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Wiedemann-Franz Law

I Wiedemann-Franz law in a Fermi liquid:



�T
⇡ ⇡2k2

B

3e2
⇡ 2.45 ⇥ 10�8 W · ⌦

K2
.

I in hydrodynamics one finds



�T
=

Lhydro

(1 + (Q/Q0)2)
2 , Lhydro � 1.

hence the Lorenz ratio, L, departs from the Sommer- 
feld value, L o 

L -  efT (4) 

The important scattering processes in thermal and 
electrical conduction are: (i) elastic scattering by solute 
atoms, impurities and lattice defects, (ii) scattering of 
the electrons by phonons, and (iii) electron-electron 
interactions. In the elastic scattering region, i.e. at very 
low temperature, IE = IT and hence L = L 0. At higher 
temperatures, electron-electron scattering and elec- 
tron-phonon scattering dominate and the collisions 
are inelastic. Then IE#l T and hence L deviates 
from L o. 

Deviations from the Sommerfeld value of the 
Lorenz number are due to various reasons. In metals, 
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at low temperatures the deviations are due to the 
inelastic nature of electron-phonon interactions. In 
some cases, a higher Lorenz number is due to the 
presence of impurities. The phonon contribution to 
thermal conductivity sometimes increases the Lorenz 
number, and this contribution, when phonon 
Umklapp scattering is present, is inversely propor- 
tional to the temperature. The deviations in Lorenz 
number can also be due to the changes in band 
structure. In magnetic materials, the presence of mag- 
nons also can change the Lorenz number at low 
temperatures. In the presence of a magnetic field, the 
Lorenz number varies directly with magnetic field. 
Changes in Lorenz number are sometimes due to 
structural phase transitions. In recent years, the 
Lorenz number has also been investigated at higher 
temperatures and has been found to deviate from the 
Sommerfeld value [14-20] and it is sometimes at- 
tributed to the incomplete degeneracy (Fermi 
smearing) [21] of electron gas. The Lorenz number 
has also been found to vary with pressure [-22, 23]. 

In alloys, the thermal conductivity and hence the 
Lorenz number have contributions from the electronic 
and lattice parts at low temperatures. The apparent 
Lorenz ratio (L/Lo) for many alloys has a peak at low 
temperatures. At higher temperatures the apparent 
Lorenz ratio is constant for each sample and ap- 
proaches Lo as the percentage of alloying, x, increases. 
In certain alloys at high temperatures, the ordering 
causes a peak in L/L  o. 

The Lorenz number of degenerate semiconductors 
also shows a similar deviation to that observed in 
metals and alloys. Up to a certain temperature, in- 
elastic scattering determines the Lorenz number value, 
and below this the scattering is elastic which is due to 
impurities. Supression of the electronic contribution 
to thermal conductivity and hence the separation of 
the lattice and electronic parts of conductivity can be 
done by application of a transverse magnetic field and 
hence the Lorenz number can be evaluated. The devi- 
ation of the Lorenz number in some degenerate semi- 
conductors is attributed to phonon drag. In some 
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Figure 2 Experimental Lorenz number  of elemental metals in the low-temperature residual resistance regime, see Table I. Also shown are our 
own data points on a doped, degenerate semiconductor (Table III). Data are plotted versus electrical conductivity and also versus carrier 
concentration, taken from Ashcroft and Mermin [24] except for the semiconductors. 
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Key properties of a strange metal

• No quasiparticle excitations

• Shortest possible “collision time”, or

more precisely, fastest possible local

equilibration time ⇠ ~
kBT

• Continuously variable density, Q
(conformal field theories are usually

at fixed density, Q = 0)
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Summary

hydrodynamics

memory matrix holography

universal constraints on transport

appropriate microscopics 
for cuprates

few conserved quantities

perturbative  
limit

long time dynamics; 
“renormalized IR fluid”  

emerges

matrix large N theory; 
non-perturbative computations

[Lucas JHEP]

[Lucas 1506]
[Donos, Gauntlett 1506]

[Lucas, Sachdev PRB]

[Forster ’70s]

[Hartnoll, others]

figure from [Lucas, Sachdev, Physical Review B91 195122 (2015)]

Transport in Strange Metals 

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, PRB 76, 144502 (2007)

Dynamics of charged
black hole horizons



Recall that in a Fermi liquid, the Lorenz ratio L = /(T�), where
 is the thermal conductivity, and � is the conductivity, is given by
L = ⇡2k2B/(3e

2).
For a strange metal with a “relativistic” Hamiltonian, hydrody-

namic, holographic, and memory function methods yield

� = �Q

✓
1 +

e2v2FQ2⌧imp

H�Q

◆
,  =

v2FH⌧

T

✓
1 +

e2v2FQ2⌧imp

H�Q

◆�1

L =
v2FH⌧imp

T 2�Q

✓
1 +

e2v2FQ2⌧imp

H�Q

◆�2

,

where H is the enthalpy density, ⌧imp is the momentum relaxation time
(from impurities), while � = �Q, an intrinsic, finite, “quantum criti-
cal” conductivity. Note that the limits Q ! 0 and ⌧imp ! 1 do not
commute.

