \widetilde{H}_{ \pm}\left(\mathbf{k}_{\perp}, z_{\mp}\right) 8\left(s^{2} / k_{\perp}^{2}\right) I_{2}\left(k_{\perp} s\right)
\end{array}
$$

- stress-energy: $\left\langle T^{00}\right\rangle=\left\langle T^{z z}\right\rangle= \pm\left\langle T^{0 z}\right\rangle=\kappa H_{ \pm}\left(\boldsymbol{x}_{\perp}, z_{\mp}\right)$
- choose Gaussian profile for simplicity:

$$
H_{ \pm}\left(\boldsymbol{x}_{\perp}, z_{\mp}\right)=\frac{\mathcal{A}}{\sqrt{2 \pi w^{2}}} \exp \left(-\frac{1}{2} z_{\mp}^{2} / w^{2}\right) \exp \left[-\frac{1}{2}\left(\boldsymbol{x}_{\perp} \mp \boldsymbol{b} / 2\right)^{2} / R^{2}\right]
$$

with: $\mathcal{A}=1 \quad w=\frac{1}{2} \quad R=4 \quad \boldsymbol{b}=\frac{3}{4} R \hat{\boldsymbol{x}}$.

initial data

- Superpose left \& right-moving shocks
- Transform to infalling Eddington-Finkelstein (EF)
\Rightarrow must compute infalling radial null geodesic congruence

$$
\left.\left.\begin{array}{ll}
\text { EF coordinates } & X \equiv\left\{x^{\mu}, r\right\} \\
\text { boundary } \\
\text { coordinates }
\end{array}\right\} \begin{array}{c}
\text { affine } \\
\text { parameter }
\end{array}\right\}
$$

numerical techniques

- characteristic formulation of Einstein equations
- spectral methods w. domain decomposition
- residual diffeomorphism freedom \Rightarrow fix apparent horizon
- periodic spatial compactification
- Matlab implementation (shared memory, multicore)

characteristic formulation (1)

- null slicing of spacetime
- coordinates tied to infalling null geodesic congruence
- metric ansatz: $\quad d s^{2}=\frac{r^{2}}{L^{2}} g_{\mu \nu}(x, r) d x^{\mu} d x^{\nu}+2 d r d t$ $x^{\mu}=$ const. is null geodesic, $r=$ affine parameter
- residual diffeomorphism freedom: $r \rightarrow r+\lambda(x)$
use to fix radial position of apparent horizon

characteristic formulation (2)

spatial scale factor

- rename: $\frac{r^{2}}{L^{2}} g_{00}=-2 A, \quad \frac{r^{2}}{L^{2}} g_{0 i}=-F_{i}, \quad \frac{r^{2}}{L^{2}} g_{i j}=G_{i j} \equiv \Sigma^{2} \hat{g}_{i j}$
unit determinant
- schematic form of resulting equations:

$$
\begin{aligned}
\left(\partial_{r}^{2}+Q_{\Sigma}[\hat{g}]\right) \Sigma & =0, \\
\left(\partial_{r}^{2}+P_{F}[\hat{g}, \Sigma] \partial_{r}+Q_{F}[\hat{g}, \Sigma]\right) F & =S_{F}[\hat{g}, \Sigma], \\
\left(\partial_{r}+Q_{\dot{\Sigma}}[\hat{g}, \Sigma]\right) \dot{\Sigma} & =S_{\dot{\Sigma}}[\hat{g}, \Sigma, F], \\
\left(\partial_{r}+Q_{\dot{g}}[\hat{g}, \Sigma]\right) \dot{g} & =S_{\dot{g}}[\hat{g}, \Sigma, F, \dot{\Sigma}], \\
\partial_{r}^{2} A & =S_{A}[\hat{g}, \Sigma, F, \dot{\Sigma}, \dot{\hat{g}}]
\end{aligned}
$$

with $\dot{h} \equiv \partial_{t} h+\frac{1}{2} A \partial_{r} h$
$\Rightarrow 5 \mathrm{D}$ PDEs \rightarrow nested linear radial ODEs ! ! !
laptop/desktop computable, no supercomputers

characteristic formulation (3)

- wonderful method, but not generally used in numerical relativity:

characteristic formulation (3)