Prediction for transport in the graphene strange metal 
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Jesse Crossno,1, 2 Jing K. Shi,1 Ke Wang,1 Xiaomeng Liu,1 Achim Harzheim,1 Andrew Lucas,1 Subir Sachdev,1, 3

Philip Kim,1, 2, ⇤ Takashi Taniguchi,4 Kenji Watanabe,4 Thomas A. Ohki,5 and Kin Chung Fong5, †

1Department of Physics, Harvard University, Cambridge, MA 02138, USA
2John A. Paulson School of Engineering and Applied Sciences,

Harvard University, Cambridge, MA 02138, USA
3Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

4National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
5Raytheon BBN Technologies, Quantum Information Processing Group, Cambridge, Massachusetts 02138, USA

(Dated: September 28, 2015)

Interactions between particles in quantum many-body systems can lead to collective behavior
described by hydrodynamics. One such system is the electron-hole plasma in graphene near the
charge neutrality point which can form a strongly coupled Dirac fluid. This charge neutral plasma
of quasi-relativistic fermions is expected to exhibit a substantial enhancement of the thermal con-
ductivity, due to decoupling of charge and heat currents within hydrodynamics. Employing high
sensitivity Johnson noise thermometry, we report the breakdown of the Wiedemann-Franz law in
graphene, with a thermal conductivity an order of magnitude larger than the value predicted by
Fermi liquid theory. This result is a signature of the Dirac fluid, and constitutes direct evidence of
collective motion in a quantum electronic fluid.

Understanding the dynamics of many interacting parti-
cles is a formidable task in physics, complicated by many
coupled degrees of freedom. For electronic transport in
matter, strong interactions can lead to a breakdown of
the Fermi liquid (FL) paradigm of coherent quasiparti-
cles scattering o↵ of impurities. In such situations, the
complex microscopic dynamics can be coarse-grained to
a hydrodynamic description of momentum, energy, and
charge transport on long length and time scales [1]. Hy-
drodynamics has been successfully applied to a diverse
array of interacting quantum systems, from high mobility
electrons in conductors [2], to cold atoms [3] and quark-
gluon plasmas [4]. As has been argued for strongly inter-
acting massless Dirac fermions in graphene at the charge-
neutrality point (CNP) [5–8], hydrodynamic e↵ects are
expected to greatly modify transport coe�cients as com-
pared to their FL counterparts.

Many-body physics in graphene is interesting due to
electron-hole symmetry and a linear dispersion relation
at the CNP [9, 10]. Together with the vanishing Fermi
surface, the ultrarelativistic spectrum leads to ine↵ective
screening [11] and the formation of a strongly-interacting
quasi-relativistic electron-hole plasma, known as a Dirac
fluid [12]. The Dirac fluid shares many features with
quantum critical systems [13]: most importantly, the
electron-electron scattering time is fast [14–17], and well
suited to a hydrodynamic description. Because of the
quasi-relativistic nature of the Dirac fluid, this hydro-
dynamic limit is described by novel equations [18] quite
di↵erent from non-relativistic counterparts.A number of
exotic properties have been predicted including nearly
perfect (inviscid) flow [19] and a diverging thermal con-
ductivity resulting in the breakdown of the Wiedemann-
Franz law [5, 6].

Away from the CNP, graphene has a sharp Fermi sur-
face and the standard FL phenomenology holds. By tun-
ing the chemical potential, we may measure thermal and
electrical conductivity in both the Dirac fluid (DF) and
the FL in the same sample. In a FL, the relaxation of
heat and charge currents is closely related as they are car-
ried by the same quasiparticles. The Wiedemann-Franz
(WF) law [20] states that the electronic contribution to
a metal’s thermal conductivity e is proportional to its
electrical conductivity � and temperature T , such that
the Lorenz ratio L satisfies

L ⌘ e

�T

=
⇡

2

3

✓
kB

e

◆2

⌘ L0 (1)

where e is the electron charge, kB is the Boltzmann con-
stant, and L0 is the Sommerfeld value derived from FL
theory. L0 depends only on fundamental constants, and
not on specific details of the system such as carrier den-
sity or e↵ective mass. As a robust prediction of FL the-
ory, the WF law has been verified in numerous metals
[20]. However, in recent years, an increasing number of
non-trivial violations of the WF law have been reported
in strongly interacting systems such as Luttinger liquids
[21], metallic ferromagnets [22], heavy fermion metals
[23], and underdoped cuprates [24], all related to the
emergence of non-Fermi liquid behavior.
The WF law is expected to be violated at the CNP

in a DF due to the strong Coulomb interactions between
thermally excited charge carriers. An electric field drives
electrons and holes in opposite directions; collisions be-
tween them introduce a frictional dissipation, resulting
in a finite conductivity even in the absence of disorder
[25]. In contrast, a temperature gradient causes electrons
and holes to move in the same direction inducing an en-

arXiv:1509.04713
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Wiedemann-Franz Law Violations in Experiment

 

0

4

8

12

16

20
L

 / L
0

10

20

30

40

50

60

70

80

90

100
T

b
a

th
 (

K
)

−10−15 15−5 0 5 10

n (109 cm-2)

disorder-limited

phonon-limited

[Crossno et al, submitted]J. Crossno et al. arXiv:1509.04713

Strange metal in graphene



Dirac Fluid in Graphene 28

Wiedemann-Franz Law Violations in Experiment

 

0

4

8

12

16

20
L

 / L
0

10

20

30

40

50

60

70

80

90

100
T

b
a

th
 (

K
)

−10−15 15−5 0 5 10

n (109 cm-2)

disorder-limited

phonon-limited

[Crossno et al, submitted]

Wiedemann-Franz 
obeyedJ. Crossno et al. arXiv:1509.04713

Strange metal in graphene



Dirac Fluid in Graphene 28

Wiedemann-Franz Law Violations in Experiment

 

0

4

8

12

16

20
L

 / L
0

10

20

30

40

50

60

70

80

90

100
T

b
a

th
 (

K
)

−10−15 15−5 0 5 10

n (109 cm-2)

disorder-limited

phonon-limited

[Crossno et al, submitted]

Wiedemann-Franz 
violated !J. Crossno et al. arXiv:1509.04713

Strange metal in graphene



 

0

4

8

12

16

20

L
 / L

0

10

20

30

40

50

60

70

80

90

100

T
b

a
th

 (
K

)

−10−15 15−5 0 5 10

n (109 cm-2)

2

−10 −5 0 5 10

0

0.6

1.2

Vg (V)

R
 (

kΩ
)

 

250 K
150 K

 

100 K

50 K
4 K

A

10

-1012 -1011 -1010 1010 1011 1012

100

n (cm-2)

El
e

c.
 C

o
n

d
u

ct
iv

it
y 

(4
 e

2
/h

)

T
b

ath  (K
)

e-h+

B

∆Vg (V) Tbath (K)
-0.5 0.50 0 50 100 150

T
h

e
rm

a
l C

o
n

d
u

ct
iv

it
y

 (
n

W
/K

)

0

2

4

6

8

0

2

4

6

0

2

4

6

8

0

0
1

1

 

10 mm

20 K

-0.5 V

0 V

40 K

75 K

C D

E

T
el-ph

T
dis

κe

σTL0

FIG. 1. Temperature and density dependent electrical and thermal conductivity. (A) Resistance versus gate voltage
at various temperatures. (B) Electrical conductivity (blue) as a function of the charge density set by the back gate for di↵erent
bath temperatures. The residual carrier density at the neutrality point (green) is estimated by the intersection of the minimum
conductivity with a linear fit to log(�) away from neutrality (dashed grey lines). Curves have been o↵set vertically such that
the minimum density (green) aligns with the temperature axis to the right. Solid black lines correspond to 4e2/h. At low
temperature, the minimum density is limited by disorder (charge puddles). However, above Tdis ⇠ 40 K, a crossover marked
in the half-tone background, thermal excitations begin to dominate and the sample enters the non-degenerate regime near
the neutrality point. (C-D) Thermal conductivity (red points) as a function of (C) gate voltage and (D) bath temperature
compared to the Wiedemann-Franz law, �TL0 (blue lines). At low temperature and/or high doping (|µ| � kBT ), we find the
WF law to hold. This is a non-trivial check on the quality of our measurement. In the non-degenerate regime (|µ| < kBT )
the thermal conductivity is enhanced and the WF law is violated. Above Tel�ph ⇠ 80 K, electron-phonon coupling becomes
appreciable and begins to dominate thermal transport at all measured gate voltages. All data from this figure is taken from
sample S2 (inset 1E).

Realization of the Dirac fluid in graphene requires that
the thermal energy be larger than the local chemical po-
tential µ(r), defined at position r: kBT & |µ(r)|. Impu-
rities cause spatial variations in the local chemical po-
tential, and even when the sample is globally neutral, it
is locally doped to form electron-hole puddles with finite
µ(r) [25–28]. Formation of the DF is further complicated
by phonon scattering at high temperature which can re-
lax momentum by creating additional inelastic scattering
channels. This high temperature limit occurs when the
electron-phonon scattering rate becomes comparable to
the electron-electron scattering rate. These two temper-
atures set the experimental window in which the DF and
the breakdown of the WF law can be observed.

To minimize disorder, the monolayer graphene samples
used in this report are encapsulated in hexagonal boron
nitride (hBN) [29]. All devices used in this study are
two-terminal to keep a well-defined temperature profile

[30] with contacts fabricated using the one-dimensional
edge technique [31] in order to minimize contact resis-
tance. We employ a back gate voltage Vg applied to
the silicon substrate to tune the charge carrier density
n = ne � nh, where ne and nh are the electron and hole
density, respectively (see supplementary materials (SM)).
All measurements are performed in a cryostat controlling
the temperature Tbath. Fig. 1A shows the resistance R
versus Vg measured at various fixed temperatures for a
representative device (see SM for all samples). From this,
we estimate the electrical conductivity � (Fig. 1B) using
the known sample dimensions. At the CNP, the residual
charge carrier density nmin can be estimated by extrap-
olating a linear fit of log(�) as a function of log(n) out
to the minimum conductivity [32]. At the lowest tem-
peratures we find nmin saturates to ⇠8⇥109 cm�2. We
note that the extraction of nmin by this method overesti-
mates the charge puddle energy, consistent with previous
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At high temperature all samples become limited by thermal
excitations. Dashed lines are a guide to the eye. (B) The
Lorentz ratio of all three samples as a function of bath tem-
perature. The largest WF violation is seen in the cleanest
sample. (C) The gate dependence of the Lorentz ratio is well
fit to hydrodynamic theory of Ref. [5, 6]. Fits of all three
samples are shown at 60 K. All samples return to the Fermi
liquid value (black dashed line) at high density. Inset shows
the fitted enthalpy density as a function of temperature and
the theoretical value in clean graphene (black dashed line).
Schematic inset illustrates the di↵erence between heat and
charge current in the neutral Dirac plasma.

more pronounced peak but also a narrower density de-
pendence, as predicted [5, 6].

More quantitative analysis of L(n) in our experiment
can be done by employing a quasi-relativistic hydrody-
namic theory of the DF incorporating the e↵ects of weak
impurity scattering [5, 6, 39].