- wonderful method, but not generally used in numerical relativity:

characteristic formulation (3)

- wonderful method, but not generally used in numerical relativity:

characteristic formulation (3)

- wonderful method, but not generally used in numerical relativity:

characteristic formulation (3)

- wonderful method, but not generally used in numerical relativity:

caustics (outside horizon)
= coordinate singularities

characteristic formulation (4)

- works for wide range of holographic QFT problems, but can fail if shortest relevant length scale < dissipative time scale

characteristic formulation (4)

- works for wide range of holographic QFT problems, but can fail if shortest relevant length scale < dissipative time scale

characteristic formulation (4)

- works for wide range of holographic QFT problems, but can fail if shortest relevant length scale < dissipative time scale

characteristic formulation (4)

- works for wide range of holographic QFT problems, but can fail if shortest relevant length scale < dissipative time scale

characteristic formulation (4)

- works for wide range of holographic QFT problems, but can fail if shortest relevant length scale < dissipative time scale

characteristic formulation (4)

- works for wide range of holographic QFT problems, but can fail if shortest relevant length scale < dissipative time scale

characteristic formulation (4)

- works for wide range of holographic QFT problems, but can fail if shortest relevant length scale < dissipative time scale

characteristic formulation (4)

- works for wide range of holographic QFT problems, but can fail if shortest relevant length scale < dissipative time scale

results

Off-center collisions

energy density

energy density

energy density

energy density

energy flux

energy flux

snapshots

transverse \& longitudinal pressure

hydro onset $\approx 30 \%$ faster than for planar shocks

hydrodynamic residual

$$
\Delta \equiv(1 / \bar{p}) \sqrt{\Delta T_{\mu \nu} \Delta T^{\mu \nu}}, \quad \Delta T^{\mu \nu} \equiv T^{\mu \nu}-T_{\text {hydro }}^{\mu \nu} \quad \bar{p} \equiv \epsilon / 3
$$

flow velocity

$$
t=4 \quad \text { non-hydro regions excised }
$$

substantial radial flow:

$$
\begin{aligned}
& v_{\perp}\left(x_{\perp}=5\right) \approx 0.3 \\
& v_{\|}^{\max } \approx 0.64
\end{aligned}
$$

radial flow

Vredevoogd \& Pratt: "universal flow" model (assumes boost invariance $\&$ transverse rotational symmetry):

$$
\begin{aligned}
& T^{0 x}=-\frac{t}{2} \partial_{x} \epsilon \\
& T^{0 y}=-\frac{t}{2} \partial_{y} \epsilon
\end{aligned}
$$

elliptic flow?

- no evident "almond" shape to fluid droplet
- transverse flow nearly symmetric
- negligible transverse pressure anisotropy: $\frac{\left|T_{x x}-T_{y y}\right|}{\frac{1}{2}\left(T_{x x}+T_{y y}\right)}<1 \%$
- but:

elliptic flow?

- no evident "almond" shape to fluid droplet
- transverse flow nearly symmetric
- negligible transverse pressure anisotropy: $\frac{\left|T_{x x}-T_{y y}\right|}{\frac{1}{2}\left(T_{x x}+T_{y y}\right)}<1 \%$
- but:
- Gaussian choice of initial energy density profile
- overlap function: $\varepsilon_{+}(\vec{x}) \varepsilon_{-}(\vec{x}) \propto e^{-\frac{1}{2}\left(\mathbf{x}_{\perp}-\mathbf{b} / 2\right)^{2}} e^{-\frac{1}{2}\left(\mathbf{x}_{\perp}+\mathbf{b} / 2\right)^{2}}$

$$
=e^{-\left(\mathbf{x}_{\perp}^{2}+(\mathbf{b} / 2)^{2}\right)}
$$

lessons

- successful proof-of-principle: holographic calculation of colliding "nuclei" without (over)simplifying symmetry assumptions
- numerical solution of 5 D gravitational initial value problems feasible with desktop computing resources (and good methods)
- substantial radial flow develops very early
- faster hydro onset in non-planar collisions
- much more to do:
- variation w. impact parameter, longitudinal thickness, transverse size
- more realistic non-Gaussian energy density profile
- fluctuations in initial profile
- confining theories