L =
LDF

(1 + (n/n0)2)
2 (2)

where

LDF =
HvFlm
T 2�min

and n2
0 =

H�min

e2vFlm
. (3)

Here vF is the Fermi velocity in graphene, �min is the elec-
trical conductivity at the CNP, H is the fluid enthalpy
density, and lm is the momentum relaxation length from

impurities. Two parameters in Eqn. 2 are undetermined
for any given sample: lm and H. For simplicity, we as-
sume we are well within the DF limit where lm and H
are approximately independent of n. We fit the experi-
mentally measured L(n) to Eqn. (2) for all temperatures
and densities in the Dirac fluid regime to obtain lm and
H for each sample. Fig 3C shows three representative fits
to Eqn. (2) taken at 60 K. lm is estimated to be 1.5, 0.6,
and 0.034 µm for samples S1, S2, and S3, respectively.
For the system to be well described by hydrodynamics,
lm should be long compared to the electron-electron scat-
tering length of ⇠0.1 µm expected for the Dirac fluid at
60 K [18]. This is consistent with the pronounced sig-
natures of hydrodynamics in S1 and S2, but not in S3,
where only a glimpse of the DF appears in this more
disordered sample. Our analysis also allows us to es-
timate the thermodynamic quantity H(T ) for the DF.
The Fig. 3C inset shows the fitted enthalpy density as
a function of temperature compared to that expected in
clean graphene (dashed line) [18], excluding renormal-
ization of the Fermi velocity. In the cleanest sample H
varies from 1.1-2.3 eV/µm2 for Tdis < T < Tel�ph. This
enthalpy density corresponds to ⇠ 20 meV or ⇠ 4kBT
per charge carrier — about a factor of 2 larger than the
model calculation without disorder [18].

In a hydrodynamic system, the ratio of shear viscosity
⌘ to entropy density s is an indicator of the strength of
the interactions between constituent particles. It is sug-
gested that the DF can behave as a nearly perfect fluid
[18]: ⌘/s approaches a “universal” lower bound conjec-
ture by Kovtun-Son-Starinets, (⌘/s)/(~/kB) � 1/4⇡ for
a strongly interacting system [40]. Though we cannot
directly measure ⌘, we comment on the implications of
our measurement for its value. Within relativistic hy-
drodynamics, we can estimate the shear viscosity of the
electron-hole plasma in graphene from the enthalpy den-
sity as ⌘ ⇠ H⌧ee [40], where ⌧ee is the electron-electron
scattering time. Increasing the strength of interactions
decreases ⌧ee, which in turn decreases ⌘ and ⌘/s. Employ-
ing the expected Heisenberg limited inter-particle scat-
tering time, ⌧ee ⇠ ~/kBT [5, 6], we find a shear viscosity
of ⇠ 10�20 kg/s in two-dimensional units, corresponding
to ⇠ 10�10 Pa · s. The value of ⌧ee used here is consistent
with recent optical experiments on graphene [14, 16, 17].
Using the theoretical entropy density for clean graphene
(SM), we estimate (⌘/s)/(~/kB) ⇠ 3. This is comparable
to ⇠0.7 found in liquid helium at the Lambda-point [41],
⇠0.3 measured in cold atoms [3], and  0.4 for quark-
gluon plasmas [4].

To fully incorporate the e↵ects of disorder, a hydrody-
namic theory treating inhomogeneity non-perturbatively
may be needed [42]. The enthalpy densities reported here
are larger than the theoretical estimation obtained for
disorder free graphene; consistent with the picture that
chemical potential fluctuations prevent the sample from
reaching the Dirac point. While we find thermal conduc-
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Lorentz ratio L = /(T�)

=

v2FH⌧imp

T 2�Q

1

(1 + e2v2FQ2⌧imp/(H�Q))
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Figure 1: testingFigure 1: A comparison of our hydrodynamic theory of transport with the experimental results of
[33] in clean samples of graphene at T = 75 K. We study the electrical and thermal conductances
at various charge densities n near the charge neutrality point. Experimental data is shown
as circular red data markers, and numerical results of our theory, averaged over 30 disorder
realizations, are shown as the solid blue line. Our theory assumes the equations of state described
in (27) with the parameters C

0

⇡ 11, C

2

⇡ 9, C

4

⇡ 200, ⌘

0

⇡ 110, �

0

⇡ 1.7, and (28) with
u

0

⇡ 0.13. The yellow shaded region shows where Fermi liquid behavior is observed and the
Wiedemann-Franz law is restored, and our hydrodynamic theory is not valid in or near this
regime. We also show the predictions of (2) as dashed purple lines, and have chosen the 3
parameter fit to be optimized for (n).

where e is the electron charge, s is the entropy density, n is the charge density (in units of length�2),
H is the enthalpy density, ⌧ is a momentum relaxation time, and �q is a quantum critical e↵ect, whose
existence is a new e↵ect in the hydrodynamic gradient expansion of a relativistic fluid. Note that up to
�q, �(n) is simply described by Drude physics. The Lorenz ratio then takes the general form

L(n) =
L

DF

(1 + (n/n

0

)2)2
, (3)

where

L
DF

=
v

2

F

H⌧

T

2

�q
, (4a)

n

2

0

=
H�q

e

2

v

2

F

⌧

. (4b)

L(n) can be parametrically larger than L
WF

(as ⌧ ! 1 and n ⌧ n

0

), and much smaller (n � n

0

).
Both of these predictions were observed in the recent experiment, and fits of the measured L to (3) were
quantitatively consistent, until large enough n where Fermi liquid behavior was restored. However, the
experiment also found that the conductivity did not grow rapidly away from n = 0 as predicted in (2),
despite a large peak in (n) near n = 0, as we show in Figure 1. Furthermore, the theory of [25] does not
make clear predictions for the temperature dependence of ⌧ , which determines (T ).

In this paper, we argue that there are two related reasons for the breakdown of (2). One is that the
dominant source of disorder in graphene – fluctuations in the local charge density, commonly referred to as
charge puddles [43, 44, 45, 46] – are not perturbatively weak, and therefore a non-perturbative treatment
of their e↵ects is necessary.3 The second is that the parameter ⌧ , even when it is sharply defined, is

3See [47, 48] for a theory of electrical conductivity in charge puddle dominated graphene at low temperatures.
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Figure 3: A cartoon of a nearly quantum critical fluid where our hydrodynamic description of
transport is sensible. The local chemical potential µ(x) always obeys |µ| ⌧ k

B

T , and so the
entropy density s/k

B

is much larger than the charge density |n|; both electrons and holes are
everywhere excited, and the energy density ✏ does not fluctuate as much relative to the mean.
Near charge neutrality the local charge density flips sign repeatedly. The correlation length of
disorder ⇠ is much larger than l

ee

, the electron-electron interaction length.

1.2 Outline

The outline of this paper is as follows. We briefly review the definitions of transport coe�cients in Section
2. In Section 3 we develop a theory of hydrodynamic transport in the electron fluid, assuming that it is
Lorentz invariant. We discuss the peculiar case of the Dirac fluid in graphene in Section 4, and argue that
deviations from Lorentz invariance are small. We describe the results of our numerical simulations of this
theory in Section 5, and directly compare our simulations with recent experimental data from graphene
[33]. The experimentally relevant e↵ects of phonons are qualitatively described in Section 6. We conclude
the paper with a discussion of future experimental directions. Appendices contain technical details of our
theory.

In this paper we use index notation for vectors and tensors. Latin indices ij · · · run over spatial
coordinates x and y; Greek indices µ⌫ · · · run over time t as well. We will denote the time-like coordinate
of A

µ as A

t. Indices are raised and lowered with the Minkowski metric ⌘

µ⌫ ⌘ diag(�1, 1, 1). The Einstein
summation convention is always employed.

Transport Coe�cients2

Let us begin by defining the thermoelectric response coe�cients of interest in this paper. Suppose that
we drive our fluid by a spatially uniform, externally applied, electric field E

i

(formally, an electrochemical
potential gradient), and a temperature gradient �@

i

T . We will refer to �@

j

T as T ⇣

j

, with ⇣

j

= �T

�1

@

j

T ,
for technical reasons later. As is standard in linear response theory, we decompose these perturbations
into various frequencies, and focus on the response at a single frequency !. Time translation invariance
implies that the (uniformly) spatially averaged charge current hJ

i

i and the spatially averaged heat current
hQ

i

i are also periodic in time of frequency !, and are related to E

i

and ⇣

i

by the thermoelectric transport
coe�cients: ✓ hJ

i

i
hQ

i

i
◆

e�i!t =

✓
�

ij

(!) T↵

ij

(!)
T ↵̄

ij

(!) T ̄

ij

(!)

◆✓
E

j

⇣

j

◆
e�i!t

. (5)
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Non-perturbative treatment of disorder
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Note

n ⌘ Q

Numerically solve the hydrodynamic equations of Hartnoll, Kovtun, Müller,
Sachdev (PRB 76, 144502 (2007)) but in the presence of a x-dependent chemical
potential. The thermoelectric transport properties will then depend upon the

value of the shear viscosity, ⌘.
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Figure 1: testingFigure 1: A comparison of our hydrodynamic theory of transport with the experimental results of
[33] in clean samples of graphene at T = 75 K. We study the electrical and thermal conductances
at various charge densities n near the charge neutrality point. Experimental data is shown
as circular red data markers, and numerical results of our theory, averaged over 30 disorder
realizations, are shown as the solid blue line. Our theory assumes the equations of state described
in (27) with the parameters C
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⇡ 11, C

2
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4

⇡ 200, ⌘
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⇡ 110, �

0

⇡ 1.7, and (28) with
u

0

⇡ 0.13. The yellow shaded region shows where Fermi liquid behavior is observed and the
Wiedemann-Franz law is restored, and our hydrodynamic theory is not valid in or near this
regime. We also show the predictions of (2) as dashed purple lines, and have chosen the 3
parameter fit to be optimized for (n).

where e is the electron charge, s is the entropy density, n is the charge density (in units of length�2),
H is the enthalpy density, ⌧ is a momentum relaxation time, and �q is a quantum critical e↵ect, whose
existence is a new e↵ect in the hydrodynamic gradient expansion of a relativistic fluid. Note that up to
�q, �(n) is simply described by Drude physics. The Lorenz ratio then takes the general form

L(n) =
L

DF

(1 + (n/n

0

)2)2
, (3)

where

L
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=
v

2

F

H⌧

T

2

�q
, (4a)

n

2

0

=
H�q

e

2

v

2

F

⌧

. (4b)

L(n) can be parametrically larger than L
WF

(as ⌧ ! 1 and n ⌧ n

0

), and much smaller (n � n

0

).
Both of these predictions were observed in the recent experiment, and fits of the measured L to (3) were
quantitatively consistent, until large enough n where Fermi liquid behavior was restored. However, the
experiment also found that the conductivity did not grow rapidly away from n = 0 as predicted in (2),
despite a large peak in (n) near n = 0, as we show in Figure 1. Furthermore, the theory of [25] does not
make clear predictions for the temperature dependence of ⌧ , which determines (T ).

In this paper, we argue that there are two related reasons for the breakdown of (2). One is that the
dominant source of disorder in graphene – fluctuations in the local charge density, commonly referred to as
charge puddles [43, 44, 45, 46] – are not perturbatively weak, and therefore a non-perturbative treatment
of their e↵ects is necessary.3 The second is that the parameter ⌧ , even when it is sharply defined, is

3See [47, 48] for a theory of electrical conductivity in charge puddle dominated graphene at low temperatures.
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dependencies of other parameters also agree well with expectation.
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Figure 1: testingFigure 2: A comparison of our hydrodynamic theory of transport with the experimental results
of [33] in clean samples of graphene at the charge neutrality point (n = 0). We use no new fit
parameters compared to Figure 1. The yellow shaded region denotes where Fermi liquid behavior
is observed; the purple shaded region denotes the likely onset of electron-phonon coupling.

intimately related to both the viscosity and to n, and this n dependence is neglected when performing
the fit to (2) in Figure 1. We develop a non-perturbative hydrodynamic theory of transport which relies
on neither of the above assumptions, and gives us an explicit formula for ⌧ in the limit of weak disorder.
The key assumption for the validity of our theory is that the size of the charge puddles is comparable
to or larger than the electron interaction length scale, which is about 100 nm. Experimental evidence
suggests this is marginally true in graphene samples mounted on hexagonal boron nitride [46], as was
done in [33]. Although we cannot analytically solve our theory non-perturbatively, we perform numerical
computations of the transport coe�cients in disordered fluids, and compare the results to the experimental
data in Figure 1. Our simultaneous fit to (n) and �(n) shows improved quantitative agreement with both
sets of data in the Dirac fluid regime. We further compare in Figure 2 the temperature dependence of 

and � between our numerics and the experiment, using no new fitting parameters, and find satisfactory
quantitative agreement in the Dirac fluid regime.

Figure 3 shows a cartoon of the regime of validity of our hydrodynamic theory. The fact that the
charge puddles may be substantial, while the entropy and energy densities are much more constant, helps
to explain why the perturbative description of transport is much better for  than �, as the perturbative
approach works well in a nearly homogeneous fluid. In coming years the quality of graphene samples
will improve, and the charge puddle size may grow larger than 100 nm, allowing us to observe the
clean hydrodynamic limit described by (2). As present day samples are just clean enough to observe
hydrodynamics, our determination of the equations of state should be understood as preliminary.

Although the focus of this paper is on the Dirac fluid in graphene, this is because of the experimental
motivation for this work. Our theory has broader validity, and we will introduce it in the more general
context of transport in a disordered electronic fluid near a quantum critical point with manifest Lorentz
invariance, with the microscopic Fermi velocity v

F

playing the role of the speed of light. The Dirac fluid is
not strictly Lorentz invariant, but we will justify the validity of our approach even in this system. While
the Dirac fluid in graphene is currently the only experimentally realized strongly interacting condensed
matter system with evidence for electronic hydrodynamics [33], in the future surface states in topolog-
ical insulators in three spatial dimensions may host strongly interacting electron fluids [49]. Strongly
interacting three dimensional materials including Weyl semimetals [50, 51, 52] may also give rise to novel
phenomena relevant for transport [53, 54].
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Graphene  hosts  a  unique  electron  system  that  due  to  weak  electron‐phonon  scattering  allows 
micrometer‐scale  ballistic  transport  even  at  room  temperature  whereas  the  local  equilibrium  is 
provided by  frequent electron‐electron collisions. Under these conditions, electrons can behave as a 
viscous  liquid  and  exhibit  hydrodynamic  phenomena  similar  to  classical  liquids.  Here  we  report 
unambiguous evidence  for  this  long‐sought  transport regime.  In particular, doped graphene exhibits 
an  anomalous  (negative)  voltage  drop  near  current  injection  contacts,  which  is  attributed  to  the 
formation of submicrometer‐size whirlpools in the electron flow. The viscosity of graphene’s electron 
liquid is found to be an order of magnitude larger than that of honey, in quantitative agreement with 
many‐body theory. Our work shows a possibility to study electron hydrodynamics using high quality 
graphene.   

 
 

Collective  behavior  of many‐particle  systems  that  undergo  frequent  inter‐particle  collisions  has  been 
studied for more than two centuries and is routinely described by the theory of hydrodynamics [1,2]. The 
theory  relies  only  on  the  conservation  of mass, momentum  and  energy  and  is  highly  successful  in 
explaining  the response of classical gases and  liquids  to external perturbations varying slowly  in space 
and  time.  More  recently,  it  has  been  shown  that  hydrodynamics  can  also  be  applied  to  strongly 
interacting quantum systems including ultra‐hot nuclear matter and ultra‐cold atomic Fermi gases in the 
unitarity limit [3‐6].   

In principle, the hydrodynamic approach can also be employed to describe many‐electron phenomena in 
condensed matter physics [7‐13]. The theory becomes applicable if electron‐electron scattering provides 
the  shortest  spatial  scale  in  the  problem  such  that  ℓee ≪ ܹ, ℓ  where  ℓee  is  the  electron‐electron 
scattering length, ܹ  the sample size,  ℓ ≡  ୊߬ݒ the mean free path,   ୊ݒ the Fermi velocity, and  ߬  the 
mean free time with respect to momentum‐non‐conserving collisions such as those involving impurities, 
phonons, etc. The above  inequalities are difficult to meet experimentally.  Indeed, at  low temperatures 
(ܶ)  ℓee   varies  approximately  as  ∝ ܶିଶ   reaching  a  micrometer  scale  below  a  few  K  [14],  which 
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Figure 1. Viscous backflow in doped graphene. (a,b) Steady‐state distribution of current injected through 
a narrow slit for a classical conducting medium with zero   ߥ (a) and a viscous Fermi liquid (b). (c) Optical 
micrograph of one of our SLG devices. The schematic explains  the measurement geometry  for vicinity 
resistance.  (d,e)  Longitudinal  conductivity   ௫௫ߪ and  ܴ୚  for  this device as a  function of  ݊  induced by 
applying gate voltage.  ܫ ൌ 0.3	PA;  ܮ ൌ 1	Pm. For more detail, see Supplementary Information.   

To  elucidate  hydrodynamics  effects, we  employed  the  geometry  shown  in  Fig.  1c.  In  this  case,   is	ܫ
injected through a narrow constriction into the graphene bulk, and the voltage drop  ୚ܸ  is measured at 
the nearby side contacts located only at the distance   1~ܮ Pm away from the  injection point. This can 
be considered as nonlocal measurements, although stray currents are not exponentially small  [24]. To 
distinguish from the proper nonlocal geometry [24], we refer to the linear‐response signal measured in 
our  geometry  as  “vicinity  resistance”,  ܴ୚ ൌ ୚ܸ/ܫ.  The  idea  is  that,  in  the  case  of  a  viscous  flow, 
whirlpools emerge as shown  in Fig. 1b, and  their appearance can  then be detected as sign reversal of 

୚ܸ, which  is positive for the conventional current  flow (Fig. 1a) and negative for viscous backflow  (Fig. 
1b). Fig. 1e shows examples of  ܴ୚  for  the same SLG device as  in Fig. 1d, and other devices exhibited 
similar behavior (Supplementary Fig. 1). One can see that, away from the charge neutrality point (CNP), 
ܴ୚  is indeed negative over a large range of  ܶ  and that the conventional behavior is recovered at room 
ܶ.   

Figure 2 details our observations further by showing maps  ܴ୚ሺ݊, ܶሻ  for SLG and BLG. Near room  ܶ, SLG 
devices exhibited positive  ܴ୚  that evolved qualitatively similar  to  longitudinal  resistivity  ௫௫ߩ ൌ  ௫௫ߪ/1
as expected  for a classical electron  system.  In contrast,  ܴ୚  was  found negative over a  large  range of 
ܶ ൏ 250  K and for  ݊  away from the CNP. The behavior was slightly different for BLG (Fig. 2b) reflecting 
the different electronic spectrum but again  ܴ୚  was negative over a large range of  ݊  and  ܶ. Two more 
ܴ୚  maps are provided  in Supplementary Figure 9.  In total, six multiterminal devices were  investigated 
showing the vicinity behavior that was highly reproducible for both different contacts on a same device 
and different devices, although we note  that  the electron backflow was more pronounced  for devices 
with highest   ߤ and lowest charge inhomogeneity.   
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Infinite-range model of a Fermi liquid
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Infinite-range model of a Fermi liquid
Feynman graph expansion in tij.., and graph-by-graph average,

yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = t2G(⌧)

G(⌧ = 0

�
) = Q.

G(!) can be determined by solving a quadratic equation.

Fermions occupying eigenstates with a “semi-circular” density of states
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Jij are independent random variables with Jij = 0 and J2
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N ! 1 at M = 2 yields spin-glass ground state.

N ! 1 and then M ! 1 yields critical strange metal

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

Infinite-range model of a strange metal



Infinite-range model of a strange metal
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Infinite-range strange metals

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

Feynman graph expansion in Jij.., and graph-by-graph average,

yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �J2G2

(⌧)G(�⌧)

G(⌧ = 0

�
) = Q.

Low frequency analysis shows that the solutions must be gapless

and obey

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z

for some complex A. Let us also define

e
⌃(z) = ⌃(z)� µ.



Infinite-range strange metals
At frequencies ⌧ J , the equations for G and ⌃ can be written as

Z
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e
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gauge transformations

⌧ = f(�)

G(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�1/4 g(�1)

g(�2)
G(�1,�2)

e
⌃(⌧1, ⌧2) = [f 0

(�1)f
0
(�2)]

�3/4 g(�1)

g(�2)

e
⌃(�1,�2)

where f(�) and g(�) are arbitrary functions.

These equations and invariances have similarities to those of the

large N limit of quantum spins at the spatial boundary of a CFT2

(multi-channel Kondo problems)

A. Georges and O. Parcollet
PRB 59, 5341 (1999) 

A. Kitaev, unpublished
S. Sachdev, arXiv:1506.05111

O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta 
PRB 58, 3794 (1998)



Infinite-range strange metals

E encodes the particle-hole asymmetry

S. Sachdev and J. Ye,  Phys. Rev. Lett. 70, 3339 (1993)
A. Georges, O. Parcollet, and S. Sachdev  Phys. Rev. B 63, 134406 (2001) 

Local fermion density of states

⇢(!) = �ImG(!) ⇠
⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

While E determines the low energy spectrum, it is determined by

the total fermion density Q:

Q =

1

4

(3� tanh(2⇡E))� 1

⇡
tan

�1
�
e2⇡E

�
.

Analog of the relationship between Q and kF in a Fermi liquid.
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Infinite-range strange metals

S. Sachdev and J. Ye,  Phys. Rev. Lett. 70, 3339 (1993)
A. Georges and O. Parcollet PRB 59, 5341 (1999)

A. Georges, O. Parcollet, and S. Sachdev  Phys. Rev. B 63, 134406 (2001) 

At non-zero temperature, T , the Green’s function

also fully determined by E .

GR
(!) =

�iCe�i✓

(2⇡T )1�2�

�

✓
�� i~!

2⇡T
+ iE

◆

�

✓
1��� i~!

2⇡T
+ iE

◆

where � = 1/4 and e2⇡E =

sin(⇡�+ ✓)

sin(⇡�� ✓)
.

Note G(!) ⌘ f(~!/kBT )



CFT 

“Critically-screened”

spin has “irrational” entropy

N. Andrei and C. Destri, PRL 52, 364 (1984).

A. M. Tsvelick, J. Phys. C 18, 159 (1985).

I. A✏eck and A. W. W. Ludwig, PRL 67, 161 (1991).

S. Sachdev, C. Buragohain, and M. Vojta, Science 286, 2479 (1999).



Infinite-range strange metals
The entropy per site, S, has a non-zero limit as T ! 0, and

can be viewed as each site acquiring the universal bound-

ary entropy of the multichannel Kondo problem.

This entropy obeys

✓
@S
@Q

◆

T

= �
✓
@µ

@T

◆

Q
= 2⇡E

N. Andrei and C. Destri, PRL 52, 364 (1984).

A. M. Tsvelick, J. Phys. C 18, 159 (1985).

I. A✏eck and A. W. W. Ludwig, PRL 67, 161 (1991).

S. Sachdev, C. Buragohain, and M. Vojta, Science 286, 2479 (1999).

This entropy obeys

✓
@S
@Q

◆

T

= �
✓
@µ

@T

◆

Q
= 2⇡E

O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta  Phys. Rev. B 58, 3794 (1998)
A. Georges, O. Parcollet, and S. Sachdev  Phys. Rev. B 63, 134406 (2001) 

Note that S and E involve low-lying states, while Q de-

pends upon all states, and details of the UV structure



1. Experiment and theory in graphene

2. A solvable model of a strange metal 

3. Holography and charged black holes

  

Quantum matter without quasiparticles
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AdS/CFT correspondence at zero temperature
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AdS/CFT correspondence at non-zero temperature

R

d,1
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Einstein gravity

AdS-Schwarzschild
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of horizon
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Entropy density of CFTd+1, S ⇠ T d

Bekenstein-Hawking entropy density, SBH ⇠ T d
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AdS/CFT correspondence at non-zero temperature
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Einstein gravity
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Hawking

temperature T
of horizon
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Gubser, Klebanov, Peet 96

For SU(N) SYM in d = 3, SBH = (⇡2/2)N2T 3
. But there is (still)

no confirmation of this from a field-theory computation on SYM.



Charged black branes

Einstein-Maxwell theory SEM =

Z
d

d+2
x

p
�g


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r
AdS-Reissner-Nordstrom Quantummatter on

the boundary with

a variable charge

densityQ of a global

U(1) symmetry.

A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, 99

Realizes a strange metal: a state with an unbroken global U(1)

symmetry with a continuously variable charge density, Q, at

T = 0 which does not have any quasiparticle excitations.



• Near-horizon metric is AdS2, with near-horizon electric field E .

• As T ! 0, there is a non-zero Bekenstein-Hawking entropy, SBH

• Both E and SBH are determined by Q, and both vanish as Q ! 0.

• Near the boundary, A = µdt, where µ is the chemical potential

~x⇣ = 1

AdS2 ⇥R

d

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

charge
density Q

⇣

General Relativity of charged black branes



Quantum fields on charged black branes

~x⇣ = 1

AdS2 ⇥R

d

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

charge
density Q

⇣

E encodes the particle-hole asymmetry

Boundary Green’s function of  at T = 0

ImG(!) ⇠
⇢

!�(1�2�) , ! > 0

e�2⇡E |!|�(1�2�), ! < 0.

where the fermion scaling dimension � is a function of m

Dirac fermion  
of mass m

T. Faulkner, Hong Liu, J. McGreevy, and D. Vegh, PRD 83, 125002 (2011)
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charge
density Q

Conformal mapping to T > 0
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Gauge field: A = E(1/⇣ � 1/⇣0)dt with ⇣0 = 1/(2⇡T )

⇣ = 1

⇣ = ⇣0

Quantum fields on charged black branes

Dirac fermion  
of mass m

T. Faulkner, Hong Liu, J. McGreevy, and D. Vegh, PRD 83, 125002 (2011)

Boundary Green’s function of  at T > 0

is fully determined by E

GR
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⇣
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charge
density Q

Conformal mapping to T > 0

ds
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Gauge field: A = E(1/⇣ � 1/⇣0)dt with ⇣0 = 1/(2⇡T )

⇣ = 1

General Relativity of charged black branes

⇣ = ⇣0

• As T ! 0, there is a non-zero Bekenstein-Hawking entropy, SBH .

• Using Gauss’s Law, it can be shown that µ(T ) = �2⇡ET+ constant
as T ! 0.

• Using a thermodynamic Maxwell relation (also obeyed by gravity),

✓
@SBH

@Q

◆

T

= �
✓
@µ

@T

◆

Q
= 2⇡E

A. Sen
hep-th/0506177
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1506.05111
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⇣ = 1

General Relativity of charged black branes

⇣ = ⇣0

• As T ! 0, there is a non-zero Bekenstein-Hawking entropy, SBH .

• Using Gauss’s Law, it can be shown that µ(T ) = �2⇡ET+ constant
as T ! 0.

• Using a thermodynamic Maxwell relation (also obeyed by gravity),
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Also obeyed by

Wald entropy

in higher-derivative

gravity.
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Local fermion density of states

⇢(!) ⇠
⇢

!�1/2 , ! > 0

e�2⇡E |!|�1/2, ! < 0.

‘Equation of state’ relating E
and Q depends upon the geometry

of spacetime far from the AdS2

A. Sen, arXiv:hep-th/0506177; S. Sachdev, arXiv:1506.05111

Black hole thermodynamics

(classical general relativity) yields
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Quantum matter without quasiparticles

• No quasiparticle excitations

• Shortest possible “collision time”, or more precisely, fastest

possible local equilibration time ⇠ ~
kBT

• Continuously variable density, Q
(conformal field theories are usually at fixed density, Q = 0)

• Theory built from hydrodynamics/holography

/memory-functions/strong-coupled-field-theory

• Exciting experimental realization in graphene.


